2D boron : boraphene, borophene, boronene / / Iwao Matsuda; Kehui Wu |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (XI, 160 p. 103 illus., 57 illus. in color.) |
Disciplina | 553.61 |
Soggetto topico |
Boron
Optical materials Two-dimensional materials |
ISBN | 3-030-49999-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. A Historical Review of Theoretical Boron Allotropes in Various Dimensions -- Chapter 2. Borophenes: insights and predictions from computational analyses -- Chapter 3. Synthesis of Borophene -- Chapter 4. Electronic Structure of Borophene -- Chapter 5. Chemically Modified Borophene -- Chapter 6. Physical and Chemical Properties of Boron Solids. |
Record Nr. | UNINA-9910483922603321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
2D-materials for energy harvesting and storage applications / / Muhammad Ikram, Ali Raza and Salamat Ali |
Autore | Ikram Muhammad |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (263 pages) |
Disciplina | 620.115 |
Collana | Nanostructure Science and Technology |
Soggetto topico |
Two-dimensional materials
Nanostructured materials |
ISBN | 3-030-96021-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910551843103321 |
Ikram Muhammad | ||
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced applications of 2D nanostructures : emerging research and opportunities / / Subhash Singh, Kartikey Verma, Chander Prakash, editors |
Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (274 pages) |
Disciplina | 620.112 |
Collana | Materials Horizons |
Soggetto topico | Two-dimensional materials |
ISBN | 981-16-3322-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Series Editor's Preface -- Preface -- Acknowledgements -- Introduction -- Contents -- Editors and Contributors -- 1 Introduction, History, and Origin of Two Dimensional (2D) Materials -- 1 Introduction -- 2 Evolution of 2D Materials -- 3 Growing Interest in 2D Materials -- 4 Challenges and Opportunities -- References -- 2 Different Types and Intense Classification of 2D Materials -- 1 Introduction -- 2 Types -- 2.1 Graphene Family -- 2.2 2D Oxides -- 2.3 2D Chalcogenides -- 3 Conclusion -- References -- 3 Different Techniques for Designing and Fabrication of 2D Materials -- 1 Introduction -- 2 Approaches for Graphene Synthesis and Its Modification -- 2.1 Synthesis of Graphene -- 2.2 Production of GO -- 2.3 Structure of Graphene Oxide -- 2.4 GO Characteristics and Applications -- 2.5 Some Very Important Surface Modification of Graphene -- 3 Conclusion -- References -- 4 2D Graphene Oxide-Based Composites and Their Application in Catalysis and Sensing -- 1 Introduction -- 2 Background of Graphene Oxide -- 3 Characterization and Structural Features of Graphene Oxide -- 4 Application in Sensor -- 5 Application in Catalysis -- 6 Conclusion -- 7 Future Aspects -- References -- 5 Nanostructured 2D Materials as Nano Coatings and Thin Films -- 1 Introduction -- 2 The 2D Material Coatings -- 2.1 Graphene -- 2.2 Transition Metal Dichalcogenides (TMDs) -- 2.3 Hexagonal Boron Nitride (H-BN) -- 2.4 Black Phosphorous (BP) -- 3 Conclusions -- References -- 6 MXene: A Non-oxide Next-Generation Energy Storage Materials for Batteries and Supercapacitors -- 1 Introduction -- 2 MXene: A Novel 2D Material -- 3 MXene: Properties -- 4 MXene for Energy Storage Applications -- 4.1 MXenes for Metal-Ion Batteries -- 4.2 MXenes for Supercapacitors -- 5 Conclusion -- References.
7 Nano Coatings and Thin Films of 2D Nanomaterials (MXenes) as Transparent Conductivity Electrodes and Supercapacitors -- 1 Introduction -- 2 MXenes Thin-Film Synthesis -- 3 Properties of MXenes -- 3.1 Structural -- 3.2 Stability -- 3.3 Mechanical and Physical -- 4 MXene-DERIVED TCEs -- 4.1 Introduction -- 4.2 Ti3C2Tx TCEs -- 4.3 More MXene-Derived TCEs -- 4.4 Drawbacks of MXene-Based TCEs -- 5 MXene-Derived Energy Storage Devices -- 5.1 MXene Films in Transparent Supercapacitors (SCs) -- 5.2 Challenges and Future Scope of Transparent SCs -- 5.3 Other Energy Applications -- 6 Summary and Outlook -- References -- 8 2D Metal Oxide Nanosheets-Electronic Applications Recent Developments and Future Prospects -- 1 Introduction -- 2 General Features -- 2.1 Syntheses -- 2.2 Characterization -- 3 Electronic Applications -- 3.1 Sensors -- 4 Some Recent Applications -- 5 Discussion and Conclusions -- References -- 9 Modeling and Simulation of Nano-Structured 2D Materials -- 1 Introduction -- 2 Simulation Methodologies -- 2.1 Molecular Dynamic Method -- 2.2 Monte Carlo Method -- 2.3 Ab Initio Methods -- 3 Significant Tools/Techniques Used for Molecular Dynamic Simulation -- 3.1 GROMACS -- 3.2 AMBER -- 3.3 LAMMPS -- 3.4 Desmond -- 3.5 Tinker -- 3.6 ESPResSo -- 3.7 CHARMM -- 3.8 GROMOS -- 3.9 NAMD -- 4 Investigation of Nano-Structured Materials Using Typical Simulation Techniques -- 4.1 Carbonous Nanomaterials -- 4.2 Non-Carbonous Nanomaterials -- 5 Summary and Future Prospects -- References -- 10 Novel Corrosion Properties of 2D Nanostructures for Advanced Applications -- 1 Introduction -- 2 2D Materials for Corrosion Protection -- 2.1 Graphene -- 2.2 Graphene Oxide -- 2.3 Hexagonal Boron Nitride -- 3 Conclusion -- References -- 11 Nanostructured 2D Materials for Biomedical, Nano Bioengineering, and Nanomechanical Devices -- 1 Introduction. 2 Synthesis of 2D Materials -- 2.1 Top-Down Approach -- 2.2 Bottom-Up Approach -- 3 Functionalization and Modification of 2D Materials -- 4 Biomedical Application of 2D Materials -- 4.1 Biosensors -- 4.2 Drug and Gene Delivery -- 4.3 Bioimaging -- 4.4 Therapeutic Applications of 2D Materials -- 5 Toxicology and Biocompatibility of 2D Materials -- 6 Conclusion and Outlook -- References -- 12 2D Nanomaterials Based Advanced Bio-composites -- 1 Introduction -- 2 Application of 2D Bio-Composite -- 2.1 Bone Implants -- 2.2 Drug Delivery -- 2.3 Bioimaging -- 2.4 Biosensors -- 2.5 Antibacterial Property -- 2.6 Photothermal Therapy -- 3 Challenges for Development of 2D Materials in Biomedical Applications -- 4 Conclusion and Future Research Recommendations -- References -- 13 Mechanical Performance of 2D Nanomaterials Based Advanced Composites -- 1 Introduction -- 2 Mechanical Properties of 2-D Nanomaterials -- 3 Application of 2-D Nanomaterial-Based Advanced Composite -- 4 Conclusions -- References -- Conclusion. |
Record Nr. | UNINA-9910495215603321 |
Singapore : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Two-dimensional (2D) nanomaterials in separation science / / Rasel Das, editor |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (251 pages) |
Disciplina | 620.112 |
Collana | Springer series on polymer and composite materials |
Soggetto topico |
Two-dimensional materials
Water - Purification Membrane separation Separation (Technology) |
ISBN | 3-030-72457-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | 2D nanomaterials in separation science |
Record Nr. | UNINA-9910482957103321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Two-Dimensional Electronics : Prospects and Challenges / / edited by Frank Schwierz |
Pubbl/distr/stampa | Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2016 |
Descrizione fisica | 1 online resource (xiii, 239 pages) |
Disciplina | 620.112 |
Soggetto topico |
Two-dimensional materials
Electronics |
ISBN | 3-03842-250-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910688480603321 |
Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Two-Dimensional Electronics - Prospects and Challenges / / edited by Frank Schwierz |
Pubbl/distr/stampa | Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2016 |
Descrizione fisica | 1 online resource (xiii, 264 pages) : illustrations |
Disciplina | 620.112 |
Soggetto topico |
Optoelectronics
Two-dimensional materials |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910598192103321 |
Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Two-dimensional materials : synthesis, characterization and potential applications / / edited by Pramoda Kumar Nayak |
Pubbl/distr/stampa | Rijeka, Croatia : , : IntechOpen, , [2016] |
Descrizione fisica | 1 online resource (280 pages) : illustrations |
Disciplina | 620.112 |
Soggetto topico | Two-dimensional materials |
ISBN |
953-51-4186-4
953-51-2555-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti |
Two-dimensional materials
Two-dimensional Materials â Synthesis, Characterization and Potential Applications |
Record Nr. | UNINA-9910317697003321 |
Rijeka, Croatia : , : IntechOpen, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Two-Dimensional Materials for Nonlinear Optics : Fundamentals, Preparation Methods, and Applications |
Autore | Wang Qiang |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
Descrizione fisica | 1 online resource (367 pages) |
Altri autori (Persone) | ZhangHao-Li |
Soggetto topico |
Two-dimensional materials
Nonlinear optics |
ISBN |
3-527-83826-0
3-527-83828-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Cover -- Title Page -- Copyright -- Contents -- Preface -- List of Abbreviations -- Chapter 1 Preparation of 2D Materials -- 1.1 Mechanical Exfoliation of 2D Materials -- 1.2 Liquid‐Phase Exfoliation of 2D Materials -- 1.3 Chemical Vapor Deposition Growth of 2D Materials -- 1.4 CVD Growth of Wafer‐Scale Single Crystal 2D Materials -- 1.5 Thickness Control in CVD Growth of 2D Materials -- 1.6 Phase Control in CVD Growth of 2D Materials -- 1.7 Summary and Prospect -- References -- Chapter 2 An Introduction to the Nonlinear Optical Properties of 2D Materials -- 2.1 Introduction -- 2.2 Nonlinear Optics of 2D Materials -- 2.2.1 SHG, THG, and HHG Setups -- 2.2.2 Four‐Wave Mixing -- 2.2.3 Z‐Scan Techniques -- 2.2.4 Nonlinear Optical Imaging -- 2.2.5 Pump–Probe Techniques -- 2.3 Application of 2D Nonlinear Materials -- 2.3.1 Optical Limiting -- 2.3.2 Q‐Switched and Mode‐Locked Lasers -- 2.3.3 Optical Switch and Modulation -- 2.3.4 Other Nonlinear Optical Phenomena -- 2.4 Prospect -- 2.4.1 Precise Fabrication and Functionalization of 2D Materials |
Record Nr. | UNINA-9910877642603321 |
Wang Qiang | ||
Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Two-Dimensional Transition-Metal Dichalcogenides : Phase Engineering and Applications in Electronics and Optoelectronics |
Autore | Tang Chi Sin |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
Descrizione fisica | 1 online resource (346 pages) |
Altri autori (Persone) |
YinXinmao
WeeAndrew T. S |
Soggetto topico |
Two-dimensional materials
Electronic structure |
ISBN |
9783527838752
3527838759 9783527838745 3527838740 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Two‐dimensional Transition Metal Dichalcogenides: A General Overview -- 1.1 Introduction to 2D‐TMDs -- 1.2 Crystal Structures of 2D‐TMDs in Different Phases -- 1.2.1 Other Structural Phases -- 1.2.2 Phase Stability -- 1.3 Electronic Band Structures of 2D‐TMDs -- 1.3.1 Electronic Band Structures of the 1H, 1T, and 1T′ Phase -- 1.3.2 Indirect‐to‐Direct Bandgap Transition -- 1.3.3 Spin‐Orbit Coupling and Its Effects and Optical Selection Rules -- 1.4 Excitons (Coulomb‐Bound Electron‐Hole Pairs) -- 1.4.1 Exciton Binding Energy -- 1.4.2 Excitons and Other Complex Quasiparticles -- 1.4.3 Resonant Excitons in 2D‐TMDs -- 1.5 Experimental Studies and Characterization of 2D‐TMDs -- 1.5.1 Synthesis of 2D‐TMDs -- 1.5.1.1 Chemical Vapour Deposition -- 1.5.1.2 Molecular Beam Epitaxy -- 1.5.2 Optical Characterization -- 1.5.2.1 Photoluminescence -- 1.5.2.2 Spectroscopic Ellipsometry -- 1.5.2.3 Raman Characterization -- 1.5.3 Electronic Bandgap -- 1.5.3.1 Angle‐Resolved Photoemission Spectroscopy -- 1.5.3.2 Scanning Tunneling Spectroscopy (STS) -- 1.5.4 Conclusions -- References -- Chapter 2 Synthesis and Phase Engineering of Low‐Dimensional TMDs and Related Material Structures -- 2.1 Introduction -- 2.2 Structure of 2D TMDs -- 2.3 Synthesis of 2D TMDs -- 2.3.1 Top‐Down Method -- 2.3.2 Bottom‐Up Method -- 2.4 Phase Engineering of 2D TMDs -- 2.4.1 Direct Synthesis of TMDs with Targeted Phases -- 2.4.1.1 Precursor Selection -- 2.4.1.2 Catalyst -- 2.4.1.3 Temperature Control -- 2.4.1.4 Alloying -- 2.4.2 External Factor‐Induced Phase Transformation -- 2.4.2.1 Ion Intercalation -- 2.4.2.2 Thermal Treatment -- 2.5 Conclusion -- References -- Chapter 3 Thermoelectric Properties of Polymorphic 2D‐TMDs -- 3.1 Introduction to 2D Thermoelectrics -- 3.1.1 Why 2D over 3D? -- 3.1.2 Why 2D Semiconductors?.
3.2 Thermoelectric Transport -- 3.2.1 Boltzmann Transport Equation -- 3.2.2 Scattering Parameter for Different Mechanism -- 3.2.2.1 Ionized/Charged Impurity Scattering -- 3.2.2.2 Phonons Scattering -- 3.2.2.3 Carrier-Carrier Scattering -- 3.2.2.4 Surface Roughness Scattering -- 3.3 Experimental Characterization TE in 2D -- 3.3.1 Electrical Measurements -- 3.3.1.1 FET Measurements -- 3.3.1.2 Hall Measurements -- 3.3.2 Seebeck Measurement -- 3.3.2.1 ΔT Calibration -- 3.3.2.2 VTEP Measurement -- 3.3.3 Thermal Conductivity -- 3.3.3.1 Raman Spectrometer -- 3.3.3.2 TDTR (FDTR) -- 3.3.3.3 Thermal Bridge Method (Electron Beam Heating Technique) -- 3.3.3.4 Other Thermal Property Measurement Methods -- 3.4 Manipulation of TE Properties in 2D -- 3.4.1 Tuning of Carrier Concentration -- 3.4.2 Strain Engineering -- 3.4.3 Band Engineering -- 3.4.3.1 Layer Thickness and Band Convergence -- 3.4.4 Phase Transition -- 3.5 Future Outlook and Perspective -- References -- Chapter 4 Emerging Electronic Properties of Polymorphic 2D‐TMDs -- 4.1 Electronic Structure and Optical Properties of 2D‐TMDs -- 4.1.1 Electronic and Optical Properties of 1H‐Phase 2D‐TMDs -- 4.1.2 Electronic and Optical Properties of 1T‐Phase 2D‐TMDs -- 4.2 Polaron States of 2D‐TMDs -- 4.2.1 Holstein Polarons in MoS2 -- 4.2.1.1 Experimental Characterizations of Holstein Polarons -- 4.2.1.2 Theoretical Simulations of the Spectral Functions -- 4.2.2 Asymmetric Intervalley Polaron Effects on Band Edges of 2D‐TMDs -- 4.2.3 Polaron Effects on the Band Gap Size of 2D‐TMDs -- 4.3 Valley Properties of 2D‐TMDs -- 4.3.1 Circularly Polarized Light -- 4.3.2 External Field -- 4.3.3 Magnetic Metal Doping -- 4.3.4 Magnetic Substrate -- 4.4 Charge Density Waves of 2D‐TMDs -- 4.4.1 Charge Density Waves in TMDs -- 4.4.2 Effects of CDW on Electronic Properties -- 4.4.3 Mechanisms in CDW Transitions. 4.4.4 Manipulation of CDWs -- 4.5 Janus Structures of 2D‐TMDs -- 4.5.1 Fabrication Approaches for Janus 2D TMDs -- 4.5.2 Emerging Properties of Janus 2D TMDs -- 4.5.3 Potential Applications of Janus 2D TMDs -- 4.6 Moiré Superlattices of 2D‐TMDs -- References -- Chapter 5 Magnetism and Spin Structures of Polymorphic 2D TMDs -- 5.1 Two‐dimensional Ferromagnetism -- 5.2 Cr‐based Magnetic Materials and Device Applications -- 5.3 Polymorphic 2D Cr‐based Magnetic TMDs -- 5.4 Magnetism in 2D Vanadium, Ion, Manganese Chalcogenides -- 5.5 Conclusions and Outlook -- Acknowledgements -- References -- Chapter 6 Recent Progress of Mechanical Exfoliation and the Application in the Study of 2D Materials -- 6.1 Introduction -- 6.2 Different Ways for Preparing 2D Materials -- 6.2.1 Chemical Vapor Deposition (CVD) -- 6.2.2 Mechanical Exfoliation (ME) -- 6.3 New Mechanical Exfoliation Methods -- 6.3.1 Oxygen Plasma Enhanced Exfoliation -- 6.3.2 Gold Film Enhanced Exfoliation -- 6.4 Application of Mechanical Exfoliation Method -- 6.4.1 Electrical Properties and Devices -- 6.4.1.1 Screening of Disorders -- 6.4.1.2 Electrical Contacts of 2D Materials -- 6.4.2 Optical Properties and Photonic Devices -- 6.4.2.1 Photodetectors -- 6.4.2.2 Optical Modulators -- 6.4.2.3 Single Photon Emitters -- 6.4.3 Moiré Superlattice and Devices -- 6.4.3.1 Graphene/h‐BN Moiré Superlattice -- 6.4.3.2 Twisted Graphene Moiré Superlattice -- 6.4.3.3 Twisted TMD Moiré Superlattice -- 6.4.4 Magnetic Properties and Memory Devices -- 6.4.4.1 Ferromagnetism in 2D Materials -- 6.4.4.2 Antiferromagnetism in 2D Materials -- 6.4.5 Thermal Conduction -- 6.4.6 Superconductors -- 6.4.6.1 2D Superconductors and Their Characteristics -- 6.4.6.2 Regulation Methods -- 6.5 Summary and Outlook -- Acknowledgments -- References. Chapter 7 Applications of Polymorphic Two‐Dimensional Transition Metal Dichalcogenides in Electronics and Optoelectronics -- 7.1 Field‐Effect Transistors (FETs) -- 7.1.1 Homojunction‐based FETs Formed by Phase Transition -- 7.1.2 Homojunction‐based FETs Formed by Direct Synthesis -- 7.2 Memory and Neuromorphic Computing -- 7.3 Energy Harvesting -- 7.4 Photodetectors -- 7.5 Solar Cells -- 7.6 Perspectives -- References -- Chapter 8 Polymorphic Two‐dimensional Transition Metal Dichalcogenides: Modern Challenges and Opportunities -- 8.1 Summing up the Chapters -- 8.2 Projecting the Future: Challenges and Opportunities -- 8.3 Global Challenges and Threats -- 8.3.1 Clean and Renewable Energy Sources -- 8.3.2 Water Treatment and Access to Clean Water -- 8.3.3 Healthcare and Pandemic Intervention -- 8.3.4 Food Safety and Security -- 8.3.4.1 Agricultural Production, Sustainability, Productivity, and Protection -- 8.3.4.2 Roles of 2D‐TMDs in Food Packaging and Preservation -- 8.4 Exponential Growth in Demands for Modern Computation -- 8.4.1 Deep Learning and Artificial Intelligence -- 8.4.2 Internet of Things and Data Overload -- 8.5 Conclusion -- References -- Index -- EULA. |
Record Nr. | UNINA-9910877617503321 |
Tang Chi Sin | ||
Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Two-dimensional-materials-based membranes : preparation, characterization, and applications / / edited by Wanqin Jin and Gongping Liu |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , [2022] |
Descrizione fisica | 1 online resource (397 pages) |
Disciplina | 620.115 |
Soggetto topico | Two-dimensional materials |
ISBN |
3-527-82985-7
3-527-82983-0 3-527-82984-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- References -- Chapter 2 Fabrication Methods for 2D Membranes -- 2.1 Introduction -- 2.2 Synthesis of Nanosheets -- 2.2.1 Top‐Down Method -- 2.2.1.1 Mechanical‐Force Exfoliation -- 2.2.1.2 Ion‐Intercalation Exfoliation -- 2.2.1.3 Oxidation‐Assisted Exfoliation -- 2.2.1.4 Selective‐Etching Method -- 2.2.2 Bottom‐Up Method -- 2.2.2.1 Chemical Vapor Deposition -- 2.2.2.2 Hydro/Solvothermal Synthesis -- 2.2.2.3 Interfacial Synthesis -- 2.3 Membrane Structures and Fabrication Methods -- 2.3.1 Two‐Dimensional‐Material Nanosheet Membranes -- 2.3.1.1 Zeolite Membrane -- 2.3.1.2 MOF Membrane -- 2.3.1.3 Porous Graphene Membrane -- 2.3.2 Two‐Dimensional‐Material Laminar Membranes -- 2.3.2.1 Assembly Strategies of Laminates -- 2.3.2.2 Nanostructure Controlling of Laminar Membranes -- 2.3.3 Two‐Dimensional‐Materials‐Based Mixed‐Matrix Membranes (MMMs) -- 2.3.3.1 Fabrication Methods of MMMs -- 2.3.3.2 Effect of Physicochemical Properties of 2D Fillers -- 2.3.4 Other Hybrid Membranes -- 2.4 Summary and Outlook -- References -- Chapter 3 Nanoporous Single‐Layer Graphene Membranes for Gas Separation -- 3.1 Introduction -- 3.2 Gas‐Separation Potential of N‐SLG Membranes -- 3.3 Engineering Gas‐Selective Vacancy Defects -- 3.3.1 Bottom‐Up Synthesis of N‐SLG -- 3.3.2 Postsynthetic Etching of SLG -- 3.3.2.1 Physical Etching Methods -- 3.3.2.2 Chemical Etching Techniques -- 3.4 Fabrication of Large‐Area N‐SLG Membranes -- 3.5 Summary and Outlook -- References -- Chapter 4 Graphene‐Based Membranes for Water Separation -- 4.1 Introduction -- 4.2 Water Transport Mechanisms in Graphene‐Based Membranes -- 4.2.1 Internal‐Geometry‐Mediated Transport -- 4.2.1.1 Size Effects -- 4.2.1.2 Length Effects -- 4.2.2 Surface‐Chemistry‐Mediated Transport -- 4.2.3 External‐Environment‐Mediated Transport.
4.2.3.1 Solution Chemistry Effects -- 4.2.3.2 Applied Pressure Effects -- 4.2.3.3 Applied Potential Effects -- 4.2.4 Guest‐Material‐Mediated Transport -- 4.2.4.1 Stabilizing Effects -- 4.2.4.2 Size‐Controlling Effects -- 4.2.4.3 Surface‐Chemistry‐Modifying Effects -- 4.2.4.4 Smart Gating Effects -- 4.3 Graphene‐based Membrane Water Separation Applications -- 4.3.1 Nanofiltration -- 4.3.2 Reverse Osmosis -- 4.3.3 Forward Osmosis -- 4.4 Conclusions and Perspectives -- References -- Chapter 5 Graphene‐Based Membranes for Ions Separation -- 5.1 Introduction -- 5.2 Single‐Layer Graphene -- 5.2.1 Theoretical Calculations -- 5.2.2 Experimental Validations -- 5.3 Graphene Oxide Membranes -- 5.3.1 Structure of Graphene Oxide and Graphene Oxide Membranes -- 5.3.2 Ultrafast Water Permeability -- 5.3.3 Ion Selectivity -- 5.3.4 Microstructure Optimization for Desalination -- 5.3.5 Interlayer Spacing Control for Desalination -- 5.3.5.1 Cross‐Linking -- 5.3.5.2 Reduction -- 5.3.5.3 External Pressure -- 5.3.6 Charge Modification for Desalination -- 5.3.7 External Field Modulated Ion Transport -- 5.3.8 Ion Transport Through Planar GO Laminates -- 5.4 Summary and Perspective -- References -- Chapter 6 Graphene‐Based Membranes for Pervaporation -- 6.1 Introduction -- 6.2 Mass‐Transport Mechanism -- 6.2.1 Mass Transport in Pervaporation Process -- 6.2.2 Mass Transport in GO Membrane -- 6.3 Progresses in GO Membranes for Pervaporation -- 6.3.1 Controlling Self‐Assembly Condition -- 6.3.2 Designing Graphene Oxide‐Framework (GOF) Membrane -- 6.3.3 Assembly with Polymers -- 6.3.4 Intercalating Nanomaterials -- 6.3.5 Tuning Surface Structure -- 6.4 Summary and Perspective -- References -- Chapter 7 Two‐Dimensional‐Materials Membranes for Gas Separations -- 7.1 Introduction -- 7.2 2D‐Materials Membranes -- 7.2.1 Zeolites -- 7.2.2 Graphene‐Based Materials. 7.2.2.1 Nanoporous Graphene -- 7.2.2.2 Graphene Oxide -- 7.2.3 MOFs -- 7.2.4 COFs -- 7.2.5 g‐C3N4 -- 7.2.6 MXenes -- 7.2.7 Other 2D Materials -- 7.3 Preparation of 2D Nanosheets -- 7.3.1 Top‐Down Method -- 7.3.2 Bottom‐Up Method -- 7.4 Preparation of 2D‐Materials Membranes -- 7.4.1 Top‐Down Method -- 7.4.1.1 Filtration‐Assisted Assembly -- 7.4.1.2 Coating -- 7.4.1.3 Layer‐by‐Layer Assembly -- 7.4.2 Bottom‐Up Method -- 7.5 Gas Separations -- 7.5.1 H2/CO2, H2/N2, and H2/CH4 Separations -- 7.5.2 CO2/N2 and CO2/CH4 Separations -- 7.5.3 Other Gas/Vapor Separations -- 7.6 Conclusions and Perspectives -- References -- Chapter 8 Layered Double Hydroxide Membranes for Versatile Separation Applications -- 8.1 Introduction on LDHs and LDH‐Based Membranes -- 8.2 Strategy for LDH‐Based Membrane Preparation -- 8.2.1 Solution‐Based In Situ Growth -- 8.2.2 Post‐Synthetic Deposition -- 8.2.3 Blending with Polymers -- 8.3 Research Progress on LDH‐Based Membranes -- 8.3.1 Interlayer Gallery‐Based Separation -- 8.3.1.1 Pristine Interlayer Gallery‐Based Separation -- 8.3.1.2 Regenerated Interlayer Gallery‐Based Separation -- 8.3.2 Geometric Shape‐Based Separation -- 8.3.2.1 Geometric Shape‐Based Gas Separation -- 8.3.2.2 Geometric Shape‐Based Liquid Separation -- 8.3.2.3 Geometric Shape‐Based Particulate Matter Capture -- 8.3.2.4 Geometric Shape‐Based Sacrificing Templates -- 8.3.3 Unusual Thermal Behavior‐Based Separation -- 8.3.4 Photocatalytic Activity‐Based Separation -- 8.3.5 Positive Surface Charge‐Based Separation -- 8.3.5.1 Positive Surface Charge‐Based Ultrafiltration -- 8.3.5.2 Positive Surface Charge‐Based Nanofiltration -- 8.3.5.3 Positive Surface Charge‐Based Reverse Osmosis -- 8.3.5.4 Positive Surface Charge‐Based Forward Osmosis -- 8.3.5.5 Positive Surface Charge‐Based Nanocomposite Membranes -- 8.3.6 Hydrophilicity‐Based Water Treatment. 8.3.6.1 Hydrophilicity‐Based Microfiltration -- 8.3.6.2 Hydrophilicity‐Based Ultrafiltration -- 8.3.6.3 Hydrophilicity‐Based Nanofiltration -- 8.3.6.4 Hydrophilicity‐Based Reverse Osmosis -- 8.3.6.5 Hydrophilicity‐Based Forward Osmosis -- 8.4 Summary and Outlook -- References -- Chapter 9 MXene: A Novel Two‐Dimensional Membrane Material for Molecular Separation -- 9.1 Introduction -- 9.2 Synthesis and Processing -- 9.2.1 Synthesis of Multilayered MXene Phases -- 9.2.2 Fabrication of Single MXene Flakes -- 9.2.3 Surface Properties of MXene Flakes -- 9.2.4 Preparation of MXene‐Based Membranes -- 9.2.4.1 Drop‐Coating -- 9.2.4.2 Spraying or Spinning Coating -- 9.2.4.3 Pressure‐Assisted Filtration -- 9.3 MXene‐Based Membranes for Molecular Separation -- 9.3.1 Liquid Separation -- 9.3.1.1 Desalination -- 9.3.1.2 Organic Solvent Nanofiltration -- 9.3.1.3 Pervaporation Solvent Dehydration -- 9.3.1.4 Dyes and Natural Organic Matter Rejection -- 9.3.1.5 Oil-Water Separation -- 9.3.2 Gas Separation -- 9.4 Conclusions and Perspective -- References -- Chapter 10 2D‐Materials Mixed‐Matrix Membranes -- 10.1 Introduction -- 10.2 Two‐Dimensional Materials as Dispersed Phase of MMMs -- 10.2.1 Graphene Oxide (GO) -- 10.2.1.1 Increasing Molecular Transport Channels -- 10.2.1.2 Reducing Nonselective Defects -- 10.2.1.3 Introducing the Functional Sites for Facilitated Transport -- 10.2.2 Metal-Organic Frameworks (MOFs) -- 10.2.2.1 Increasing Molecular Transport Channels -- 10.2.2.2 Enhancing the Interfacial Compatibility Between Nanomaterials and Polymers -- 10.2.3 Covalent Organic Frameworks (COFs) -- 10.2.3.1 Increasing Molecule Transport Channels -- 10.2.3.2 Introducing Facilely‐Tailored Functionality -- 10.2.3.3 Constructing Hierarchical Structures in MMMs -- 10.2.4 Other 2D Materials -- 10.2.4.1 Transition‐Metal Dichalcogenides (TMDs). 10.2.4.2 Graphitic Carbon Nitride (g‐C3N4) -- 10.2.4.3 MXenes -- 10.3 Two‐Dimensional Material as Continuous Phase of MMMs -- 10.3.1 Graphene Oxide (GO) -- 10.3.1.1 Controlling Interlayer Spacing -- 10.3.1.2 Modulating the Physical/Chemical Microenvironment -- 10.3.2 Metal-Organic Framework (MOF) -- 10.3.2.1 Enhancing Processability and Stability of MOFs -- 10.3.2.2 Modulating the Physical/Chemical Microenvironment -- 10.3.3 Covalent Organic Frameworks (COFs) -- 10.3.3.1 Regulating the Physical/Chemical Microenvironment -- 10.3.3.2 Modulating Crystallinity, Porosity, Mechanical Properties -- 10.4 Conclusion and Outlook -- References -- Chapter 11 Transport Mechanism of 2D Membranes -- 11.1 Introduction -- 11.2 Fundamentals of Mass Transport Through Membranes -- 11.2.1 Transport Mechanism in Porous Membranes -- 11.2.2 Transport Mechanism in Nonporous Membranes -- 11.2.3 Transport Mechanism in Charged Membranes -- 11.2.4 Permeability-Selectivity Trade‐Off for Polymers -- 11.3 Nanofluidic Transport Through Confined Dimensions -- 11.3.1 Confinement Architectures for Artificial Nanofluidic Systems -- 11.3.2 Continuum Modeling of Nanofluidic Transport in Confined Channels -- 11.3.3 Mechanisms of Nanofluidic Transport in Atomically Thin Nanopores -- 11.3.4 Effects of Electrical Double Layer in Nanofluidic Ion Transport -- 11.3.5 Various Confinement Effects in Nanofluidic Transport at the Subnanometer Scale -- 11.3.5.1 Molecular Rearrangement -- 11.3.5.2 Partial Dehydration or Desolvation -- 11.3.5.3 Electrical Effects -- 11.3.5.4 Quantum Effects -- 11.4 Unique Mass‐Transport Properties in 2D Membranes: Structural Aspects -- 11.4.1 Nanoporous Atomically Thin 2D Membranes (NATMs) -- 11.4.2 Staked 2D Membranes with Laminar Structure -- 11.4.3 2D Materials‐Embedded Mixed‐Matrix Membranes (MMMs) -- 11.5 Summary and Outlook -- References. Chapter 12 Conclusions and Perspectives. |
Record Nr. | UNINA-9910830688303321 |
Weinheim, Germany : , : Wiley-VCH, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|