top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bio-nano interface : applications in food, healthcare and sustainability / / edited by Manoranjan Arakha, Arun Kumar Pradhan and Suman Jha
Bio-nano interface : applications in food, healthcare and sustainability / / edited by Manoranjan Arakha, Arun Kumar Pradhan and Suman Jha
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (355 pages)
Disciplina 660.6
Soggetto topico Nanoparticles
Nanopartícules
Ultraestructura (Biologia)
Soggetto genere / forma Llibres electrònics
ISBN 981-16-2516-6
981-16-2515-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- 1: Impact of Isotropic and Anisotropic Plasmonic Metal Nanoparticles on Healthcare and Food Safety Management -- 1.1 Introduction -- 1.2 Synthetic Strategies for Metal Nanoparticles -- 1.3 Physico-Chemical Properties of Nanoparticles and their Impact on BiologicalMilieu -- 1.4 Applications of AuNPs in Healthcare -- 1.5 Gold Nanoparticles as a Probe for Detecting Contaminants/Adulterants in Food -- 1.6 Application of Silver Nanoparticles in Healthcare -- 1.7 Silver Nanoparticles as a Probe for Detecting Contaminants/Adulterants in Food -- 1.8 Application of Platinum Nanoparticles in Healthcare -- 1.9 Platinum Nanoparticles as a Probe for Detecting Contaminants/Adulterants in Food -- 1.10 Conclusion -- References -- 2: An Introduction to Different Methods of Nanoparticles Synthesis -- 2.1 Introduction -- 2.2 Physical Method for Synthesis of Nanoparticle -- 2.2.1 High Energy Ball Milling -- 2.2.2 Inert Gas Condensation -- 2.2.3 Physical Vapour Deposition (PVD) -- 2.2.3.1 Sputtering -- 2.2.3.2 Electron Beam Evaporation (EBE) -- 2.2.3.3 Laser Ablation (LA) and Pulse Laser Deposition (PLD) -- 2.2.3.4 Vacuum Arc (VA) -- 2.2.4 Laser Pyrolysis -- 2.2.5 Flame Spray Pyrolysis (FSP) -- 2.2.6 Electrospraying Technique -- 2.2.7 Melt Mixing Technique -- 2.3 Chemical Method for Synthesis of Nanoparticle -- 2.3.1 Sol-Gel Methods -- 2.3.2 Micro-emulsion Technique -- 2.3.3 Hydrothermal Synthesis -- 2.3.4 Polyol Synthesis -- 2.3.5 Chemical Vapour Deposition (CPD) -- 2.3.6 Plasma Enhanced Chemical Vapour Deposition (PECVD) -- 2.4 Biological Method for Synthesis of Nanoparticle -- 2.4.1 Biogenic Synthesis Using Microorganisms -- 2.4.2 Biomolecules as Templates to Design Nanoparticles -- 2.4.3 Biogenic Synthesis Using Plant Extracts -- 2.5 Conclusion -- References.
3: Classification, Synthesis and Application of Nanoparticles Against Infectious Diseases -- 3.1 Introduction -- 3.2 Classification of Nanoparticles -- 3.2.1 Dimensionality -- 3.2.2 Morphology -- 3.2.3 Composition -- 3.2.4 Agglomeration and Uniformity -- 3.3 Classification Based on Different Types of Nanomaterials -- 3.3.1 Inorganic Nanoparticles -- 3.3.2 Metal Oxide and Metal Nanoparticles -- 3.3.3 Organic Nanoparticles -- 3.3.4 Carbon Nanoparticles -- 3.4 Synthesis of Nanoparticles -- 3.4.1 Top-Down Method -- 3.4.2 Bottom-Up Method -- 3.5 Physical Methods for Synthesis of Nanoparticles -- 3.5.1 Mechanical Milling/Ball Milling of Nanoparticles -- 3.5.2 Laser Ablation -- 3.5.3 Sputtering -- 3.6 Chemical Methods for Synthesis of Nanoparticles -- 3.6.1 Sol-Gel Technique -- 3.6.2 Micro-Emulsion Technique -- 3.6.3 Electrochemical Technique -- 3.7 Green Synthesis Approaches for Synthesis of Nanoparticles -- 3.8 Nanoparticles Synthesis Using Bacteria -- 3.9 Application of Nanoparticles -- 3.9.1 Nanoparticles as Novel Antibiotics -- 3.9.2 Nanoparticles as Therapeutic Agents Against Infectious Diseases -- 3.10 Conclusion -- References -- 4: Nanotechnology in Food Science -- 4.1 Introduction -- 4.2 Nanotechnology -- 4.2.1 Types of Nanotechnology -- 4.2.1.1 Wet Nanotechnology -- 4.2.1.2 Dry Nanotechnology -- 4.2.1.3 Computational Nanotechnology -- 4.3 Nanotechnology in Food Packaging -- 4.4 Nanotechnology Against Food Deterioration -- 4.5 Nanotechnology for Food Storage -- 4.6 Nanotechnology in Food Pathogen Detection -- 4.6.1 Gold NPs -- 4.6.2 Magnetic NPs -- 4.6.3 Biosensors -- 4.7 Implication and Perspective -- 4.8 Conclusion -- References -- 5: Facets of Nanotechnology in Food Processing, Packaging and Safety: An Emerald Insight -- 5.1 Introduction -- 5.2 Nanoparticles -- 5.2.1 Organic Nanoparticles -- 5.2.2 Inorganic Nanoparticles (INP).
5.3 Nanoclays (NCS) -- 5.4 Nanoemulsions (NES) -- 5.5 Preparation and Factor Affecting Biosynthesis of Nanoparticles -- 5.6 Characterization of Nanoparticles -- 5.7 Nanotechnology in Food Microbiology -- 5.8 Nanoencapsulation and Microencapsulation -- 5.9 Nanoemulsions and Microemulsions -- 5.10 Nanofood Market -- 5.11 Food Processing Using Nanotechnology -- 5.12 Packaging Techniques Using Nanotechnology -- 5.12.1 Nano-Coatings -- 5.12.2 Nanolaminates -- 5.12.3 Nano Crystal -- 5.12.4 Nanomaterials -- 5.12.5 Biobased Packaging -- 5.12.6 Smart Packaging -- 5.13 Role of Nanosensor in Food Safety -- 5.14 Future Trends and Perspectives of Nanotechnology -- References -- 6: Nanotechnology and Its Potential Application in Postharvest Technology -- 6.1 Introduction -- 6.2 Nanomaterials -- 6.3 Properties of Nanomaterial -- 6.3.1 Physicochemical Properties of Nanoparticle -- 6.4 Applications of Nanotechnology -- 6.4.1 For the Control of Disease and Pest in Plants -- 6.4.2 For Detecting Plant Diseases -- 6.4.3 For the Control of Plant Diseases -- 6.5 Use of Nanoparticles to Control the Plant Diseases -- 6.5.1 Nano-Agriculture -- 6.5.2 Silver Nanoparticles -- 6.5.3 Nano Sensors -- 6.5.4 Mesoporous Silica Nanoparticles -- 6.5.5 Nanoemulsion -- 6.5.6 Precision Farming -- 6.6 Global Positioning System (GPS) -- 6.6.1 Sensor Technologies -- 6.6.2 Geographic Information System -- 6.6.3 Grid Soil Sampling and Variable-Rate Fertilizer (VRT) -- 6.6.4 Rate Controllers -- 6.6.5 Yield Monitor -- 6.6.6 Nano-Biofarming -- 6.7 Nano Formulation in Packing and Quality of Food -- 6.7.1 Nanotechnology for Food Packaging -- 6.7.2 Nanoencapsulation -- 6.8 Safety of Nano-Packaging Material -- 6.9 Biosynthesis of Nanomaterials -- 6.10 Postharvest Food Processing -- 6.11 Conclusion -- 6.12 Future Prospective -- References.
7: Nanotechnology Mediated Detection and Control of Phytopathogens -- 7.1 Introduction -- 7.2 Synthesis of Nanoparticles -- 7.3 Early Detection of Phytopathogens Using Nanoparticles -- 7.3.1 Action of Nanoparticles against Phytopathogens -- 7.3.1.1 Plant Disease Cycle -- 7.3.1.2 Host Pathogen Interaction -- 7.3.1.3 Generation of Reactive Oxygen Species (ROS) -- 7.3.1.4 Mode of Action -- 7.4 Nanoparticles in Controlling Phytopathogens -- 7.4.1 Nanoparticles Acting as Protectant -- 7.4.1.1 Ag Nanoparticle -- 7.4.1.2 Cu Nanoparticle -- 7.4.1.3 Zn Nanoparticle -- 7.4.2 Nanoparticles Acting as Carrier -- 7.4.2.1 Chitosan Nanoparticle -- 7.4.2.2 Silica Nanoparticle -- 7.4.2.3 Titanium Nanoparticle -- 7.5 Nanopesticides -- 7.6 Insecticides -- 7.7 Fungicides -- 7.8 Herbicide -- 7.9 Conclusion -- References -- 8: Nanosystems for Cancer Therapy -- 8.1 Introduction -- 8.2 Physiological Hindrances to Tumor-Specific Delivery -- 8.3 Targeting Cancer Cells with Nanosystems -- 8.3.1 Active Nanosystems -- 8.3.2 Passive Targeting Systems -- 8.4 Future Directions -- References -- 9: Phytoplankton Mediated Nanoparticles for Cancer Therapy -- 9.1 Introduction -- 9.2 Different Phytoplankton Mediated Nanoparticles -- 9.2.1 Diatoms -- 9.2.2 Coccolithophores -- 9.2.3 Cyanobacteria -- 9.3 Strategies for Development of Phytoplankton Mediated Nanodrug Formulation for Cancer Therapy -- 9.3.1 Green Synthesis of Metallic Nanoparticles -- 9.3.2 Diatom Nanocarriers for Systemic Drug Delivery -- 9.3.3 Green Carbon Nanotags for Anticancer Drug Delivery -- 9.4 Possible Future Strategies of Nanoformulation of Anticancer Drugs Isolated from Phytoplankton in Cancer Drug Development -- 9.5 Scope of Commercialization for Nanodrug Formulation for Cancer Therapy -- 9.6 Limitations of Phytoplankton Mediated Nanoparticles -- 9.7 Conclusion and Future Perspectives -- References.
10: Nanotechnology and Its Potential Implications in Ovary Cancer -- 10.1 Introduction -- 10.2 Possible Risk Factors Associated with Ovary Cancer -- 10.2.1 Age -- 10.2.2 Genetics -- 10.2.3 Family History -- 10.2.4 Ethnicity -- 10.2.5 Reproductive History -- 10.2.6 Gynaecological Factors -- 10.2.7 Hormone Replacement Therapy -- 10.2.8 Lifestyle Factors -- 10.3 Current Therapeutic Approach to Ovary Cancer -- 10.4 Nanotechnology and Its Implications in Ovary Cancer -- 10.4.1 Nanoformulations in Drug Delivery for Chemotherapy -- 10.4.2 Nanotechnology in Biomarker Discovery in Ovarian Cancer -- 10.4.3 Nanotechnology in Imaging Approach in Ovarian Cancer -- 10.4.4 Nanotechnology in Receptor Targeting in Ovary Cancer -- 10.5 Conclusion -- References -- 11: Nanotechnology: An Emerging Field in Protein Aggregation and Cancer Therapeutics -- 11.1 Introduction -- 11.2 Nanoparticle-Mediated Applications in Biology and Medicine -- 11.2.1 Nanoparticles in Biosensor -- 11.2.2 Nanoparticles in Bioimaging -- 11.2.3 Nanoparticles in Drug Delivery -- 11.3 Nanoparticle-Protein Interaction and Protein Aggregation -- 11.3.1 Nanoparticles in Type II Diabetes Mellitus -- 11.3.2 Nanoparticles in Parkinson´s Disease -- 11.3.3 Nanoparticles in Alzheimer´s Disease -- 11.3.4 Nanoparticles in Tauopathy Disease -- 11.4 Nanoparticle in Cancer -- 11.4.1 Nanoparticles in Cancer Diagnosis -- 11.4.2 Nanoparticles in Cancer Therapeutics -- 11.5 Conclusion -- References -- 12: Bio-nano Interface and Its Potential Application in Alzheimer´s Disease -- 12.1 Introduction -- 12.2 Pathogenesis -- 12.2.1 Amyloid Plaques -- 12.2.2 Neurofibrillary Tangles -- 12.2.3 Amyloid Precursor Protein (APP) -- 12.3 Nanotechnology Used in AD Detection -- 12.3.1 Iron Oxide NPs -- 12.3.2 Gold NPs -- 12.3.3 Scanning Tunnelling Microscopy System -- 12.3.4 Two Photon Rayleigh Spectroscopy.
12.4 Nanotechnology in the Treatment of AD.
Record Nr. UNINA-9910743380203321
Gateway East, Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microbial nanotechnology : green synthesis and applications / / Mohammad Azam Ansari, Suriya Rehman
Microbial nanotechnology : green synthesis and applications / / Mohammad Azam Ansari, Suriya Rehman
Autore Ansari Mohammad Azam
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (355 pages)
Disciplina 660.62
Soggetto topico Microbial biotechnology
Microbial biotechnology - Methodology
Biotecnologia microbiana
Ultraestructura (Biologia)
Soggetto genere / forma Llibres electrònics
ISBN 981-16-1923-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- About the Editors -- 1: Prospectus and Development of Microbes Mediated Synthesis of Nanoparticles -- 1.1 Introduction -- 1.2 Nanoparticles Synthesized by Bacteria -- 1.2.1 Intracellular Production of Nanoparticles and Extracellular Production of Nanoparticles -- 1.3 Fungus-Mediated Nanoparticle Synthesis -- 1.4 Viral Nanoparticles and Virus-Like Particles -- 1.5 Synthesis of Nanoparticles Using Algae -- 1.6 Advantages of Microbial Synthesis of Nanoparticles -- 1.7 Disadvantages of Microbial Synthesis of Nanoparticles -- 1.8 Future Perspectives -- References -- Section I: Microbial Green Synthesis -- 2: Prokaryotic and Microbial Eukaryotic System for the NP Synthesis -- 2.1 Introduction -- 2.1.1 Bio-Synthesis of NPs Using Microbes -- 2.2 Microorganism Mediated Synthesis -- 2.2.1 Mechanisms of MNPs Synthesis by Microbes -- 2.2.2 Extracellular Enzymes -- 2.2.3 Intracellular Enzymes -- 2.2.4 Ag Nanoparticles -- 2.2.4.1 Trichoderma Reesei Mediated Ag NPs -- 2.2.4.2 Usage of Bacillus subtilis -- 2.2.4.3 Usage of Probiotic Bacillus licheniformis -- 2.2.4.4 Usage of Anogeissus latifolia -- 2.2.4.5 Usage of Marine Sediment Fungi -- 2.2.4.6 Usage of Salmonella typhirium Extract -- 2.2.4.7 Using Aspergillus terreus -- 2.2.4.8 Usage of Macroalgae Spirogyra varians -- 2.2.4.9 Using Pestalotiopsis pauciseta -- 2.2.4.10 Using Endophytic Fungi Pestaloptiopsis pauciseta -- 2.2.4.11 Usage of Marine Nanoparticle for the Extraction of Metal Nanosized Particle -- 2.2.5 Au Nanosized Particles -- 2.2.5.1 Using Bacteria Enzyme -- 2.2.5.2 Using Bacillus marisflavi -- 2.2.5.3 Using Pseudomonas veronii AS41G -- 2.2.5.4 Using Filamentous Cyanobacteria -- 2.2.5.5 Usage of Galaxaura elongata -- 2.2.6 ZnO Nanosized Particles -- 2.2.7 Cu Nanoparticles -- 2.2.8 Bio-Synthesis Factories as Algae -- 2.3 Conclusion -- References.
3: Intracellular and Extracellular Microbial Enzymes and Their Role in Nanoparticle Synthesis -- 3.1 Introduction -- 3.2 Bio-Synthesis of Nanoparticles and Enzymes Involved -- 3.2.1 Intracellular Synthesis -- 3.2.2 Extracellular Synthesis -- 3.3 Applications of Biosynthesized Nanoparticles -- 3.3.1 Anticancer Tools -- 3.3.2 Anti-Microbial Activity -- 3.3.3 Degradation of Dyes -- 3.3.4 Dehalogenation -- 3.3.5 Heavy Metal Ions Removal -- 3.4 Conclusion and Future Prospects in Research and Development -- References -- 4: Bacterial Synthesis of NPs and Their Scale-Up Technologies -- 4.1 Introduction -- 4.1.1 Silver Nanoparticles -- 4.1.2 Gold Nanoparticles -- 4.1.3 Zinc Oxide Nanoparticles -- 4.1.4 Magnetic Nanoparticles -- 4.1.5 Non-magnetic Nanoparticles -- 4.1.6 Other Types of Nanoparticles -- 4.2 Mechanism of Synthesis of Nanoparticles -- 4.2.1 Control of Size and Morphology of Nanoparticles -- 4.3 Demerits and Future Prospective -- 4.3.1 Selection of the Bacteria -- 4.3.2 Growth Conditions and Enzyme Activity -- 4.3.3 Stabilization of the Nanoparticles -- 4.3.4 The Extraction and Purification -- 4.3.5 Optimization and Scaling Up of the Nanoparticles -- 4.4 Conclusion -- References -- 5: Fungal Biogenesis of NPs and Their Limitations -- 5.1 Introduction -- 5.1.1 Nanotechnology -- 5.1.2 Nanoparticles (NPs) -- 5.1.3 Metal NP Synthesis -- 5.1.4 Biosynthesis of NPs by Fungi -- 5.1.4.1 Intracellular Synthesis of NPs by Fungi -- 5.1.4.2 Extracellular Synthesis of NPs by Fungi -- 5.1.5 Mechanism Involved in the Synthesis of Nanoparticle Using Fungi -- 5.1.6 Various Experimental Parameters for the Fungal Synthesis of Metal NPs -- 5.2 Characterisation Techniques for NPs -- 5.2.1 UV-Visible Spectroscopy -- 5.2.2 Fourier Transform Infrared Spectroscopy (FTIR) -- 5.2.3 X-Ray Diffraction Technique (XRD) -- 5.2.4 Transmission Electron Microscopy (TEM).
5.2.5 Scanning Electron Microscopy (SEM) -- 5.2.6 Energy-Dispersive X-Ray Spectroscopy (EDS or EDX) -- 5.3 Limitations of Fungal Mediated NPs -- 5.3.1 Limitation of Nano Fertilizers -- 5.3.1.1 The Movement and Take-Up of NPs in Plants -- 5.3.1.2 Transformation and Collection of NPs in Plants -- 5.3.2 Nanomedicine -- 5.3.2.1 Biological Systems: A Test for Nanomedicine -- 5.3.2.2 Nanomedicine´s Social Setting: How Inside Irregularities Can Obstruct Progress -- 5.3.3 In Water Treatment, Basic Application Viewpoints -- 5.4 Conclusion -- 5.5 Future Perspective -- References -- 6: Role of Viruses in Nanoparticles Synthesis -- 6.1 Introduction -- 6.2 Nanoscience and Nanotechnology -- 6.2.1 Nanomaterial -- 6.2.1.1 Size -- 6.2.1.2 Particle Size Distribution -- 6.2.1.3 Surface Area -- 6.3 Application of Nanotechnology -- 6.4 Viruses as Nanomaterials -- 6.5 Different Types of VNPs/VLPs and their Roles -- 6.5.1 Plant Viruses -- 6.5.2 Icosahedral Plant VNPs and VLPs -- 6.5.2.1 Carnation Mottle Virus (CarMV) -- 6.5.2.2 Cowpea Mosaic Virus (CPMV) -- 6.5.2.3 Maize Rayado Fino Virus (MRFV) -- 6.5.2.4 Sesbania Mosaic Virus (SeMV) -- 6.5.2.5 Brome Mosaic Virus (BMV) -- 6.5.2.6 Cowpea Chlorotic Mottle Virus (CCMV) -- 6.5.2.7 Hibiscus Chlorotic Ringspot Virus (HCRSV) -- 6.5.2.8 Red Clover Necrotic Mottle Virus (RCNMV) -- 6.5.2.9 Turnip Yellow Mosaic Virus (TYMV) -- 6.6 Role of VNPs in Therapeutic Interventions -- 6.7 Role of VNPs as Drug Delivery Agents -- 6.8 Role of VNPs Against Infectious Diseases -- 6.9 Conclusion with Future Perspective -- References -- 7: Overview and Prospectus of Algal Biogenesis of Nanoparticles -- 7.1 Introduction -- 7.2 Algal Role in Green Synthesis -- 7.3 Algal Mediated Nanoparticle Synthesis -- 7.3.1 Intracellular Mode -- 7.3.2 Extracellular Mode -- 7.4 Factors Affecting the Algal Mediated Biosynthesis of NPs -- 7.4.1 Temperature.
7.4.2 pH of the Reaction Medium -- 7.4.3 Incubation Time -- 7.4.4 Algal Biomass Concentration -- 7.4.5 Illumination -- 7.5 Conclusion -- References -- 8: Protozoa: As Emerging Candidates for the Synthesis of NPs -- 8.1 Introduction -- 8.2 Biosynthesis of Nanoparticles (NPs) -- 8.2.1 The Intracellular and Extracellular Synthesis of Nanoparticles(NPs) by Microorganisms -- 8.3 Protozoa for theSynthesis of BiocompatibleNanoparticles(NPs) -- 8.3.1 Advantages of Protozoa for Biosynthesis ofNanoparticles (NPs) -- 8.3.2 Plausible Mechanism(s) for theSynthesis of BiocompatibleNanoparticles (NPs)by Protozoa -- 8.4 Conclusion -- References -- SectionII: Application of Microbial Nanoparticles -- 9: Industrial Perspective of Microbial Application of Nanoparticles Synthesis -- 9.1 Introduction -- 9.2 Classification of NPs -- 9.3 Chemical and Physical Synthesis of Nanoparticles -- 9.3.1 Chemical Synthesis -- 9.3.1.1 Sol-Gel Method -- 9.3.1.2 Pulsed Laser Method -- 9.3.1.3 Spray Pyrolysis -- 9.3.1.4 Co-Precipitation -- 9.3.2 Physical Methods -- 9.3.2.1 Mechanical/Ball Milling -- 9.3.2.2 Physical Vapor Deposition -- 9.4 Microbial-Mediated Synthesis of Nanoparticles -- 9.4.1 Bacterial-Biosynthesized Nanoparticles -- 9.4.2 Actinomycetes-Biosynthesized Nanoparticles -- 9.4.3 Fungal-Biosynthesized Nanoparticles -- 9.4.4 Microalgal-Biosynthesized Nanoparticles -- 9.4.5 Advantages of Biological Synthesis of NPs -- 9.5 Mechanisms of Microbial Synthesis of NPs. -- 9.6 Features of Biosynthesized NPs -- 9.6.1 Morphological Characterizations -- 9.6.2 Toxicity of Biosynthesized NPs -- 9.7 Potential Industrial Applications of Biosynthesized NPs -- 9.7.1 Applications of Nanoparticles for Wastewater Management -- 9.7.1.1 Removal of Radioactive Pollutants -- 9.7.1.2 Removal of Heavy Metals -- 9.7.1.3 Removal of Inorganic Compounds.
9.7.1.4 Application of Biogenic NPs in the Textile Industry -- 9.7.1.5 Application of NPs in the Food Industry -- 9.7.1.6 Application of NPs in Agricultural Purposes -- Nano-Fertilizers -- Nanopesticides -- 9.7.2 Nanomedicine and Biomedical Application of Nanoparticles. -- 9.7.2.1 Antimicrobial activities and Cytotoxicity Agents -- 9.7.2.2 Drug Delivery System -- 9.7.2.3 Antitumor and Anticancer Agents -- 9.7.3 Biosensors Applications -- 9.8 Conclusion and Future Perspective -- References -- 10: Microbial Nanotechnology in Treating Multidrug-Resistance Pathogens -- 10.1 Introduction -- 10.2 Overview on MDR Mechanisms of Pathogens -- 10.2.1 MDR Mechanisms in Viral Pathogens -- 10.2.2 MDR Mechanisms in Prokaryotic and Eukaryotic Pathogens -- 10.2.2.1 Antimicrobial Efflux -- 10.2.2.2 Antimicrobial Uptake Prevention -- 10.2.2.3 Antimicrobial Inactivation and Alteration -- 10.2.2.4 Antimicrobial Targeted Site Modification -- 10.2.2.5 Biofilm Formation and Quorum Sensing -- 10.3 New Therapeutic Alternatives for Combating MDROs -- 10.3.1 Antimicrobial Combination Therapy -- 10.3.2 Antimicrobial Peptide Therapy -- 10.3.3 Antimicrobial Nanoparticle Therapy -- 10.4 Microbial Nanotechnology in Treating MDROs -- 10.4.1 Microbial NPs as Antibacterial Agents -- 10.4.2 Microbial NPs as Antiviral Agents -- 10.4.3 Microbial NPs as Antifungal Agents -- 10.4.4 Microbial NPs as Antiprotozoal Agents -- 10.5 Advantages and Challenges of Microbial NPs -- 10.6 Conclusion and Future Perspectives -- References -- 11: Microbial Nanoparticles for Cancer Treatment -- 11.1 Introduction -- 11.2 Microbial NPs: An Insight into Cancer Theranostics -- 11.2.1 Microbes as Synthesizers of Anticancer NPs -- 11.2.2 Microbes as an Anticancer Agent -- 11.2.3 Microbe as a Sensing Agent -- 11.3 Genetically Engineered Microbes as Nanocarriers for Anticancer Nanoparticles.
11.4 Challenges of Microbial NPs as Alternative Cancer Treatments.
Record Nr. UNINA-9910502971403321
Ansari Mohammad Azam  
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanobiotechnology : Mitigation of Abiotic Stress in Plants / / edited by Jameel M. Al-Khayri, Mohammad Israil Ansari, Akhilesh Kumar Singh
Nanobiotechnology : Mitigation of Abiotic Stress in Plants / / edited by Jameel M. Al-Khayri, Mohammad Israil Ansari, Akhilesh Kumar Singh
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (595 pages)
Disciplina 581.788
Soggetto topico Botany
Agriculture
Plant Science
Efecte de l'estrès sobre les plantes
Cultius (Biologia)
Ultraestructura (Biologia)
Soggetto genere / forma Llibres electrònics
ISBN 3-030-73606-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Abiotic Stress in Plants: Socio-economic Consequences and Crop Plants Responses -- Plant Abiotic Stress Tolerance Mechanisms -- Biotechnology Strategies to Combat Plant Abiotic Stress -- Nanomaterials Fundamentals: Classification, Synthesis and Characterization -- Utilization of Nanobiotechnology in Modern Agriculture -- Contributions of Nano Biosensors in Managing Environmental Stresses under Climate Change Era -- Utilization of Nanobiotechnology to Alleviate Impact of Abiotic Stress in Crop Plants -- Green Synthesis of Nanoparticles Using Different Plant Extracts and their Characterizations -- Applications of Plant-Derived Nanomaterials in Mitigation of Crop Abiotic Stress -- Biosynthesis and Characterization of Microorganisms-Derived Nanomaterials -- Utilization of Nanofertilizers in Plant Tolerance to Abiotic Stress -- Role of Nanomaterials in Regulating Reactive Species as a Signaling Molecule of Abiotic Stress -- Role of Nanomaterials in Regulating Oxidative Stress -- Plant Stress Enzymes Nanobiotechnology -- Plant Stress Hormones Nanobiotechnology -- Effect of Nanoparticle on Plant Growth and Development -- Application of Nanobiotechnology in Overcoming Salinity Stress -- Application of Nanobiotechnology in Overcoming Drought Stress -- Application of Nanobiotechnology in Overcoming Temperature Stress -- Application of Nanobiotechnology in Overcoming Mineral Nutrients Stress -- Nanomaterials Combat Heavy Metals Toxicity by Modulating Oxidative Stress Pathways in Plants -- Nanonutrients: Plant Nutritive and Possible Antioxidant Regulators -- Impact of Nanomaterials Stress on Plants -- Biosafety of Nanomaterials for Plants to Coup with Stress Conditions -- Nanomaterials in Combating Plant Stress: An Approach for Future Applications.
Record Nr. UNINA-9910495203703321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanobiotechnology in Agriculture : An Approach Towards Sustainability / / edited by Khalid Rehman Hakeem, Tanveer Bilal Pirzadah
Nanobiotechnology in Agriculture : An Approach Towards Sustainability / / edited by Khalid Rehman Hakeem, Tanveer Bilal Pirzadah
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (236 pages)
Disciplina 338.16
Collana Nanotechnology in the Life Sciences
Soggetto topico Agriculture
Plant breeding
Nanotechnology
Plant Breeding/Biotechnology
Nanotechnology and Microengineering
Agricultura
Ultraestructura (Biologia)
Soggetto genere / forma Llibres electrònics
ISBN 3-030-39978-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Nanotechnology-An Overview -- 2. Nanotechnology: A boost for the urgently needed second green revolution in Indian Agriculture -- 3. Nano-Enabled Agriculture can Sustain “Farm to Forkˮ Chain -- 4. Role of Nanotechnology in Crop Improvement -- 5. Nano-Fertilizers: A Way Forward for Green Economy -- 6. Embodiment of Nano-biotechnology in agriculture-An overview -- 7. Nano-Biosensors: NextGen Diagnostic Tools in Agriculture -- 8. Nanoparticles: The Magic Bullets in Mitigating Drought Stress in Plants -- 9. Nanotechnology: An innovative tool to enhance Crop Production -- 10. Development of Nano-formulations via Green Synthesis Approach -- 11. Nano-Agrochemicals: Economic Potential and Future Trends -- 12. CRISPR/Cas9: A New Revolutionary Science in Agricultural and Horticulture -- 13. Pros and Cons of Nanotechnology.
Record Nr. UNINA-9910409697603321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanobiotechnology: A Multidisciplinary Field of Science / / by Basma A. Omran
Nanobiotechnology: A Multidisciplinary Field of Science / / by Basma A. Omran
Autore Omran Basma A
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (244 pages)
Disciplina 620.5
Collana Nanotechnology in the Life Sciences
Soggetto topico Plant breeding
Nanotechnology
Microbiology
Botanical chemistry
Aquatic ecology
Plant Breeding/Biotechnology
Plant Biochemistry
Freshwater & Marine Ecology
Ultraestructura (Biologia)
Soggetto genere / forma Llibres electrònics
ISBN 3-030-46071-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Introduction: Nanotechnology and Nanobiotechnology, Different Types of Nanomaterials, and General Characterization Techniques -- Microbial Synthesis of Different Nanomaterials using Prokaryotic Microorganisms (Bacteria and Actinomycetes) -- Microbial Synthesis of Different Nanomaterials using Prokaryotic Microorganisms (Bacteria and Actinomycetes) -- Photosynthesis of Different Nanomaterials Using Different Plant Extracts and the Extracts of Agro-Industrial Waste (Phytonanotechnology) -- Different Application Fields of Biologically Synthesized Nanoparticles -- Safety of Prepared Nanomaterials and Future Prospectives -- Bibliography -- Index.
Record Nr. UNINA-9910416097403321
Omran Basma A  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanotechnology for bioapplications / / Bong-Hyun Jun, editor
Nanotechnology for bioapplications / / Bong-Hyun Jun, editor
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (vi, 292 pages) : illustrations
Disciplina 620.5
Collana Advances in experimental medicine and biology
Soggetto topico Nanobiotechnology
Ultraestructura (Biologia)
Soggetto genere / forma Llibres electrònics
ISBN 981-336-158-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1: Introduction of Nanobiotechnology -- 1.1 Introduction -- 1.2 What Is Nanotechnology? -- 1.2.1 How Small Is Nano? -- 1.2.2 Nanofabrication and Analytical Tools -- 1.2.3 Exotic Properties of the Nanomaterials -- 1.3 Classification of Nanomaterials and Their Application -- 1.3.1 Metal NPs -- 1.3.2 Magnetic NPs -- 1.3.3 Quantum Dots (QDs) -- 1.3.4 Silica NPs -- 1.3.5 Carbon NPs -- 1.4 Nanotoxicology and Future Perspective -- Bibliography -- 2: General in Colloidal Nanoparticles -- 2.1 Introduction -- 2.2 Fabrication of Nanoparticles -- 2.2.1 Nucleation and Growth -- 2.2.1.1 Nucleation -- 2.2.1.2 Growth Kinetics -- 2.2.2 Size Control -- 2.2.2.1 Nucleation Control -- 2.2.2.2 Ostwald Ripening and Sintering -- 2.2.2.3 Microemulsion Method (Template-Based Method) -- 2.3 Stabilization of Nanocrystals Against Aggregation -- 2.3.1 Aggregation -- 2.3.2 Surface Charge -- 2.3.3 Electrical Double Layer -- 2.3.4 Van der Waals Attraction -- 2.3.5 DLVO (Derjaguin, Landau, Verwey, Overbeek) Theory -- 2.3.6 Steric Stabilization -- Bibliography -- 3: Silica Nanoparticles -- 3.1 Introduction -- 3.2 Synthesis of Silica Nanoparticles -- 3.2.1 Stöber Method (Nucleation and Growth) -- 3.2.2 Reverse Microemulsions -- 3.2.3 Modified Sol-Gel Method for Silica Coating -- 3.2.4 Modified Sol-Gel Method for Controlling Shape and Porosity -- 3.3 Surface Modification for Functionalization of Silica Nanoparticles -- 3.4 Various Nanoparticles Applied to Silica -- 3.4.1 Various Silica-Coated Nanoparticles -- 3.4.2 Porous Silica Nanoparticles -- 3.4.3 Synthesis of Various Nanoparticles Using Silica as a Template -- 3.5 Various Silica-Applied Nanoparticles for Bioapplications -- 3.5.1 Biosensing and Bioimaging for Diagnostics -- 3.5.2 Drug Delivery -- 3.5.3 Multifunctional Silica Nanoparticles -- 3.6 Conclusion.
Bibliography -- 4: Luminescent Nanomaterials (I) -- 4.1 Introduction -- 4.2 Basics of Fluorescence -- 4.2.1 Light and Luminescence -- 4.2.2 Fluorescence Process and Related Terminologies -- 4.2.3 Organic Dyes As Fluorophores -- 4.3 Luminescent Nanoparticles -- 4.3.1 Fluorescence Organic Dye-Incorporated Materials -- 4.3.1.1 Dye-Doped Silica Nanoparticles -- 4.3.1.2 Fluorescence-Encoded Beads -- 4.3.2 Quantum Dots (QD) -- 4.3.2.1 Fundamentals of QDs -- Quantum Confinement Effect -- Optical Properties -- Quantum Yield and Surface Structures -- 4.3.2.2 Synthesis of Quantum Dots -- 4.3.2.3 Surface Modifications -- 4.3.3 Upconversion Fluorescent Nanoparticles -- 4.3.3.1 Fundamentals of UCNPs -- 4.3.3.2 Synthesis and Surface Modification of UCNPs -- 4.3.4 Other Luminescent Nanomaterials -- 4.3.4.1 Europium-Based Materials -- 4.3.4.2 Noble Metal Nanoclusters -- 4.3.4.3 Other Carbon-Based QDs -- References -- 5: Luminescent Nanomaterials (II) -- 5.1 Sensing Mechanisms and Techniques -- 5.1.1 Förster Resonance Energy Transfer (FRET) -- 5.1.2 Time-Resolved Fluorescence (TRF) -- 5.1.3 Flow Cytometry -- 5.2 Bioanalytical and Biomedical Application -- 5.2.1 Quantum Dot -- 5.2.2 UCNPs-Based Analysis -- 5.2.3 Europium-Based Analysis -- 5.3 Bioimaging -- 5.3.1 QD-Based Bioimaging -- 5.3.2 UCNPs-Based Imaging -- 5.3.3 Europium-Activated Luminescent Nanoprobes -- 5.3.4 NIR-II Imaging -- 5.4 Therapeutics Cooperated with Luminescent Nanoparticles -- 5.4.1 Drug Delivery -- 5.4.2 Photothermal Therapy -- 5.4.3 Photodynamic Therapy -- 5.5 Conclusions and Outlook -- References -- 6: Plasmonic Nanoparticles: Basics to Applications (I) -- 6.1 Introduction -- 6.2 Synthesis of Metal Nanoparticles -- 6.2.1 General Information -- 6.2.2 Citrate Reduction Method -- 6.2.3 Reverse Micelle Method -- 6.2.4 Polyol Method.
6.3 Property of Metal Nanoparticles -- 6.3.1 General Information -- 6.3.2 Localized Surface Plasmon Resonance -- 6.3.3 Effects of Size, Shape, Composition, and Environment -- 6.3.3.1 Size-Dependent Optical Property -- 6.3.3.2 Shape-Dependent Optical Property -- 6.3.3.3 Composition-Dependent Optical Property -- 6.3.3.4 Effect of Interactions with Mediums and Between NPs -- 6.4 Metal-Enhanced Process -- 6.4.1 Surface-Enhanced Fluorescence (SEF) -- 6.4.2 Surface-Enhanced Raman Scattering (SERS) -- 6.4.3 Plasmon Resonance Energy Transfer (PRET) -- 6.5 Basics for Biomedical Application of Metal Nanoparticles -- Bibliography -- 7: Plasmonic Nanoparticles: Advanced Researches (II) -- 7.1 Advanced Synthetic Researches -- 7.2 Recent Advanced Application in Biomedical Research -- 7.2.1 In Vitro Biosensors -- 7.2.2 Intracellular Detection and Ex Vivo/In Vivo Imaging -- 7.2.3 Therapeutic Applications -- 7.3 Conclusions and Outlook -- Bibliography -- 8: Magnetic Nanoparticles -- 8.1 Introduction -- 8.2 Synthesis of Magnetic Nanoparticles -- 8.2.1 General Information -- 8.2.2 Coprecipitation -- 8.2.3 Thermal Decomposition -- 8.2.3.1 New Type of Thermal Decomposition -- 8.2.4 Microemulsion -- 8.3 Physical Properties of Magnetic Nanoparticles -- 8.3.1 Units of Magnetic Property -- 8.3.2 Hysteresis Effect, Coercivity, and Remanence -- 8.3.3 Domain Theory -- 8.3.4 Magnetic Properties of Nanoparticles -- 8.3.5 Curie Temperature -- 8.4 Magnetism -- 8.4.1 Classification of Magnetism -- 8.4.2 Ferromagnetism -- 8.4.3 Ferrimagnetism -- 8.4.4 Superparamagnetism -- 8.5 Current Trends of Magnetic Nanoparticles -- 8.5.1 Separation/Purification of Biomolecules -- 8.5.2 Hyperthermia -- 8.5.3 Drug Delivery -- 8.5.4 Magnetic Resonance Imaging (MRI) -- 8.5.5 Multifunctional Nanocomposites Possessing Magnetic Property.
8.5.5.1 Multimodal Imaging -- 8.5.5.2 Theragnosis/Theragnostics -- Bibliography -- 9: Lithography Technology for Micro- and Nanofabrication -- 9.1 Introduction -- 9.2 Conventional Lithography -- 9.2.1 Photolithography -- 9.2.2 High-Energy Beam Lithography -- 9.2.2.1 Electron Beam Lithography -- 9.2.2.2 Focused Ion Beam Lithography -- 9.3 Unconventional Lithography -- 9.3.1 Nanoimprint Lithography (NIL) -- 9.3.1.1 Thermal NIL -- 9.3.1.2 UV-NIL -- 9.3.2 Deformation of Material-Based Lithography -- 9.3.2.1 Wrinkling -- 9.3.2.2 Cracking -- 9.3.2.3 Collapsing -- 9.3.3 Colloidal Lithography -- 9.3.3.1 Self-Assembly of Colloidal Particles -- 9.3.3.2 Colloidal Particle-Based Patterning -- 9.4 Overlook and Conclusions -- Bibliography -- 10: Bioapplications of Nanomaterials -- 10.1 Overview -- 10.2 Pharmaceutical Applications -- 10.2.1 Drug Delivery and Targeting Strategies -- 10.3 Biosensing and Biochips -- 10.3.1 SERS-Based Intracellular Biosensing -- 10.3.1.1 Gaseous Sensing -- 10.3.1.2 pH Sensing -- 10.3.1.3 Reactive Oxygen Species (ROS) -- 10.3.1.4 Redox Potential Sensing -- 10.3.2 Detection of Biomolecules by SERS -- 10.3.2.1 Proteins -- 10.3.2.2 DNA -- 10.3.2.3 Metabolite -- 10.3.2.4 Pathogens -- 10.4 Gene Delivery -- 10.5 Bioimaging -- 10.5.1 SERS-Based Cellular Imaging -- 10.5.2 Imaging of Cell Surface Species -- 10.5.3 Endocytic Pathway -- 10.5.4 Cell Cycle and Apoptotic Process -- 10.5.5 Cell Secretion -- 10.6 Cancer Diagnostics and Therapeutics -- Bibliography -- 11: Carbon Nanomaterials for Biomedical Application -- 11.1 Introduction -- 11.2 Properties of Carbon-Based Nanomaterials -- 11.2.1 Graphite and Fullerene -- 11.2.2 Carbon Nanotube -- 11.2.3 Graphene and Derivatives -- 11.3 Surface Functionalization of Carbon Nanomaterials -- 11.3.1 Noncovalent Surface Chemistry.
11.3.2 Covalent Surface Chemistry -- 11.4 Carbon Nanomaterials for Biological Applications -- 11.4.1 In Vitro Sensing Elements and Diagnostics -- 11.4.2 Graphene Nanopore and Graphene Liquid Cell -- 11.4.3 Functional 3D Carbon Nanomaterials -- 11.4.4 Photothermal Therapy -- 11.4.5 Tissue Engineering Using Carbon Materials -- 11.5 Conclusions and Outlook -- References -- 12: Optical and Electron Microscopy for Analysis of Nanomaterials -- 12.1 Introduction -- 12.2 Optical Microscopy -- 12.3 Electron Microscopy (EM) -- 12.3.1 Transmission Electron Microscopy (TEM) -- 12.3.2 Scanning Electron Microscopy (SEM) -- 12.4 Scanning Probe Microscopy (SPM) -- 12.4.1 Scanning Tunneling Microscopy (STM) -- 12.4.2 Atomic Force Microscopy (AFM) -- 12.4.3 Near-Field Scanning Optical Microscopy (NSOM) -- 12.5 Outlook and Summary -- References -- 13: Conclusion and Perspective -- 13.1 Conclusion -- 13.2 Perspective.
Record Nr. UNINA-9910484132203321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanotheranostics : Applications and Limitations / / edited by Mahendra Rai, Bushra Jamil
Nanotheranostics : Applications and Limitations / / edited by Mahendra Rai, Bushra Jamil
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (413 pages)
Disciplina 610.28
Soggetto topico Pharmacology
Nanochemistry
Cancer - Research
Chemotherapy
Nanotecnologia
Pharmacology/Toxicology
Cancer Research
Pharmacotherapy
Ultraestructura (Biologia)
Soggetto genere / forma Llibres electrònics
ISBN 3-030-29768-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Nanotheranostics:An emerging nanoscience -- Green bionanomaterials: current status and future prospects in theranostics -- Current status and prospects of Chitosan–metal Nanoparticles and their applications as theranostic agents -- Aptamersnano complexes and aptamer based biosensors’ role in ultrasensitive sensing -- Nanotheranostics Approaches In Antimicrobial Resistance -- Nanomaterials for selective targeting of intracellular pathogens -- Impact of nanoformulations on viruses and bacteria -- Theranostic potential of aptamers in antimicrobial chemotherapy -- Current and future aspects of nanotheranostics in cancer therapeutics -- Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Cancer Theranostic applications -- Theranostic applications of Nanobiotechnology in Cancer -- Aminolevulinic acid associated with nanotechnology for theranostic applications -- Non-viral targeted gene delivery for inflammatory disorder: applications and limitation. .
Record Nr. UNINA-9910373912903321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pharmaceutical Nanobiotechnology for Targeted Therapy / / edited by Hamed Barabadi, Ebrahim Mostafavi, Muthupandian Saravanan
Pharmaceutical Nanobiotechnology for Targeted Therapy / / edited by Hamed Barabadi, Ebrahim Mostafavi, Muthupandian Saravanan
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (641 pages)
Disciplina 615.19
Collana Nanotechnology in the Life Sciences
Soggetto topico Biotechnology
Biology - Technique
Molecular biology
Nanotechnology
Biological Techniques
Molecular Biology
Biotecnologia farmacèutica
Ultraestructura (Biologia)
Ús terapèutic
Soggetto genere / forma Llibres electrònics
ISBN 3-031-12658-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Chapter. 1. Outer Membrane Vesicles (OMVs) as a Platform for Vaccination and Targeted Drug Delivery -- Chapter. 2. CRISPR/Cas9 Nano-Delivery Approaches for Targeted Gene Therapy -- Chapter. 3. Lipoplexes and Polyplexes for Targeted Gene Delivery -- Chapter. 4. Aptamer-Based Targeted Drug Delivery Systems -- Chapter. 5. Artificial Exosomes as Targeted Drug Delivery Systems -- Chapter. 6. Nanoarchaeosomes in drug delivery -- Chapter. 7. Bioengineered Metallic Nanomaterials for Nanoscale Drug Delivery Systems -- Chapter. 8. Nanobody-Based Delivery Systems for Diagnosis and Therapeutic Applications -- Chapter. 9. Phytosomes Used for Herbal Drug Delivery -- Chapter. 10. Porphysomes and porphyrin-based nanomaterials for drug delivery system -- Chapter. 11. Ethosomes for Dermal and Transdermal Drug Delivery Systems -- Chapter. 12. Liposomes and Niosomes for Targeted Drugs and Gene Delivery Systems -- Chapter. 13. Dendrimers as Targeted Systems for Selective Gene and Drug delivery -- Chapter. 14. Polymersomes for Targeted Drug and Gene Delivery Systems -- Chapter. 15. Quantum-Dot-Based Nanomaterials for Diagnostic and Therapeutic applications -- Chapter. 16. Carbon-based Nanomaterials for Targeted Drug and Gene Delivery Systems -- Chapter. 17. Hybrid Multifunctional Nanomaterials for Diagnostic and Therapeutic Applications -- Chapter. 18. Polymeric Micelles for Targeted Drug Delivery Systems -- Chapter. 19. Polymeric Nanoparticles for Targeted Drug and Gene Delivery Systems -- Chapter. 20. Magnetic Nanoparticles for Diagnostic and Therapeutic Applications.
Record Nr. UNINA-9910619279003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui