top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2D boron : boraphene, borophene, boronene / / Iwao Matsuda; Kehui Wu
2D boron : boraphene, borophene, boronene / / Iwao Matsuda; Kehui Wu
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (XI, 160 p. 103 illus., 57 illus. in color.)
Disciplina 553.61
Soggetto topico Boron
Optical materials
Two-dimensional materials
ISBN 3-030-49999-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. A Historical Review of Theoretical Boron Allotropes in Various Dimensions -- Chapter 2. Borophenes: insights and predictions from computational analyses -- Chapter 3. Synthesis of Borophene -- Chapter 4. Electronic Structure of Borophene -- Chapter 5. Chemically Modified Borophene -- Chapter 6. Physical and Chemical Properties of Boron Solids.
Record Nr. UNINA-9910483922603321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
2D-materials for energy harvesting and storage applications / / Muhammad Ikram, Ali Raza and Salamat Ali
2D-materials for energy harvesting and storage applications / / Muhammad Ikram, Ali Raza and Salamat Ali
Autore Ikram Muhammad
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (263 pages)
Disciplina 620.115
Collana Nanostructure Science and Technology
Soggetto topico Two-dimensional materials
Nanostructured materials
ISBN 3-030-96021-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910551843103321
Ikram Muhammad  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced applications of 2D nanostructures : emerging research and opportunities / / Subhash Singh, Kartikey Verma, Chander Prakash, editors
Advanced applications of 2D nanostructures : emerging research and opportunities / / Subhash Singh, Kartikey Verma, Chander Prakash, editors
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (274 pages)
Disciplina 620.112
Collana Materials Horizons
Soggetto topico Two-dimensional materials
ISBN 981-16-3322-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Series Editor's Preface -- Preface -- Acknowledgements -- Introduction -- Contents -- Editors and Contributors -- 1 Introduction, History, and Origin of Two Dimensional (2D) Materials -- 1 Introduction -- 2 Evolution of 2D Materials -- 3 Growing Interest in 2D Materials -- 4 Challenges and Opportunities -- References -- 2 Different Types and Intense Classification of 2D Materials -- 1 Introduction -- 2 Types -- 2.1 Graphene Family -- 2.2 2D Oxides -- 2.3 2D Chalcogenides -- 3 Conclusion -- References -- 3 Different Techniques for Designing and Fabrication of 2D Materials -- 1 Introduction -- 2 Approaches for Graphene Synthesis and Its Modification -- 2.1 Synthesis of Graphene -- 2.2 Production of GO -- 2.3 Structure of Graphene Oxide -- 2.4 GO Characteristics and Applications -- 2.5 Some Very Important Surface Modification of Graphene -- 3 Conclusion -- References -- 4 2D Graphene Oxide-Based Composites and Their Application in Catalysis and Sensing -- 1 Introduction -- 2 Background of Graphene Oxide -- 3 Characterization and Structural Features of Graphene Oxide -- 4 Application in Sensor -- 5 Application in Catalysis -- 6 Conclusion -- 7 Future Aspects -- References -- 5 Nanostructured 2D Materials as Nano Coatings and Thin Films -- 1 Introduction -- 2 The 2D Material Coatings -- 2.1 Graphene -- 2.2 Transition Metal Dichalcogenides (TMDs) -- 2.3 Hexagonal Boron Nitride (H-BN) -- 2.4 Black Phosphorous (BP) -- 3 Conclusions -- References -- 6 MXene: A Non-oxide Next-Generation Energy Storage Materials for Batteries and Supercapacitors -- 1 Introduction -- 2 MXene: A Novel 2D Material -- 3 MXene: Properties -- 4 MXene for Energy Storage Applications -- 4.1 MXenes for Metal-Ion Batteries -- 4.2 MXenes for Supercapacitors -- 5 Conclusion -- References.
7 Nano Coatings and Thin Films of 2D Nanomaterials (MXenes) as Transparent Conductivity Electrodes and Supercapacitors -- 1 Introduction -- 2 MXenes Thin-Film Synthesis -- 3 Properties of MXenes -- 3.1 Structural -- 3.2 Stability -- 3.3 Mechanical and Physical -- 4 MXene-DERIVED TCEs -- 4.1 Introduction -- 4.2 Ti3C2Tx TCEs -- 4.3 More MXene-Derived TCEs -- 4.4 Drawbacks of MXene-Based TCEs -- 5 MXene-Derived Energy Storage Devices -- 5.1 MXene Films in Transparent Supercapacitors (SCs) -- 5.2 Challenges and Future Scope of Transparent SCs -- 5.3 Other Energy Applications -- 6 Summary and Outlook -- References -- 8 2D Metal Oxide Nanosheets-Electronic Applications Recent Developments and Future Prospects -- 1 Introduction -- 2 General Features -- 2.1 Syntheses -- 2.2 Characterization -- 3 Electronic Applications -- 3.1 Sensors -- 4 Some Recent Applications -- 5 Discussion and Conclusions -- References -- 9 Modeling and Simulation of Nano-Structured 2D Materials -- 1 Introduction -- 2 Simulation Methodologies -- 2.1 Molecular Dynamic Method -- 2.2 Monte Carlo Method -- 2.3 Ab Initio Methods -- 3 Significant Tools/Techniques Used for Molecular Dynamic Simulation -- 3.1 GROMACS -- 3.2 AMBER -- 3.3 LAMMPS -- 3.4 Desmond -- 3.5 Tinker -- 3.6 ESPResSo -- 3.7 CHARMM -- 3.8 GROMOS -- 3.9 NAMD -- 4 Investigation of Nano-Structured Materials Using Typical Simulation Techniques -- 4.1 Carbonous Nanomaterials -- 4.2 Non-Carbonous Nanomaterials -- 5 Summary and Future Prospects -- References -- 10 Novel Corrosion Properties of 2D Nanostructures for Advanced Applications -- 1 Introduction -- 2 2D Materials for Corrosion Protection -- 2.1 Graphene -- 2.2 Graphene Oxide -- 2.3 Hexagonal Boron Nitride -- 3 Conclusion -- References -- 11 Nanostructured 2D Materials for Biomedical, Nano Bioengineering, and Nanomechanical Devices -- 1 Introduction.
2 Synthesis of 2D Materials -- 2.1 Top-Down Approach -- 2.2 Bottom-Up Approach -- 3 Functionalization and Modification of 2D Materials -- 4 Biomedical Application of 2D Materials -- 4.1 Biosensors -- 4.2 Drug and Gene Delivery -- 4.3 Bioimaging -- 4.4 Therapeutic Applications of 2D Materials -- 5 Toxicology and Biocompatibility of 2D Materials -- 6 Conclusion and Outlook -- References -- 12 2D Nanomaterials Based Advanced Bio-composites -- 1 Introduction -- 2 Application of 2D Bio-Composite -- 2.1 Bone Implants -- 2.2 Drug Delivery -- 2.3 Bioimaging -- 2.4 Biosensors -- 2.5 Antibacterial Property -- 2.6 Photothermal Therapy -- 3 Challenges for Development of 2D Materials in Biomedical Applications -- 4 Conclusion and Future Research Recommendations -- References -- 13 Mechanical Performance of 2D Nanomaterials Based Advanced Composites -- 1 Introduction -- 2 Mechanical Properties of 2-D Nanomaterials -- 3 Application of 2-D Nanomaterial-Based Advanced Composite -- 4 Conclusions -- References -- Conclusion.
Record Nr. UNINA-9910495215603321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
MXenes : Fundamentals and Applications
MXenes : Fundamentals and Applications
Autore Singh Jay
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (385 pages)
Disciplina 546.6
Altri autori (Persone) SinghKshitij Rb
Pratap SinghRavindra
AdetunjiCharles Oluwaseun
Soggetto topico MXenes
Two-dimensional materials
ISBN 9781119874003
1119874009
9781119874027
1119874025
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Editor Biographies -- List of Contributors -- Preface -- Acknowledgment -- Chapter 1 Introduction to MXenes a Next‐generation 2D Material -- 1.1 Introduction -- 1.2 Properties -- 1.3 Synthesis and Functionalization of MXenes -- 1.4 Characterization of MXenes -- 1.5 Application of MXenes -- 1.5.1 Biomedical -- 1.5.2 Agricultural -- 1.5.3 Environmental -- 1.5.4 Miscellaneous Field -- 1.6 Current Scenario, Risk Assessment, and Challenges -- 1.7 Conclusion and Prospects -- References -- Chapter 2 Structure, Composition, and Functionalization of MXenes -- 2.1 Introduction -- 2.2 MXenes Composition -- 2.2.1 Group IV Elemental Analog -- 2.2.2 Group V Elemental Analog -- 2.2.3 Group VI Elemental Analog -- 2.3 Structural Analysis Regarding MXenes -- 2.3.1 Theoretical Studies -- 2.3.2 Computational Studies -- 2.4 Structure Functionalization of MXene -- 2.4.1 Different Group Used for Structural Functionalization -- 2.4.1.1 Oxygen‐Functionalized MXene -- 2.4.1.2 Sulfur‐Functionalized MXenes -- 2.4.1.3 Methoxy Group‐Functionalized MXenes -- 2.4.2 Factor Affecting the Structure Functionalization -- 2.4.2.1 Electric and Optical Properties -- 2.4.2.2 Thermal Conductivity -- 2.4.2.3 Electrochemical Properties -- 2.4.2.4 Thermoelectric Property -- 2.5 Conclusion and Future Prospects -- Acknowledgment -- References -- Chapter 3 Synthesis of MXenes -- 3.1 Introduction -- 3.2 Fabrication of MXene -- 3.2.1 Fabrication Through Etching Agents -- 3.2.1.1 HF Etchants -- 3.2.1.2 In situ HF Etchants -- 3.2.1.3 MXenes Preparation Through Fluoride Free Routes -- 3.2.1.4 Molten Fluoride Salt as Etchants -- 3.2.1.5 MXenes Prepared from Unconventional Al‐MAX Phases -- 3.3 Conclusion -- References -- Chapter 4 Physicochemical and Biological Properties of MXenes -- 4.1 Introduction -- 4.2 Structure and Synthesis of MXenes.
4.3 Properties of MXenes -- 4.3.1 Biomedical Properties of MXenes -- 4.3.2 Electronic and Transport Properties -- 4.3.3 Optical Properties -- 4.3.4 Magnetic Properties -- 4.3.5 Topological Properties -- 4.3.6 Vibrational Properties -- 4.3.7 Electrochemical Properties -- 4.3.8 Thermal Properties -- 4.4 Conclusion and future Perspectives -- References -- Chapter 5 Processing and Characterization of MXenes and Their Nanocomposites -- 5.1 Introduction -- 5.2 Processing Techniques -- 5.2.1 Solution Blending -- 5.2.2 In Situ Polymerization Technique -- 5.2.3 Melt Blending -- 5.2.4 Electrospinning -- 5.2.5 Vacuum‐Assisted Filtration (VAF) Method -- 5.2.6 Spin Coating -- 5.3 Characterization Techniques -- 5.3.1 X‐Ray Diffraction (XRD) -- 5.3.2 Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy -- 5.3.3 X‐Ray Absorption Spectroscopy (XAS) -- 5.3.4 X‐Ray Photoelectron Spectroscopy (XPS) -- 5.3.5 Atomic Force Microscopy (AFM) -- 5.3.6 Nuclear Magnetic Resonance -- 5.3.7 Raman Spectroscopy -- 5.4 Conclusion -- References -- Chapter 6 Progressive Approach Toward MXenes Hydrogel -- 6.1 Hydrogels -- 6.1.1 Hydrogels Classification -- 6.1.2 Properties of Hydrogels -- 6.2 MXene‐Based Hydrogels -- 6.2.1 Applications of MXene Hydrogels -- 6.2.2 Mechanisms of Synthesis and Gelation of MXene Hydrogels -- 6.2.2.1 All‐MXene Hydrogels -- 6.2.2.2 MXene‐GO Nanocomposite Hydrogels -- 6.2.2.3 MXene‐polymer Nanocomposite Hydrogels -- 6.2.2.4 MXene‐metal Hybrid Nanocomposite Hydrogels -- 6.2.3 Properties of MXene‐Based Hydrogels -- 6.2.4 Applications of MXene‐Based Hydrogels -- 6.2.4.1 Energy Storage -- 6.2.4.2 Biomedical Applications -- 6.2.4.3 Catalysts -- 6.2.4.4 Sensors -- 6.3 Conclusions -- References -- Chapter 7 Comparison of MXenes with Other 2D Materials -- 7.1 Introduction of MXenes -- 7.2 MXenes vs. Carbon Materials.
7.3 MXenes vs. 2D‐chalcogenide/Carbide/Nitride -- 7.4 MXenes vs. 2D Metal-Organic Frameworks -- 7.5 Summary -- References -- Chapter 8 Newly Emerging 2D MXenes for Hydrogen Storage -- 8.1 Introduction -- 8.2 Structural Properties of MXene -- 8.3 Synthesis Techniques -- 8.4 H2 Storage Reaction Mechanisms -- 8.4.1 Adsorption -- 8.4.2 Kinetics and Thermodynamics -- 8.4.2.1 Kinetic Models -- 8.4.2.2 Geometrical Contraction -- 8.4.2.3 Contracting Volume Model -- 8.4.2.4 Jander Model -- 8.4.2.5 Ginstling-Brounshtein Model -- 8.4.2.6 Valensi-Carter Model -- 8.4.2.7 Nucleation‐Growth Impingement Models -- 8.5 Factors Influencing H2 Storage -- 8.6 Recent Advances in MXene‐Based Compounds for H2 Storage -- 8.7 Conclusions -- 8.8 Future Perspectives and Challenges -- Acknowledgment -- References -- Chapter 9 MXenes for Supercapacitor Applications -- 9.1 Introduction -- 9.2 Two‐dimensional MXenes Structure -- 9.3 MXenes' Characteristics -- 9.3.1 Characteristics of the Structure -- 9.3.2 Electronic Characteristics -- 9.3.3 Optical Characteristics -- 9.3.4 Magnetic Characteristics -- 9.4 MXenes as a Source of Energy Storage -- 9.4.1 Supercapacitor Energy Storage Mechanism -- 9.4.2 Morphology's Effect on MXenes' Energy Storage -- 9.4.3 MXene Functional Group Reactivity and Supercapacitors -- 9.4.4 Electrolytes' Role in the Storage Technology -- 9.5 Supercapacitor Systems of MXene and Hybrid -- 9.5.1 MXene in Their Original State -- 9.5.2 MXene Heterostructures -- 9.5.3 Hybrids of Transition Metal Oxides in MXene -- 9.5.4 Hierarchical Anode Structure -- 9.5.5 Appropriate Positive Electrode Design -- 9.5.6 Microsupercapacitors -- 9.6 Prospects -- 9.7 Conclusion -- References -- Chapter 10 MXenes‐based Biosensors -- 10.1 Introduction -- 10.2 Biosensing Application -- 10.2.1 Biomedical -- 10.2.2 Environmental -- 10.2.3 Agricultural -- 10.3 Challenges and Limitations.
10.4 Conclusion and Prospects -- References -- Chapter 11 Advances in Ti3C2 MXene and Its Composites for the Adsorption Process and Photocatalytic Applications -- 11.1 Introduction -- 11.2 Ti3C2 as Adsorbent for the Metal Ions -- 11.3 Photocatalytic Degradation Mechanism of Organic Pollutants via Ti3C2 MXene and Its Derivatives -- 11.3.1 Heterostructuring the Ti3C2 with Metal Oxides -- 11.3.2 Heterostructuring the Ti3C2/Ti3C2Tx with Metal Sulphides -- 11.3.3 Heterostructuring the Ti3C2/Ti3C2Tx with Ag/Bi‐based Semiconductors and Layered Double Hydroxides -- 11.4 Ternary Heterostructures based on the Ti3C2 -- 11.5 Gap Analysis -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 MXenes and its Hybrid Nanocomposites for Gas Sensing Applications in Breath Analysis -- 12.1 Introduction -- 12.2 Discussion -- 12.3 Conclusion -- References -- Chapter 13 MXenes for Catalysis and Electrocatalysis -- 13.1 Introduction -- 13.2 Application of MXene for Catalytic Processes -- 13.2.1 CO2 Reduction Reaction -- 13.2.2 Nitrogen Reduction Reaction -- 13.2.3 Oxygen Reduction Reaction -- 13.2.4 Oxygen Evolution Reactions -- 13.3 Strategies for Optimization of Catalytic Potential of MXenes -- 13.3.1 Termination Modification -- 13.3.2 Nanostructuring -- 13.3.3 Hybridization -- 13.3.4 Metal Atom Doping -- 13.4 Conclusion and Future Trend -- References -- Chapter 14 MXene and Its Hybrid Materials for Photothermal Therapy -- 14.1 Introduction -- 14.2 Photothermal Conversion -- 14.2.1 Localized Surface Plasmon Resonance Effect (LSPR) -- 14.2.2 Electron-Hole Generation -- 14.2.3 Hyperconjugation Effect -- 14.3 Optical and Thermal Properties of Mxenes -- 14.4 Photothermal Conversion Mechanism of MXenes -- 14.5 Applications of MXenes in Photothermal Therapy -- 14.5.1 Photothermal Therapy -- 14.5.2 PTT‐Coupled Chemotherapy -- 14.5.3 PTT Coupled Immunotherapy.
14.6 Conclusion -- Acknowledgment -- Conflict of interest -- References -- Chapter 15 MXenes and Its Composites for Biomedical Applications -- 15.1 Introduction -- 15.2 Various Biomedical Applications of MXenes -- 15.2.1 Biosensor Applications -- 15.2.2 Cancer Treatment -- 15.2.3 Antibacterial Properties -- 15.2.4 Drug Delivery -- 15.3 Conclusion -- References -- Chapter 16 MXenes for Point of Care Devices (POC) -- 16.1 Introduction -- 16.2 Characteristics of MXenes on Biosensing -- 16.2.1 Advantages of MXene and its Derivatives for Biosensing -- 16.2.2 Disadvantages of MXene and its Derivatives for Biosensing -- 16.2.3 Sensing Mechanism of MXene Wearables -- 16.3 Point‐of‐Care Diagnosing COVID‐19: Methods Used to Date -- 16.4 Applications of MXenes as PoCs -- 16.4.1 Cancer Diagnosis -- 16.4.2 Diagnosis of Bacterial and Viral Diseases -- 16.5 Current Challenges and Future Outlook -- 16.6 Conclusion -- References -- Chapter 17 MXenes and Their Hybrids for Electromagnetic Interference Shielding Applications -- 17.1 Introduction -- 17.2 Properties of MXenes -- 17.2.1 Stability -- 17.2.2 Electrical Conductivity -- 17.2.3 Magnetic Properties -- 17.2.4 Dielectric Properties -- 17.3 Various MXene Hybrids For EMI‐Hielding -- 17.3.1 Textile‐based -- 17.3.2 Insulating Polymer‐based -- 17.3.3 Aerogels, Hydrogels, and Foams -- 17.3.4 Polymer Thin Films -- 17.3.5 Electrospun Mats -- 17.3.6 Paper‐Based Composites -- 17.3.7 Laminates -- 17.4 Intrinsically Conducting Polymer‐based -- 17.4.1 Aerogels, Hydrogels, and Foams -- 17.4.2 Polymer Thin Films -- 17.4.3 Paper -- 17.5 Graphene‐based -- 17.5.1 Foam/Aerogels -- 17.5.2 Films -- 17.5.3 Laminates -- 17.6 Conclusion -- References -- Chapter 18 Technological Aspects in the Development of MXenes and Its Hybrid Nanocomposites: Current Challenges and Prospects -- 18.1 Introduction.
18.2 Progressive Approach Towards MXene Composites and Hybrids.
Record Nr. UNINA-9911019413103321
Singh Jay  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Two-dimensional (2D) nanomaterials in separation science / / Rasel Das, editor
Two-dimensional (2D) nanomaterials in separation science / / Rasel Das, editor
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (251 pages)
Disciplina 620.112
Collana Springer series on polymer and composite materials
Soggetto topico Two-dimensional materials
Water - Purification
Membrane separation
Separation (Technology)
ISBN 3-030-72457-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2D nanomaterials in separation science
Record Nr. UNINA-9910482957103321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Two-Dimensional Electronics : Prospects and Challenges / / edited by Frank Schwierz
Two-Dimensional Electronics : Prospects and Challenges / / edited by Frank Schwierz
Pubbl/distr/stampa Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2016
Descrizione fisica 1 online resource (xiii, 239 pages)
Disciplina 620.112
Soggetto topico Two-dimensional materials
Electronics
ISBN 3-03842-250-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910688480603321
Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Two-Dimensional Electronics - Prospects and Challenges / / edited by Frank Schwierz
Two-Dimensional Electronics - Prospects and Challenges / / edited by Frank Schwierz
Pubbl/distr/stampa Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2016
Descrizione fisica 1 online resource (xiii, 264 pages) : illustrations
Disciplina 620.112
Soggetto topico Optoelectronics
Two-dimensional materials
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910598192103321
Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Two-dimensional materials : synthesis, characterization and potential applications / / edited by Pramoda Kumar Nayak
Two-dimensional materials : synthesis, characterization and potential applications / / edited by Pramoda Kumar Nayak
Pubbl/distr/stampa Rijeka, Croatia : , : IntechOpen, , [2016]
Descrizione fisica 1 online resource (280 pages) : illustrations
Disciplina 620.112
Soggetto topico Two-dimensional materials
ISBN 953-51-4186-4
953-51-2555-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Two-dimensional materials
Two-dimensional Materials – Synthesis, Characterization and Potential Applications
Record Nr. UNINA-9910317697003321
Rijeka, Croatia : , : IntechOpen, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Two-Dimensional Materials for Nonlinear Optics : Fundamentals, Preparation Methods, and Applications
Two-Dimensional Materials for Nonlinear Optics : Fundamentals, Preparation Methods, and Applications
Autore Wang Qiang
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (367 pages)
Disciplina 621.3694
Altri autori (Persone) ZhangHao-Li
Soggetto topico Two-dimensional materials
Nonlinear optics
ISBN 9783527838264
3527838260
9783527838288
3527838287
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- List of Abbreviations -- Chapter 1 Preparation of 2D Materials -- 1.1 Mechanical Exfoliation of 2D Materials -- 1.2 Liquid‐Phase Exfoliation of 2D Materials -- 1.3 Chemical Vapor Deposition Growth of 2D Materials -- 1.4 CVD Growth of Wafer‐Scale Single Crystal 2D Materials -- 1.5 Thickness Control in CVD Growth of 2D Materials -- 1.6 Phase Control in CVD Growth of 2D Materials -- 1.7 Summary and Prospect -- References -- Chapter 2 An Introduction to the Nonlinear Optical Properties of 2D Materials -- 2.1 Introduction -- 2.2 Nonlinear Optics of 2D Materials -- 2.2.1 SHG, THG, and HHG Setups -- 2.2.2 Four‐Wave Mixing -- 2.2.3 Z‐Scan Techniques -- 2.2.4 Nonlinear Optical Imaging -- 2.2.5 Pump–Probe Techniques -- 2.3 Application of 2D Nonlinear Materials -- 2.3.1 Optical Limiting -- 2.3.2 Q‐Switched and Mode‐Locked Lasers -- 2.3.3 Optical Switch and Modulation -- 2.3.4 Other Nonlinear Optical Phenomena -- 2.4 Prospect -- 2.4.1 Precise Fabrication and Functionalization of 2D Materials
Record Nr. UNINA-9911020251003321
Wang Qiang  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Two-Dimensional Transition-Metal Dichalcogenides : Phase Engineering and Applications in Electronics and Optoelectronics
Two-Dimensional Transition-Metal Dichalcogenides : Phase Engineering and Applications in Electronics and Optoelectronics
Autore Tang Chi Sin
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (346 pages)
Disciplina 620.112
Altri autori (Persone) YinXinmao
WeeAndrew T. S
Soggetto topico Two-dimensional materials
Electronic structure
ISBN 9783527838752
3527838759
9783527838745
3527838740
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Two‐dimensional Transition Metal Dichalcogenides: A General Overview -- 1.1 Introduction to 2D‐TMDs -- 1.2 Crystal Structures of 2D‐TMDs in Different Phases -- 1.2.1 Other Structural Phases -- 1.2.2 Phase Stability -- 1.3 Electronic Band Structures of 2D‐TMDs -- 1.3.1 Electronic Band Structures of the 1H, 1T, and 1T′ Phase -- 1.3.2 Indirect‐to‐Direct Bandgap Transition -- 1.3.3 Spin‐Orbit Coupling and Its Effects and Optical Selection Rules -- 1.4 Excitons (Coulomb‐Bound Electron‐Hole Pairs) -- 1.4.1 Exciton Binding Energy -- 1.4.2 Excitons and Other Complex Quasiparticles -- 1.4.3 Resonant Excitons in 2D‐TMDs -- 1.5 Experimental Studies and Characterization of 2D‐TMDs -- 1.5.1 Synthesis of 2D‐TMDs -- 1.5.1.1 Chemical Vapour Deposition -- 1.5.1.2 Molecular Beam Epitaxy -- 1.5.2 Optical Characterization -- 1.5.2.1 Photoluminescence -- 1.5.2.2 Spectroscopic Ellipsometry -- 1.5.2.3 Raman Characterization -- 1.5.3 Electronic Bandgap -- 1.5.3.1 Angle‐Resolved Photoemission Spectroscopy -- 1.5.3.2 Scanning Tunneling Spectroscopy (STS) -- 1.5.4 Conclusions -- References -- Chapter 2 Synthesis and Phase Engineering of Low‐Dimensional TMDs and Related Material Structures -- 2.1 Introduction -- 2.2 Structure of 2D TMDs -- 2.3 Synthesis of 2D TMDs -- 2.3.1 Top‐Down Method -- 2.3.2 Bottom‐Up Method -- 2.4 Phase Engineering of 2D TMDs -- 2.4.1 Direct Synthesis of TMDs with Targeted Phases -- 2.4.1.1 Precursor Selection -- 2.4.1.2 Catalyst -- 2.4.1.3 Temperature Control -- 2.4.1.4 Alloying -- 2.4.2 External Factor‐Induced Phase Transformation -- 2.4.2.1 Ion Intercalation -- 2.4.2.2 Thermal Treatment -- 2.5 Conclusion -- References -- Chapter 3 Thermoelectric Properties of Polymorphic 2D‐TMDs -- 3.1 Introduction to 2D Thermoelectrics -- 3.1.1 Why 2D over 3D? -- 3.1.2 Why 2D Semiconductors?.
3.2 Thermoelectric Transport -- 3.2.1 Boltzmann Transport Equation -- 3.2.2 Scattering Parameter for Different Mechanism -- 3.2.2.1 Ionized/Charged Impurity Scattering -- 3.2.2.2 Phonons Scattering -- 3.2.2.3 Carrier-Carrier Scattering -- 3.2.2.4 Surface Roughness Scattering -- 3.3 Experimental Characterization TE in 2D -- 3.3.1 Electrical Measurements -- 3.3.1.1 FET Measurements -- 3.3.1.2 Hall Measurements -- 3.3.2 Seebeck Measurement -- 3.3.2.1 ΔT Calibration -- 3.3.2.2 VTEP Measurement -- 3.3.3 Thermal Conductivity -- 3.3.3.1 Raman Spectrometer -- 3.3.3.2 TDTR (FDTR) -- 3.3.3.3 Thermal Bridge Method (Electron Beam Heating Technique) -- 3.3.3.4 Other Thermal Property Measurement Methods -- 3.4 Manipulation of TE Properties in 2D -- 3.4.1 Tuning of Carrier Concentration -- 3.4.2 Strain Engineering -- 3.4.3 Band Engineering -- 3.4.3.1 Layer Thickness and Band Convergence -- 3.4.4 Phase Transition -- 3.5 Future Outlook and Perspective -- References -- Chapter 4 Emerging Electronic Properties of Polymorphic 2D‐TMDs -- 4.1 Electronic Structure and Optical Properties of 2D‐TMDs -- 4.1.1 Electronic and Optical Properties of 1H‐Phase 2D‐TMDs -- 4.1.2 Electronic and Optical Properties of 1T‐Phase 2D‐TMDs -- 4.2 Polaron States of 2D‐TMDs -- 4.2.1 Holstein Polarons in MoS2 -- 4.2.1.1 Experimental Characterizations of Holstein Polarons -- 4.2.1.2 Theoretical Simulations of the Spectral Functions -- 4.2.2 Asymmetric Intervalley Polaron Effects on Band Edges of 2D‐TMDs -- 4.2.3 Polaron Effects on the Band Gap Size of 2D‐TMDs -- 4.3 Valley Properties of 2D‐TMDs -- 4.3.1 Circularly Polarized Light -- 4.3.2 External Field -- 4.3.3 Magnetic Metal Doping -- 4.3.4 Magnetic Substrate -- 4.4 Charge Density Waves of 2D‐TMDs -- 4.4.1 Charge Density Waves in TMDs -- 4.4.2 Effects of CDW on Electronic Properties -- 4.4.3 Mechanisms in CDW Transitions.
4.4.4 Manipulation of CDWs -- 4.5 Janus Structures of 2D‐TMDs -- 4.5.1 Fabrication Approaches for Janus 2D TMDs -- 4.5.2 Emerging Properties of Janus 2D TMDs -- 4.5.3 Potential Applications of Janus 2D TMDs -- 4.6 Moiré Superlattices of 2D‐TMDs -- References -- Chapter 5 Magnetism and Spin Structures of Polymorphic 2D TMDs -- 5.1 Two‐dimensional Ferromagnetism -- 5.2 Cr‐based Magnetic Materials and Device Applications -- 5.3 Polymorphic 2D Cr‐based Magnetic TMDs -- 5.4 Magnetism in 2D Vanadium, Ion, Manganese Chalcogenides -- 5.5 Conclusions and Outlook -- Acknowledgements -- References -- Chapter 6 Recent Progress of Mechanical Exfoliation and the Application in the Study of 2D Materials -- 6.1 Introduction -- 6.2 Different Ways for Preparing 2D Materials -- 6.2.1 Chemical Vapor Deposition (CVD) -- 6.2.2 Mechanical Exfoliation (ME) -- 6.3 New Mechanical Exfoliation Methods -- 6.3.1 Oxygen Plasma Enhanced Exfoliation -- 6.3.2 Gold Film Enhanced Exfoliation -- 6.4 Application of Mechanical Exfoliation Method -- 6.4.1 Electrical Properties and Devices -- 6.4.1.1 Screening of Disorders -- 6.4.1.2 Electrical Contacts of 2D Materials -- 6.4.2 Optical Properties and Photonic Devices -- 6.4.2.1 Photodetectors -- 6.4.2.2 Optical Modulators -- 6.4.2.3 Single Photon Emitters -- 6.4.3 Moiré Superlattice and Devices -- 6.4.3.1 Graphene/h‐BN Moiré Superlattice -- 6.4.3.2 Twisted Graphene Moiré Superlattice -- 6.4.3.3 Twisted TMD Moiré Superlattice -- 6.4.4 Magnetic Properties and Memory Devices -- 6.4.4.1 Ferromagnetism in 2D Materials -- 6.4.4.2 Antiferromagnetism in 2D Materials -- 6.4.5 Thermal Conduction -- 6.4.6 Superconductors -- 6.4.6.1 2D Superconductors and Their Characteristics -- 6.4.6.2 Regulation Methods -- 6.5 Summary and Outlook -- Acknowledgments -- References.
Chapter 7 Applications of Polymorphic Two‐Dimensional Transition Metal Dichalcogenides in Electronics and Optoelectronics -- 7.1 Field‐Effect Transistors (FETs) -- 7.1.1 Homojunction‐based FETs Formed by Phase Transition -- 7.1.2 Homojunction‐based FETs Formed by Direct Synthesis -- 7.2 Memory and Neuromorphic Computing -- 7.3 Energy Harvesting -- 7.4 Photodetectors -- 7.5 Solar Cells -- 7.6 Perspectives -- References -- Chapter 8 Polymorphic Two‐dimensional Transition Metal Dichalcogenides: Modern Challenges and Opportunities -- 8.1 Summing up the Chapters -- 8.2 Projecting the Future: Challenges and Opportunities -- 8.3 Global Challenges and Threats -- 8.3.1 Clean and Renewable Energy Sources -- 8.3.2 Water Treatment and Access to Clean Water -- 8.3.3 Healthcare and Pandemic Intervention -- 8.3.4 Food Safety and Security -- 8.3.4.1 Agricultural Production, Sustainability, Productivity, and Protection -- 8.3.4.2 Roles of 2D‐TMDs in Food Packaging and Preservation -- 8.4 Exponential Growth in Demands for Modern Computation -- 8.4.1 Deep Learning and Artificial Intelligence -- 8.4.2 Internet of Things and Data Overload -- 8.5 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9911020160703321
Tang Chi Sin  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui