2D boron : boraphene, borophene, boronene / / Iwao Matsuda; Kehui Wu
| 2D boron : boraphene, borophene, boronene / / Iwao Matsuda; Kehui Wu |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (XI, 160 p. 103 illus., 57 illus. in color.) |
| Disciplina | 553.61 |
| Soggetto topico |
Boron
Optical materials Two-dimensional materials |
| ISBN | 3-030-49999-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1. A Historical Review of Theoretical Boron Allotropes in Various Dimensions -- Chapter 2. Borophenes: insights and predictions from computational analyses -- Chapter 3. Synthesis of Borophene -- Chapter 4. Electronic Structure of Borophene -- Chapter 5. Chemically Modified Borophene -- Chapter 6. Physical and Chemical Properties of Boron Solids. |
| Record Nr. | UNINA-9910483922603321 |
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
2D-materials for energy harvesting and storage applications / / Muhammad Ikram, Ali Raza and Salamat Ali
| 2D-materials for energy harvesting and storage applications / / Muhammad Ikram, Ali Raza and Salamat Ali |
| Autore | Ikram Muhammad |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (263 pages) |
| Disciplina | 620.115 |
| Collana | Nanostructure Science and Technology |
| Soggetto topico |
Two-dimensional materials
Nanostructured materials |
| ISBN | 3-030-96021-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910551843103321 |
Ikram Muhammad
|
||
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
MXenes : Fundamentals and Applications
| MXenes : Fundamentals and Applications |
| Autore | Singh Jay |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (385 pages) |
| Disciplina | 546.6 |
| Altri autori (Persone) |
SinghKshitij R. B
Pratap SinghRavindra AdetunjiCharles Oluwaseun |
| Soggetto topico |
MXenes
Two-dimensional materials |
| ISBN |
9781119874003
1119874009 9781119874027 1119874025 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Editor Biographies -- List of Contributors -- Preface -- Acknowledgment -- Chapter 1 Introduction to MXenes a Next‐generation 2D Material -- 1.1 Introduction -- 1.2 Properties -- 1.3 Synthesis and Functionalization of MXenes -- 1.4 Characterization of MXenes -- 1.5 Application of MXenes -- 1.5.1 Biomedical -- 1.5.2 Agricultural -- 1.5.3 Environmental -- 1.5.4 Miscellaneous Field -- 1.6 Current Scenario, Risk Assessment, and Challenges -- 1.7 Conclusion and Prospects -- References -- Chapter 2 Structure, Composition, and Functionalization of MXenes -- 2.1 Introduction -- 2.2 MXenes Composition -- 2.2.1 Group IV Elemental Analog -- 2.2.2 Group V Elemental Analog -- 2.2.3 Group VI Elemental Analog -- 2.3 Structural Analysis Regarding MXenes -- 2.3.1 Theoretical Studies -- 2.3.2 Computational Studies -- 2.4 Structure Functionalization of MXene -- 2.4.1 Different Group Used for Structural Functionalization -- 2.4.1.1 Oxygen‐Functionalized MXene -- 2.4.1.2 Sulfur‐Functionalized MXenes -- 2.4.1.3 Methoxy Group‐Functionalized MXenes -- 2.4.2 Factor Affecting the Structure Functionalization -- 2.4.2.1 Electric and Optical Properties -- 2.4.2.2 Thermal Conductivity -- 2.4.2.3 Electrochemical Properties -- 2.4.2.4 Thermoelectric Property -- 2.5 Conclusion and Future Prospects -- Acknowledgment -- References -- Chapter 3 Synthesis of MXenes -- 3.1 Introduction -- 3.2 Fabrication of MXene -- 3.2.1 Fabrication Through Etching Agents -- 3.2.1.1 HF Etchants -- 3.2.1.2 In situ HF Etchants -- 3.2.1.3 MXenes Preparation Through Fluoride Free Routes -- 3.2.1.4 Molten Fluoride Salt as Etchants -- 3.2.1.5 MXenes Prepared from Unconventional Al‐MAX Phases -- 3.3 Conclusion -- References -- Chapter 4 Physicochemical and Biological Properties of MXenes -- 4.1 Introduction -- 4.2 Structure and Synthesis of MXenes.
4.3 Properties of MXenes -- 4.3.1 Biomedical Properties of MXenes -- 4.3.2 Electronic and Transport Properties -- 4.3.3 Optical Properties -- 4.3.4 Magnetic Properties -- 4.3.5 Topological Properties -- 4.3.6 Vibrational Properties -- 4.3.7 Electrochemical Properties -- 4.3.8 Thermal Properties -- 4.4 Conclusion and future Perspectives -- References -- Chapter 5 Processing and Characterization of MXenes and Their Nanocomposites -- 5.1 Introduction -- 5.2 Processing Techniques -- 5.2.1 Solution Blending -- 5.2.2 In Situ Polymerization Technique -- 5.2.3 Melt Blending -- 5.2.4 Electrospinning -- 5.2.5 Vacuum‐Assisted Filtration (VAF) Method -- 5.2.6 Spin Coating -- 5.3 Characterization Techniques -- 5.3.1 X‐Ray Diffraction (XRD) -- 5.3.2 Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy -- 5.3.3 X‐Ray Absorption Spectroscopy (XAS) -- 5.3.4 X‐Ray Photoelectron Spectroscopy (XPS) -- 5.3.5 Atomic Force Microscopy (AFM) -- 5.3.6 Nuclear Magnetic Resonance -- 5.3.7 Raman Spectroscopy -- 5.4 Conclusion -- References -- Chapter 6 Progressive Approach Toward MXenes Hydrogel -- 6.1 Hydrogels -- 6.1.1 Hydrogels Classification -- 6.1.2 Properties of Hydrogels -- 6.2 MXene‐Based Hydrogels -- 6.2.1 Applications of MXene Hydrogels -- 6.2.2 Mechanisms of Synthesis and Gelation of MXene Hydrogels -- 6.2.2.1 All‐MXene Hydrogels -- 6.2.2.2 MXene‐GO Nanocomposite Hydrogels -- 6.2.2.3 MXene‐polymer Nanocomposite Hydrogels -- 6.2.2.4 MXene‐metal Hybrid Nanocomposite Hydrogels -- 6.2.3 Properties of MXene‐Based Hydrogels -- 6.2.4 Applications of MXene‐Based Hydrogels -- 6.2.4.1 Energy Storage -- 6.2.4.2 Biomedical Applications -- 6.2.4.3 Catalysts -- 6.2.4.4 Sensors -- 6.3 Conclusions -- References -- Chapter 7 Comparison of MXenes with Other 2D Materials -- 7.1 Introduction of MXenes -- 7.2 MXenes vs. Carbon Materials. 7.3 MXenes vs. 2D‐chalcogenide/Carbide/Nitride -- 7.4 MXenes vs. 2D Metal-Organic Frameworks -- 7.5 Summary -- References -- Chapter 8 Newly Emerging 2D MXenes for Hydrogen Storage -- 8.1 Introduction -- 8.2 Structural Properties of MXene -- 8.3 Synthesis Techniques -- 8.4 H2 Storage Reaction Mechanisms -- 8.4.1 Adsorption -- 8.4.2 Kinetics and Thermodynamics -- 8.4.2.1 Kinetic Models -- 8.4.2.2 Geometrical Contraction -- 8.4.2.3 Contracting Volume Model -- 8.4.2.4 Jander Model -- 8.4.2.5 Ginstling-Brounshtein Model -- 8.4.2.6 Valensi-Carter Model -- 8.4.2.7 Nucleation‐Growth Impingement Models -- 8.5 Factors Influencing H2 Storage -- 8.6 Recent Advances in MXene‐Based Compounds for H2 Storage -- 8.7 Conclusions -- 8.8 Future Perspectives and Challenges -- Acknowledgment -- References -- Chapter 9 MXenes for Supercapacitor Applications -- 9.1 Introduction -- 9.2 Two‐dimensional MXenes Structure -- 9.3 MXenes' Characteristics -- 9.3.1 Characteristics of the Structure -- 9.3.2 Electronic Characteristics -- 9.3.3 Optical Characteristics -- 9.3.4 Magnetic Characteristics -- 9.4 MXenes as a Source of Energy Storage -- 9.4.1 Supercapacitor Energy Storage Mechanism -- 9.4.2 Morphology's Effect on MXenes' Energy Storage -- 9.4.3 MXene Functional Group Reactivity and Supercapacitors -- 9.4.4 Electrolytes' Role in the Storage Technology -- 9.5 Supercapacitor Systems of MXene and Hybrid -- 9.5.1 MXene in Their Original State -- 9.5.2 MXene Heterostructures -- 9.5.3 Hybrids of Transition Metal Oxides in MXene -- 9.5.4 Hierarchical Anode Structure -- 9.5.5 Appropriate Positive Electrode Design -- 9.5.6 Microsupercapacitors -- 9.6 Prospects -- 9.7 Conclusion -- References -- Chapter 10 MXenes‐based Biosensors -- 10.1 Introduction -- 10.2 Biosensing Application -- 10.2.1 Biomedical -- 10.2.2 Environmental -- 10.2.3 Agricultural -- 10.3 Challenges and Limitations. 10.4 Conclusion and Prospects -- References -- Chapter 11 Advances in Ti3C2 MXene and Its Composites for the Adsorption Process and Photocatalytic Applications -- 11.1 Introduction -- 11.2 Ti3C2 as Adsorbent for the Metal Ions -- 11.3 Photocatalytic Degradation Mechanism of Organic Pollutants via Ti3C2 MXene and Its Derivatives -- 11.3.1 Heterostructuring the Ti3C2 with Metal Oxides -- 11.3.2 Heterostructuring the Ti3C2/Ti3C2Tx with Metal Sulphides -- 11.3.3 Heterostructuring the Ti3C2/Ti3C2Tx with Ag/Bi‐based Semiconductors and Layered Double Hydroxides -- 11.4 Ternary Heterostructures based on the Ti3C2 -- 11.5 Gap Analysis -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 MXenes and its Hybrid Nanocomposites for Gas Sensing Applications in Breath Analysis -- 12.1 Introduction -- 12.2 Discussion -- 12.3 Conclusion -- References -- Chapter 13 MXenes for Catalysis and Electrocatalysis -- 13.1 Introduction -- 13.2 Application of MXene for Catalytic Processes -- 13.2.1 CO2 Reduction Reaction -- 13.2.2 Nitrogen Reduction Reaction -- 13.2.3 Oxygen Reduction Reaction -- 13.2.4 Oxygen Evolution Reactions -- 13.3 Strategies for Optimization of Catalytic Potential of MXenes -- 13.3.1 Termination Modification -- 13.3.2 Nanostructuring -- 13.3.3 Hybridization -- 13.3.4 Metal Atom Doping -- 13.4 Conclusion and Future Trend -- References -- Chapter 14 MXene and Its Hybrid Materials for Photothermal Therapy -- 14.1 Introduction -- 14.2 Photothermal Conversion -- 14.2.1 Localized Surface Plasmon Resonance Effect (LSPR) -- 14.2.2 Electron-Hole Generation -- 14.2.3 Hyperconjugation Effect -- 14.3 Optical and Thermal Properties of Mxenes -- 14.4 Photothermal Conversion Mechanism of MXenes -- 14.5 Applications of MXenes in Photothermal Therapy -- 14.5.1 Photothermal Therapy -- 14.5.2 PTT‐Coupled Chemotherapy -- 14.5.3 PTT Coupled Immunotherapy. 14.6 Conclusion -- Acknowledgment -- Conflict of interest -- References -- Chapter 15 MXenes and Its Composites for Biomedical Applications -- 15.1 Introduction -- 15.2 Various Biomedical Applications of MXenes -- 15.2.1 Biosensor Applications -- 15.2.2 Cancer Treatment -- 15.2.3 Antibacterial Properties -- 15.2.4 Drug Delivery -- 15.3 Conclusion -- References -- Chapter 16 MXenes for Point of Care Devices (POC) -- 16.1 Introduction -- 16.2 Characteristics of MXenes on Biosensing -- 16.2.1 Advantages of MXene and its Derivatives for Biosensing -- 16.2.2 Disadvantages of MXene and its Derivatives for Biosensing -- 16.2.3 Sensing Mechanism of MXene Wearables -- 16.3 Point‐of‐Care Diagnosing COVID‐19: Methods Used to Date -- 16.4 Applications of MXenes as PoCs -- 16.4.1 Cancer Diagnosis -- 16.4.2 Diagnosis of Bacterial and Viral Diseases -- 16.5 Current Challenges and Future Outlook -- 16.6 Conclusion -- References -- Chapter 17 MXenes and Their Hybrids for Electromagnetic Interference Shielding Applications -- 17.1 Introduction -- 17.2 Properties of MXenes -- 17.2.1 Stability -- 17.2.2 Electrical Conductivity -- 17.2.3 Magnetic Properties -- 17.2.4 Dielectric Properties -- 17.3 Various MXene Hybrids For EMI‐Hielding -- 17.3.1 Textile‐based -- 17.3.2 Insulating Polymer‐based -- 17.3.3 Aerogels, Hydrogels, and Foams -- 17.3.4 Polymer Thin Films -- 17.3.5 Electrospun Mats -- 17.3.6 Paper‐Based Composites -- 17.3.7 Laminates -- 17.4 Intrinsically Conducting Polymer‐based -- 17.4.1 Aerogels, Hydrogels, and Foams -- 17.4.2 Polymer Thin Films -- 17.4.3 Paper -- 17.5 Graphene‐based -- 17.5.1 Foam/Aerogels -- 17.5.2 Films -- 17.5.3 Laminates -- 17.6 Conclusion -- References -- Chapter 18 Technological Aspects in the Development of MXenes and Its Hybrid Nanocomposites: Current Challenges and Prospects -- 18.1 Introduction. 18.2 Progressive Approach Towards MXene Composites and Hybrids. |
| Record Nr. | UNINA-9911019413103321 |
Singh Jay
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Two-dimensional (2D) nanomaterials in separation science / / Rasel Das, editor
| Two-dimensional (2D) nanomaterials in separation science / / Rasel Das, editor |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (251 pages) |
| Disciplina | 620.112 |
| Collana | Springer series on polymer and composite materials |
| Soggetto topico |
Two-dimensional materials
Water - Purification Membrane separation Separation (Technology) |
| ISBN | 3-030-72457-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | 2D nanomaterials in separation science |
| Record Nr. | UNINA-9910482957103321 |
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Two-Dimensional Electronics : Prospects and Challenges / / edited by Frank Schwierz
| Two-Dimensional Electronics : Prospects and Challenges / / edited by Frank Schwierz |
| Pubbl/distr/stampa | Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2016 |
| Descrizione fisica | 1 online resource (xiii, 239 pages) |
| Disciplina | 620.112 |
| Soggetto topico |
Two-dimensional materials
Electronics |
| ISBN | 3-03842-250-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910688480603321 |
| Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Two-Dimensional Electronics - Prospects and Challenges / / edited by Frank Schwierz
| Two-Dimensional Electronics - Prospects and Challenges / / edited by Frank Schwierz |
| Pubbl/distr/stampa | Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2016 |
| Descrizione fisica | 1 online resource (xiii, 264 pages) : illustrations |
| Disciplina | 620.112 |
| Soggetto topico |
Optoelectronics
Two-dimensional materials |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910598192103321 |
| Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Two-dimensional materials : synthesis, characterization and potential applications / / edited by Pramoda Kumar Nayak
| Two-dimensional materials : synthesis, characterization and potential applications / / edited by Pramoda Kumar Nayak |
| Pubbl/distr/stampa | Rijeka, Croatia : , : IntechOpen, , [2016] |
| Descrizione fisica | 1 online resource (280 pages) : illustrations |
| Disciplina | 620.112 |
| Soggetto topico | Two-dimensional materials |
| ISBN |
953-51-4186-4
953-51-2555-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti |
Two-dimensional materials
Two-dimensional Materials â Synthesis, Characterization and Potential Applications |
| Record Nr. | UNINA-9910317697003321 |
| Rijeka, Croatia : , : IntechOpen, , [2016] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Two-Dimensional Materials for Nonlinear Optics : Fundamentals, Preparation Methods, and Applications
| Two-Dimensional Materials for Nonlinear Optics : Fundamentals, Preparation Methods, and Applications |
| Autore | Wang Qiang |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
| Descrizione fisica | 1 online resource (367 pages) |
| Disciplina | 621.3694 |
| Altri autori (Persone) | ZhangHao-Li |
| Soggetto topico |
Two-dimensional materials
Nonlinear optics |
| ISBN |
9783527838264
3527838260 9783527838288 3527838287 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Cover -- Title Page -- Copyright -- Contents -- Preface -- List of Abbreviations -- Chapter 1 Preparation of 2D Materials -- 1.1 Mechanical Exfoliation of 2D Materials -- 1.2 Liquid‐Phase Exfoliation of 2D Materials -- 1.3 Chemical Vapor Deposition Growth of 2D Materials -- 1.4 CVD Growth of Wafer‐Scale Single Crystal 2D Materials -- 1.5 Thickness Control in CVD Growth of 2D Materials -- 1.6 Phase Control in CVD Growth of 2D Materials -- 1.7 Summary and Prospect -- References -- Chapter 2 An Introduction to the Nonlinear Optical Properties of 2D Materials -- 2.1 Introduction -- 2.2 Nonlinear Optics of 2D Materials -- 2.2.1 SHG, THG, and HHG Setups -- 2.2.2 Four‐Wave Mixing -- 2.2.3 Z‐Scan Techniques -- 2.2.4 Nonlinear Optical Imaging -- 2.2.5 Pump–Probe Techniques -- 2.3 Application of 2D Nonlinear Materials -- 2.3.1 Optical Limiting -- 2.3.2 Q‐Switched and Mode‐Locked Lasers -- 2.3.3 Optical Switch and Modulation -- 2.3.4 Other Nonlinear Optical Phenomena -- 2.4 Prospect -- 2.4.1 Precise Fabrication and Functionalization of 2D Materials |
| Record Nr. | UNINA-9911020251003321 |
Wang Qiang
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Two-Dimensional Transition-Metal Dichalcogenides : Phase Engineering and Applications in Electronics and Optoelectronics
| Two-Dimensional Transition-Metal Dichalcogenides : Phase Engineering and Applications in Electronics and Optoelectronics |
| Autore | Tang Chi Sin |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
| Descrizione fisica | 1 online resource (346 pages) |
| Disciplina | 620.112 |
| Altri autori (Persone) |
YinXinmao
WeeAndrew T. S |
| Soggetto topico |
Two-dimensional materials
Electronic structure |
| ISBN |
9783527838752
3527838759 9783527838745 3527838740 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Two‐dimensional Transition Metal Dichalcogenides: A General Overview -- 1.1 Introduction to 2D‐TMDs -- 1.2 Crystal Structures of 2D‐TMDs in Different Phases -- 1.2.1 Other Structural Phases -- 1.2.2 Phase Stability -- 1.3 Electronic Band Structures of 2D‐TMDs -- 1.3.1 Electronic Band Structures of the 1H, 1T, and 1T′ Phase -- 1.3.2 Indirect‐to‐Direct Bandgap Transition -- 1.3.3 Spin‐Orbit Coupling and Its Effects and Optical Selection Rules -- 1.4 Excitons (Coulomb‐Bound Electron‐Hole Pairs) -- 1.4.1 Exciton Binding Energy -- 1.4.2 Excitons and Other Complex Quasiparticles -- 1.4.3 Resonant Excitons in 2D‐TMDs -- 1.5 Experimental Studies and Characterization of 2D‐TMDs -- 1.5.1 Synthesis of 2D‐TMDs -- 1.5.1.1 Chemical Vapour Deposition -- 1.5.1.2 Molecular Beam Epitaxy -- 1.5.2 Optical Characterization -- 1.5.2.1 Photoluminescence -- 1.5.2.2 Spectroscopic Ellipsometry -- 1.5.2.3 Raman Characterization -- 1.5.3 Electronic Bandgap -- 1.5.3.1 Angle‐Resolved Photoemission Spectroscopy -- 1.5.3.2 Scanning Tunneling Spectroscopy (STS) -- 1.5.4 Conclusions -- References -- Chapter 2 Synthesis and Phase Engineering of Low‐Dimensional TMDs and Related Material Structures -- 2.1 Introduction -- 2.2 Structure of 2D TMDs -- 2.3 Synthesis of 2D TMDs -- 2.3.1 Top‐Down Method -- 2.3.2 Bottom‐Up Method -- 2.4 Phase Engineering of 2D TMDs -- 2.4.1 Direct Synthesis of TMDs with Targeted Phases -- 2.4.1.1 Precursor Selection -- 2.4.1.2 Catalyst -- 2.4.1.3 Temperature Control -- 2.4.1.4 Alloying -- 2.4.2 External Factor‐Induced Phase Transformation -- 2.4.2.1 Ion Intercalation -- 2.4.2.2 Thermal Treatment -- 2.5 Conclusion -- References -- Chapter 3 Thermoelectric Properties of Polymorphic 2D‐TMDs -- 3.1 Introduction to 2D Thermoelectrics -- 3.1.1 Why 2D over 3D? -- 3.1.2 Why 2D Semiconductors?.
3.2 Thermoelectric Transport -- 3.2.1 Boltzmann Transport Equation -- 3.2.2 Scattering Parameter for Different Mechanism -- 3.2.2.1 Ionized/Charged Impurity Scattering -- 3.2.2.2 Phonons Scattering -- 3.2.2.3 Carrier-Carrier Scattering -- 3.2.2.4 Surface Roughness Scattering -- 3.3 Experimental Characterization TE in 2D -- 3.3.1 Electrical Measurements -- 3.3.1.1 FET Measurements -- 3.3.1.2 Hall Measurements -- 3.3.2 Seebeck Measurement -- 3.3.2.1 ΔT Calibration -- 3.3.2.2 VTEP Measurement -- 3.3.3 Thermal Conductivity -- 3.3.3.1 Raman Spectrometer -- 3.3.3.2 TDTR (FDTR) -- 3.3.3.3 Thermal Bridge Method (Electron Beam Heating Technique) -- 3.3.3.4 Other Thermal Property Measurement Methods -- 3.4 Manipulation of TE Properties in 2D -- 3.4.1 Tuning of Carrier Concentration -- 3.4.2 Strain Engineering -- 3.4.3 Band Engineering -- 3.4.3.1 Layer Thickness and Band Convergence -- 3.4.4 Phase Transition -- 3.5 Future Outlook and Perspective -- References -- Chapter 4 Emerging Electronic Properties of Polymorphic 2D‐TMDs -- 4.1 Electronic Structure and Optical Properties of 2D‐TMDs -- 4.1.1 Electronic and Optical Properties of 1H‐Phase 2D‐TMDs -- 4.1.2 Electronic and Optical Properties of 1T‐Phase 2D‐TMDs -- 4.2 Polaron States of 2D‐TMDs -- 4.2.1 Holstein Polarons in MoS2 -- 4.2.1.1 Experimental Characterizations of Holstein Polarons -- 4.2.1.2 Theoretical Simulations of the Spectral Functions -- 4.2.2 Asymmetric Intervalley Polaron Effects on Band Edges of 2D‐TMDs -- 4.2.3 Polaron Effects on the Band Gap Size of 2D‐TMDs -- 4.3 Valley Properties of 2D‐TMDs -- 4.3.1 Circularly Polarized Light -- 4.3.2 External Field -- 4.3.3 Magnetic Metal Doping -- 4.3.4 Magnetic Substrate -- 4.4 Charge Density Waves of 2D‐TMDs -- 4.4.1 Charge Density Waves in TMDs -- 4.4.2 Effects of CDW on Electronic Properties -- 4.4.3 Mechanisms in CDW Transitions. 4.4.4 Manipulation of CDWs -- 4.5 Janus Structures of 2D‐TMDs -- 4.5.1 Fabrication Approaches for Janus 2D TMDs -- 4.5.2 Emerging Properties of Janus 2D TMDs -- 4.5.3 Potential Applications of Janus 2D TMDs -- 4.6 Moiré Superlattices of 2D‐TMDs -- References -- Chapter 5 Magnetism and Spin Structures of Polymorphic 2D TMDs -- 5.1 Two‐dimensional Ferromagnetism -- 5.2 Cr‐based Magnetic Materials and Device Applications -- 5.3 Polymorphic 2D Cr‐based Magnetic TMDs -- 5.4 Magnetism in 2D Vanadium, Ion, Manganese Chalcogenides -- 5.5 Conclusions and Outlook -- Acknowledgements -- References -- Chapter 6 Recent Progress of Mechanical Exfoliation and the Application in the Study of 2D Materials -- 6.1 Introduction -- 6.2 Different Ways for Preparing 2D Materials -- 6.2.1 Chemical Vapor Deposition (CVD) -- 6.2.2 Mechanical Exfoliation (ME) -- 6.3 New Mechanical Exfoliation Methods -- 6.3.1 Oxygen Plasma Enhanced Exfoliation -- 6.3.2 Gold Film Enhanced Exfoliation -- 6.4 Application of Mechanical Exfoliation Method -- 6.4.1 Electrical Properties and Devices -- 6.4.1.1 Screening of Disorders -- 6.4.1.2 Electrical Contacts of 2D Materials -- 6.4.2 Optical Properties and Photonic Devices -- 6.4.2.1 Photodetectors -- 6.4.2.2 Optical Modulators -- 6.4.2.3 Single Photon Emitters -- 6.4.3 Moiré Superlattice and Devices -- 6.4.3.1 Graphene/h‐BN Moiré Superlattice -- 6.4.3.2 Twisted Graphene Moiré Superlattice -- 6.4.3.3 Twisted TMD Moiré Superlattice -- 6.4.4 Magnetic Properties and Memory Devices -- 6.4.4.1 Ferromagnetism in 2D Materials -- 6.4.4.2 Antiferromagnetism in 2D Materials -- 6.4.5 Thermal Conduction -- 6.4.6 Superconductors -- 6.4.6.1 2D Superconductors and Their Characteristics -- 6.4.6.2 Regulation Methods -- 6.5 Summary and Outlook -- Acknowledgments -- References. Chapter 7 Applications of Polymorphic Two‐Dimensional Transition Metal Dichalcogenides in Electronics and Optoelectronics -- 7.1 Field‐Effect Transistors (FETs) -- 7.1.1 Homojunction‐based FETs Formed by Phase Transition -- 7.1.2 Homojunction‐based FETs Formed by Direct Synthesis -- 7.2 Memory and Neuromorphic Computing -- 7.3 Energy Harvesting -- 7.4 Photodetectors -- 7.5 Solar Cells -- 7.6 Perspectives -- References -- Chapter 8 Polymorphic Two‐dimensional Transition Metal Dichalcogenides: Modern Challenges and Opportunities -- 8.1 Summing up the Chapters -- 8.2 Projecting the Future: Challenges and Opportunities -- 8.3 Global Challenges and Threats -- 8.3.1 Clean and Renewable Energy Sources -- 8.3.2 Water Treatment and Access to Clean Water -- 8.3.3 Healthcare and Pandemic Intervention -- 8.3.4 Food Safety and Security -- 8.3.4.1 Agricultural Production, Sustainability, Productivity, and Protection -- 8.3.4.2 Roles of 2D‐TMDs in Food Packaging and Preservation -- 8.4 Exponential Growth in Demands for Modern Computation -- 8.4.1 Deep Learning and Artificial Intelligence -- 8.4.2 Internet of Things and Data Overload -- 8.5 Conclusion -- References -- Index -- EULA. |
| Record Nr. | UNINA-9911020160703321 |
Tang Chi Sin
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Two-dimensional-materials-based membranes : preparation, characterization, and applications / / edited by Wanqin Jin and Gongping Liu
| Two-dimensional-materials-based membranes : preparation, characterization, and applications / / edited by Wanqin Jin and Gongping Liu |
| Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , [2022] |
| Descrizione fisica | 1 online resource (397 pages) |
| Disciplina | 620.115 |
| Soggetto topico | Two-dimensional materials |
| ISBN |
3-527-82985-7
3-527-82983-0 3-527-82984-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- References -- Chapter 2 Fabrication Methods for 2D Membranes -- 2.1 Introduction -- 2.2 Synthesis of Nanosheets -- 2.2.1 Top‐Down Method -- 2.2.1.1 Mechanical‐Force Exfoliation -- 2.2.1.2 Ion‐Intercalation Exfoliation -- 2.2.1.3 Oxidation‐Assisted Exfoliation -- 2.2.1.4 Selective‐Etching Method -- 2.2.2 Bottom‐Up Method -- 2.2.2.1 Chemical Vapor Deposition -- 2.2.2.2 Hydro/Solvothermal Synthesis -- 2.2.2.3 Interfacial Synthesis -- 2.3 Membrane Structures and Fabrication Methods -- 2.3.1 Two‐Dimensional‐Material Nanosheet Membranes -- 2.3.1.1 Zeolite Membrane -- 2.3.1.2 MOF Membrane -- 2.3.1.3 Porous Graphene Membrane -- 2.3.2 Two‐Dimensional‐Material Laminar Membranes -- 2.3.2.1 Assembly Strategies of Laminates -- 2.3.2.2 Nanostructure Controlling of Laminar Membranes -- 2.3.3 Two‐Dimensional‐Materials‐Based Mixed‐Matrix Membranes (MMMs) -- 2.3.3.1 Fabrication Methods of MMMs -- 2.3.3.2 Effect of Physicochemical Properties of 2D Fillers -- 2.3.4 Other Hybrid Membranes -- 2.4 Summary and Outlook -- References -- Chapter 3 Nanoporous Single‐Layer Graphene Membranes for Gas Separation -- 3.1 Introduction -- 3.2 Gas‐Separation Potential of N‐SLG Membranes -- 3.3 Engineering Gas‐Selective Vacancy Defects -- 3.3.1 Bottom‐Up Synthesis of N‐SLG -- 3.3.2 Postsynthetic Etching of SLG -- 3.3.2.1 Physical Etching Methods -- 3.3.2.2 Chemical Etching Techniques -- 3.4 Fabrication of Large‐Area N‐SLG Membranes -- 3.5 Summary and Outlook -- References -- Chapter 4 Graphene‐Based Membranes for Water Separation -- 4.1 Introduction -- 4.2 Water Transport Mechanisms in Graphene‐Based Membranes -- 4.2.1 Internal‐Geometry‐Mediated Transport -- 4.2.1.1 Size Effects -- 4.2.1.2 Length Effects -- 4.2.2 Surface‐Chemistry‐Mediated Transport -- 4.2.3 External‐Environment‐Mediated Transport.
4.2.3.1 Solution Chemistry Effects -- 4.2.3.2 Applied Pressure Effects -- 4.2.3.3 Applied Potential Effects -- 4.2.4 Guest‐Material‐Mediated Transport -- 4.2.4.1 Stabilizing Effects -- 4.2.4.2 Size‐Controlling Effects -- 4.2.4.3 Surface‐Chemistry‐Modifying Effects -- 4.2.4.4 Smart Gating Effects -- 4.3 Graphene‐based Membrane Water Separation Applications -- 4.3.1 Nanofiltration -- 4.3.2 Reverse Osmosis -- 4.3.3 Forward Osmosis -- 4.4 Conclusions and Perspectives -- References -- Chapter 5 Graphene‐Based Membranes for Ions Separation -- 5.1 Introduction -- 5.2 Single‐Layer Graphene -- 5.2.1 Theoretical Calculations -- 5.2.2 Experimental Validations -- 5.3 Graphene Oxide Membranes -- 5.3.1 Structure of Graphene Oxide and Graphene Oxide Membranes -- 5.3.2 Ultrafast Water Permeability -- 5.3.3 Ion Selectivity -- 5.3.4 Microstructure Optimization for Desalination -- 5.3.5 Interlayer Spacing Control for Desalination -- 5.3.5.1 Cross‐Linking -- 5.3.5.2 Reduction -- 5.3.5.3 External Pressure -- 5.3.6 Charge Modification for Desalination -- 5.3.7 External Field Modulated Ion Transport -- 5.3.8 Ion Transport Through Planar GO Laminates -- 5.4 Summary and Perspective -- References -- Chapter 6 Graphene‐Based Membranes for Pervaporation -- 6.1 Introduction -- 6.2 Mass‐Transport Mechanism -- 6.2.1 Mass Transport in Pervaporation Process -- 6.2.2 Mass Transport in GO Membrane -- 6.3 Progresses in GO Membranes for Pervaporation -- 6.3.1 Controlling Self‐Assembly Condition -- 6.3.2 Designing Graphene Oxide‐Framework (GOF) Membrane -- 6.3.3 Assembly with Polymers -- 6.3.4 Intercalating Nanomaterials -- 6.3.5 Tuning Surface Structure -- 6.4 Summary and Perspective -- References -- Chapter 7 Two‐Dimensional‐Materials Membranes for Gas Separations -- 7.1 Introduction -- 7.2 2D‐Materials Membranes -- 7.2.1 Zeolites -- 7.2.2 Graphene‐Based Materials. 7.2.2.1 Nanoporous Graphene -- 7.2.2.2 Graphene Oxide -- 7.2.3 MOFs -- 7.2.4 COFs -- 7.2.5 g‐C3N4 -- 7.2.6 MXenes -- 7.2.7 Other 2D Materials -- 7.3 Preparation of 2D Nanosheets -- 7.3.1 Top‐Down Method -- 7.3.2 Bottom‐Up Method -- 7.4 Preparation of 2D‐Materials Membranes -- 7.4.1 Top‐Down Method -- 7.4.1.1 Filtration‐Assisted Assembly -- 7.4.1.2 Coating -- 7.4.1.3 Layer‐by‐Layer Assembly -- 7.4.2 Bottom‐Up Method -- 7.5 Gas Separations -- 7.5.1 H2/CO2, H2/N2, and H2/CH4 Separations -- 7.5.2 CO2/N2 and CO2/CH4 Separations -- 7.5.3 Other Gas/Vapor Separations -- 7.6 Conclusions and Perspectives -- References -- Chapter 8 Layered Double Hydroxide Membranes for Versatile Separation Applications -- 8.1 Introduction on LDHs and LDH‐Based Membranes -- 8.2 Strategy for LDH‐Based Membrane Preparation -- 8.2.1 Solution‐Based In Situ Growth -- 8.2.2 Post‐Synthetic Deposition -- 8.2.3 Blending with Polymers -- 8.3 Research Progress on LDH‐Based Membranes -- 8.3.1 Interlayer Gallery‐Based Separation -- 8.3.1.1 Pristine Interlayer Gallery‐Based Separation -- 8.3.1.2 Regenerated Interlayer Gallery‐Based Separation -- 8.3.2 Geometric Shape‐Based Separation -- 8.3.2.1 Geometric Shape‐Based Gas Separation -- 8.3.2.2 Geometric Shape‐Based Liquid Separation -- 8.3.2.3 Geometric Shape‐Based Particulate Matter Capture -- 8.3.2.4 Geometric Shape‐Based Sacrificing Templates -- 8.3.3 Unusual Thermal Behavior‐Based Separation -- 8.3.4 Photocatalytic Activity‐Based Separation -- 8.3.5 Positive Surface Charge‐Based Separation -- 8.3.5.1 Positive Surface Charge‐Based Ultrafiltration -- 8.3.5.2 Positive Surface Charge‐Based Nanofiltration -- 8.3.5.3 Positive Surface Charge‐Based Reverse Osmosis -- 8.3.5.4 Positive Surface Charge‐Based Forward Osmosis -- 8.3.5.5 Positive Surface Charge‐Based Nanocomposite Membranes -- 8.3.6 Hydrophilicity‐Based Water Treatment. 8.3.6.1 Hydrophilicity‐Based Microfiltration -- 8.3.6.2 Hydrophilicity‐Based Ultrafiltration -- 8.3.6.3 Hydrophilicity‐Based Nanofiltration -- 8.3.6.4 Hydrophilicity‐Based Reverse Osmosis -- 8.3.6.5 Hydrophilicity‐Based Forward Osmosis -- 8.4 Summary and Outlook -- References -- Chapter 9 MXene: A Novel Two‐Dimensional Membrane Material for Molecular Separation -- 9.1 Introduction -- 9.2 Synthesis and Processing -- 9.2.1 Synthesis of Multilayered MXene Phases -- 9.2.2 Fabrication of Single MXene Flakes -- 9.2.3 Surface Properties of MXene Flakes -- 9.2.4 Preparation of MXene‐Based Membranes -- 9.2.4.1 Drop‐Coating -- 9.2.4.2 Spraying or Spinning Coating -- 9.2.4.3 Pressure‐Assisted Filtration -- 9.3 MXene‐Based Membranes for Molecular Separation -- 9.3.1 Liquid Separation -- 9.3.1.1 Desalination -- 9.3.1.2 Organic Solvent Nanofiltration -- 9.3.1.3 Pervaporation Solvent Dehydration -- 9.3.1.4 Dyes and Natural Organic Matter Rejection -- 9.3.1.5 Oil-Water Separation -- 9.3.2 Gas Separation -- 9.4 Conclusions and Perspective -- References -- Chapter 10 2D‐Materials Mixed‐Matrix Membranes -- 10.1 Introduction -- 10.2 Two‐Dimensional Materials as Dispersed Phase of MMMs -- 10.2.1 Graphene Oxide (GO) -- 10.2.1.1 Increasing Molecular Transport Channels -- 10.2.1.2 Reducing Nonselective Defects -- 10.2.1.3 Introducing the Functional Sites for Facilitated Transport -- 10.2.2 Metal-Organic Frameworks (MOFs) -- 10.2.2.1 Increasing Molecular Transport Channels -- 10.2.2.2 Enhancing the Interfacial Compatibility Between Nanomaterials and Polymers -- 10.2.3 Covalent Organic Frameworks (COFs) -- 10.2.3.1 Increasing Molecule Transport Channels -- 10.2.3.2 Introducing Facilely‐Tailored Functionality -- 10.2.3.3 Constructing Hierarchical Structures in MMMs -- 10.2.4 Other 2D Materials -- 10.2.4.1 Transition‐Metal Dichalcogenides (TMDs). 10.2.4.2 Graphitic Carbon Nitride (g‐C3N4) -- 10.2.4.3 MXenes -- 10.3 Two‐Dimensional Material as Continuous Phase of MMMs -- 10.3.1 Graphene Oxide (GO) -- 10.3.1.1 Controlling Interlayer Spacing -- 10.3.1.2 Modulating the Physical/Chemical Microenvironment -- 10.3.2 Metal-Organic Framework (MOF) -- 10.3.2.1 Enhancing Processability and Stability of MOFs -- 10.3.2.2 Modulating the Physical/Chemical Microenvironment -- 10.3.3 Covalent Organic Frameworks (COFs) -- 10.3.3.1 Regulating the Physical/Chemical Microenvironment -- 10.3.3.2 Modulating Crystallinity, Porosity, Mechanical Properties -- 10.4 Conclusion and Outlook -- References -- Chapter 11 Transport Mechanism of 2D Membranes -- 11.1 Introduction -- 11.2 Fundamentals of Mass Transport Through Membranes -- 11.2.1 Transport Mechanism in Porous Membranes -- 11.2.2 Transport Mechanism in Nonporous Membranes -- 11.2.3 Transport Mechanism in Charged Membranes -- 11.2.4 Permeability-Selectivity Trade‐Off for Polymers -- 11.3 Nanofluidic Transport Through Confined Dimensions -- 11.3.1 Confinement Architectures for Artificial Nanofluidic Systems -- 11.3.2 Continuum Modeling of Nanofluidic Transport in Confined Channels -- 11.3.3 Mechanisms of Nanofluidic Transport in Atomically Thin Nanopores -- 11.3.4 Effects of Electrical Double Layer in Nanofluidic Ion Transport -- 11.3.5 Various Confinement Effects in Nanofluidic Transport at the Subnanometer Scale -- 11.3.5.1 Molecular Rearrangement -- 11.3.5.2 Partial Dehydration or Desolvation -- 11.3.5.3 Electrical Effects -- 11.3.5.4 Quantum Effects -- 11.4 Unique Mass‐Transport Properties in 2D Membranes: Structural Aspects -- 11.4.1 Nanoporous Atomically Thin 2D Membranes (NATMs) -- 11.4.2 Staked 2D Membranes with Laminar Structure -- 11.4.3 2D Materials‐Embedded Mixed‐Matrix Membranes (MMMs) -- 11.5 Summary and Outlook -- References. Chapter 12 Conclusions and Perspectives. |
| Record Nr. | UNINA-9910830688303321 |
| Weinheim, Germany : , : Wiley-VCH, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||