top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced trigonometric relations through Nbic functions [[electronic resource] /] / NIsith K. Bairagi
Advanced trigonometric relations through Nbic functions [[electronic resource] /] / NIsith K. Bairagi
Autore Bairagi Nisith K
Pubbl/distr/stampa New Delhi, : New Age International, 2012
Descrizione fisica 1 online resource (281 p.)
Soggetto topico Trigonometry
Mathematics
Soggetto genere / forma Electronic books.
ISBN 81-224-3491-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Cover ""; ""Preface ""; ""Acknowledgement ""; ""Notation ""; ""Contents ""; ""Chapter 1 Nbic Functions and Nbic Trigonometric Relations ""; ""1.1 Introduction ""; ""1.1.1 Circular Angle ""; ""1.1.2 Definition of Hyperbolic Angle and Tan-equivalent Hyperbolic (tehy) Angle ""; ""1.2 Definition and Interpretation of Nbic Angle ""; ""1.2.1 Nbic Angle and its Interpretation ""; ""1.2.2 Tan-Equivalent Nbic (teN) Angle ""; ""1.3 Symbolic Identification of Nbic Functions ""; ""1.3.1 Nbic Trigonometry ""; ""1.3.2 Interchangeability of Trigonometric and Hyperbolic Functions ""
""1.3.3 Surface, Gaussian Curvature and Angle Sum """"1.3.4 Nbic Functions and Nbic Trigonometric Relations ""; ""1.4 Complex Nbic Functions ""; ""1.4.1 Some Basic Complex Functions ""; ""1.4.2 Generation of Single Nbic Function, N (x, y) ""; ""1.4.3 Single Nbic Function With Suffixes A and B ""; ""1.4.4 Particular Case ""; ""1.4.5 Complex Single Nbic Function with Suffixes A and B, [NA / (x, x), NB / (x, x)] ""; ""1.5 Generation of Double Nbic Function,N2 (x,y) ""; ""1.5.1 As Generated from Complex Double Nbic Function, N2/(x, y) ""; ""1.5.2 Category 1 : (E type) ""
""1.5.3 Particular Case """"1.5.4 Category 2 : (F type) ""; ""1.5.5 Particular Case ""; ""1.5.6 Double Nbic Function with Suffixes A and B ""; ""1.6 Generation of Triple Nbic Function, N3(x, y) ""; ""1.6.1 As Generated from Complex Triple Nbic Function, N3 / (x, y) ""; ""1.6.2 Category 1 : (E type) ""; ""1.6.3 Particular Case ""; ""1.6.4 Category 2 : (F type) ""; ""1.6.5 Particular Case ""; ""1.6.6 Category M (Mixed Category) ""; ""1.6.7 Triple Nbic Function with Suffixes A and B ""; ""1.6.8 Particular Case ""; ""1.7 Definition and Development of Nbic Function ""
""1.7.1 Single Nbic Function with Variable (x, y) : N(x, y) """"1.7.2 Single Nbic Function with Variable of x Only : N(x, x) ""; ""1.7.3 Graphical Determination of Single Nbic Functions ""; ""1.7.4 Single Nbic Function with Complex Variable of (ix) Only : N (ix, ix) ""; ""1.7.5 Comparison with Corresponding Circular and Hyperbolic Functions ""; ""1.8 Derivation of Expressions of Other Basic Nbic Functions ""; ""1.8.1 To Find sinNx and cosNx, when only, tanNx is given ""; ""1.8.2 Differentiation Rule for Single Nbic Functions ""; ""1.8.3 Numerical Verification of Expressions ""
""1.8.4 Basic Nbic Functions and their Derivatives """"1.8.5 Integration Rule for Single Nbic Functions ""; ""1.8.6 Related Expressions Involving Differentiation and Integration ""; ""1.8.7 Interpretation and Representation in Terms of Circular Functions ""; ""1.9 Nbic Functions with Variable (2x, ± 2x) AND (2x, ± x) ""; ""1.9.1 Similarity of Forms ""; ""1.9.2 Single Nbic Function with Double Angle, N(2x, 2x) in Terms of, N(2x, x) ""; ""1.9.3 Some Examples Related to Nbic Functions with Variable (2x, ± 2x) and (2x, ± x) ""; ""Chapter 2 Complex Nbic Function and Associated Topics ""
""2.1 De Moivre's form Extended in Nbic Function ""
Record Nr. UNINA-9910461902703321
Bairagi Nisith K  
New Delhi, : New Age International, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced trigonometric relations through Nbic functions [[electronic resource] /] / NIsith K. Bairagi
Advanced trigonometric relations through Nbic functions [[electronic resource] /] / NIsith K. Bairagi
Autore Bairagi Nisith K
Pubbl/distr/stampa New Delhi, : New Age International, 2012
Descrizione fisica 1 online resource (281 p.)
Soggetto topico Trigonometry
Mathematics
ISBN 81-224-3491-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Cover ""; ""Preface ""; ""Acknowledgement ""; ""Notation ""; ""Contents ""; ""Chapter 1 Nbic Functions and Nbic Trigonometric Relations ""; ""1.1 Introduction ""; ""1.1.1 Circular Angle ""; ""1.1.2 Definition of Hyperbolic Angle and Tan-equivalent Hyperbolic (tehy) Angle ""; ""1.2 Definition and Interpretation of Nbic Angle ""; ""1.2.1 Nbic Angle and its Interpretation ""; ""1.2.2 Tan-Equivalent Nbic (teN) Angle ""; ""1.3 Symbolic Identification of Nbic Functions ""; ""1.3.1 Nbic Trigonometry ""; ""1.3.2 Interchangeability of Trigonometric and Hyperbolic Functions ""
""1.3.3 Surface, Gaussian Curvature and Angle Sum """"1.3.4 Nbic Functions and Nbic Trigonometric Relations ""; ""1.4 Complex Nbic Functions ""; ""1.4.1 Some Basic Complex Functions ""; ""1.4.2 Generation of Single Nbic Function, N (x, y) ""; ""1.4.3 Single Nbic Function With Suffixes A and B ""; ""1.4.4 Particular Case ""; ""1.4.5 Complex Single Nbic Function with Suffixes A and B, [NA / (x, x), NB / (x, x)] ""; ""1.5 Generation of Double Nbic Function,N2 (x,y) ""; ""1.5.1 As Generated from Complex Double Nbic Function, N2/(x, y) ""; ""1.5.2 Category 1 : (E type) ""
""1.5.3 Particular Case """"1.5.4 Category 2 : (F type) ""; ""1.5.5 Particular Case ""; ""1.5.6 Double Nbic Function with Suffixes A and B ""; ""1.6 Generation of Triple Nbic Function, N3(x, y) ""; ""1.6.1 As Generated from Complex Triple Nbic Function, N3 / (x, y) ""; ""1.6.2 Category 1 : (E type) ""; ""1.6.3 Particular Case ""; ""1.6.4 Category 2 : (F type) ""; ""1.6.5 Particular Case ""; ""1.6.6 Category M (Mixed Category) ""; ""1.6.7 Triple Nbic Function with Suffixes A and B ""; ""1.6.8 Particular Case ""; ""1.7 Definition and Development of Nbic Function ""
""1.7.1 Single Nbic Function with Variable (x, y) : N(x, y) """"1.7.2 Single Nbic Function with Variable of x Only : N(x, x) ""; ""1.7.3 Graphical Determination of Single Nbic Functions ""; ""1.7.4 Single Nbic Function with Complex Variable of (ix) Only : N (ix, ix) ""; ""1.7.5 Comparison with Corresponding Circular and Hyperbolic Functions ""; ""1.8 Derivation of Expressions of Other Basic Nbic Functions ""; ""1.8.1 To Find sinNx and cosNx, when only, tanNx is given ""; ""1.8.2 Differentiation Rule for Single Nbic Functions ""; ""1.8.3 Numerical Verification of Expressions ""
""1.8.4 Basic Nbic Functions and their Derivatives """"1.8.5 Integration Rule for Single Nbic Functions ""; ""1.8.6 Related Expressions Involving Differentiation and Integration ""; ""1.8.7 Interpretation and Representation in Terms of Circular Functions ""; ""1.9 Nbic Functions with Variable (2x, ± 2x) AND (2x, ± x) ""; ""1.9.1 Similarity of Forms ""; ""1.9.2 Single Nbic Function with Double Angle, N(2x, 2x) in Terms of, N(2x, x) ""; ""1.9.3 Some Examples Related to Nbic Functions with Variable (2x, ± 2x) and (2x, ± x) ""; ""Chapter 2 Complex Nbic Function and Associated Topics ""
""2.1 De Moivre's form Extended in Nbic Function ""
Record Nr. UNINA-9910785808303321
Bairagi Nisith K  
New Delhi, : New Age International, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced trigonometric relations through Nbic functions / / NIsith K. Bairagi
Advanced trigonometric relations through Nbic functions / / NIsith K. Bairagi
Autore Bairagi Nisith K
Edizione [1st ed.]
Pubbl/distr/stampa New Delhi, : New Age International, 2012
Descrizione fisica 1 online resource (281 p.)
Soggetto topico Trigonometry
Mathematics
ISBN 81-224-3491-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Cover ""; ""Preface ""; ""Acknowledgement ""; ""Notation ""; ""Contents ""; ""Chapter 1 Nbic Functions and Nbic Trigonometric Relations ""; ""1.1 Introduction ""; ""1.1.1 Circular Angle ""; ""1.1.2 Definition of Hyperbolic Angle and Tan-equivalent Hyperbolic (tehy) Angle ""; ""1.2 Definition and Interpretation of Nbic Angle ""; ""1.2.1 Nbic Angle and its Interpretation ""; ""1.2.2 Tan-Equivalent Nbic (teN) Angle ""; ""1.3 Symbolic Identification of Nbic Functions ""; ""1.3.1 Nbic Trigonometry ""; ""1.3.2 Interchangeability of Trigonometric and Hyperbolic Functions ""
""1.3.3 Surface, Gaussian Curvature and Angle Sum """"1.3.4 Nbic Functions and Nbic Trigonometric Relations ""; ""1.4 Complex Nbic Functions ""; ""1.4.1 Some Basic Complex Functions ""; ""1.4.2 Generation of Single Nbic Function, N (x, y) ""; ""1.4.3 Single Nbic Function With Suffixes A and B ""; ""1.4.4 Particular Case ""; ""1.4.5 Complex Single Nbic Function with Suffixes A and B, [NA / (x, x), NB / (x, x)] ""; ""1.5 Generation of Double Nbic Function,N2 (x,y) ""; ""1.5.1 As Generated from Complex Double Nbic Function, N2/(x, y) ""; ""1.5.2 Category 1 : (E type) ""
""1.5.3 Particular Case """"1.5.4 Category 2 : (F type) ""; ""1.5.5 Particular Case ""; ""1.5.6 Double Nbic Function with Suffixes A and B ""; ""1.6 Generation of Triple Nbic Function, N3(x, y) ""; ""1.6.1 As Generated from Complex Triple Nbic Function, N3 / (x, y) ""; ""1.6.2 Category 1 : (E type) ""; ""1.6.3 Particular Case ""; ""1.6.4 Category 2 : (F type) ""; ""1.6.5 Particular Case ""; ""1.6.6 Category M (Mixed Category) ""; ""1.6.7 Triple Nbic Function with Suffixes A and B ""; ""1.6.8 Particular Case ""; ""1.7 Definition and Development of Nbic Function ""
""1.7.1 Single Nbic Function with Variable (x, y) : N(x, y) """"1.7.2 Single Nbic Function with Variable of x Only : N(x, x) ""; ""1.7.3 Graphical Determination of Single Nbic Functions ""; ""1.7.4 Single Nbic Function with Complex Variable of (ix) Only : N (ix, ix) ""; ""1.7.5 Comparison with Corresponding Circular and Hyperbolic Functions ""; ""1.8 Derivation of Expressions of Other Basic Nbic Functions ""; ""1.8.1 To Find sinNx and cosNx, when only, tanNx is given ""; ""1.8.2 Differentiation Rule for Single Nbic Functions ""; ""1.8.3 Numerical Verification of Expressions ""
""1.8.4 Basic Nbic Functions and their Derivatives """"1.8.5 Integration Rule for Single Nbic Functions ""; ""1.8.6 Related Expressions Involving Differentiation and Integration ""; ""1.8.7 Interpretation and Representation in Terms of Circular Functions ""; ""1.9 Nbic Functions with Variable (2x, ± 2x) AND (2x, ± x) ""; ""1.9.1 Similarity of Forms ""; ""1.9.2 Single Nbic Function with Double Angle, N(2x, 2x) in Terms of, N(2x, x) ""; ""1.9.3 Some Examples Related to Nbic Functions with Variable (2x, ± 2x) and (2x, ± x) ""; ""Chapter 2 Complex Nbic Function and Associated Topics ""
""2.1 De Moivre's form Extended in Nbic Function ""
Record Nr. UNINA-9910825012103321
Bairagi Nisith K  
New Delhi, : New Age International, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Algebra & trigonometry / / Michael Sullivan
Algebra & trigonometry / / Michael Sullivan
Autore Sullivan Michael
Edizione [Ninth edition, Pearson new international editon.]
Pubbl/distr/stampa Harlow, England : , : Pearson, , 2014
Descrizione fisica 1 online resource (1,118 pages) : illustrations, tables
Disciplina 512.9
Soggetto topico Algebra
Algebra - Study and teaching (Higher)
Trigonometry
Trigonometry - Study and teaching (Higher)
ISBN 1-292-03739-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Table of Contents -- 1. Equations and Inequalities -- 2. Graphs -- 3. Functions and Their Graphs -- 4. Linear and Quadratic Functions -- 5. Polynomial and Rational Functions -- 6. Exponential and Logarithmic Functions -- 7. Trigonometric Functions -- 8. Analytic Trigonometry -- 9. Applications of Trigonometric Functions -- 10. Polar Coordinates -- Vectors -- 11. Analytic Geometry -- 12. Systems of Equations and Inequalities -- 13. Sequences -- Induction -- the Binomial Theorem -- Appendix: Graphing Utilities -- Useful Mathematical Information -- Review -- Prepare for Class "Read the Book -- Practice "Work the Problems -- Review "Study for Quizzes and Tests -- Index.
Altri titoli varianti Algebra and trigonometry
Record Nr. UNINA-9910153124503321
Sullivan Michael  
Harlow, England : , : Pearson, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Algebra and trigonometry / / Robert F. Blitzer
Algebra and trigonometry / / Robert F. Blitzer
Autore Blitzer Robert
Edizione [Fifth edition, Pearson new international edition.]
Pubbl/distr/stampa Harlow, England : , : Pearson, , 2014
Descrizione fisica 1 online resource (1,148 pages) : illustrations (some color), photographs, tables, graphs
Disciplina 512.9
Soggetto topico Algebra
Trigonometry
ISBN 1-292-03574-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Table of Contents -- 1. Prerequisites: Fundamental Concepts of Algebra -- 2. Equations and Inequalities -- 3. Functions and Graphs -- 4. Polynomial and Rational Functions -- 5. Exponential and Logarithmic Functions -- 6. Trigonometric Functions -- 7. Analytic Trigonometry -- 8. Additional Topics in Trigonometry -- 9. Systems of Equations and Inequalities -- 10. Matrices and Determinants -- 11. Conic Sections and Analytic Geometry -- Index.
Record Nr. UNINA-9910153126503321
Blitzer Robert  
Harlow, England : , : Pearson, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Arithmetical trigonometry [[electronic resource] ] : being the solution of all the usual cases in plain trigonometry by common arithmetick, without any tables whatsoever. To which is added an easy, exact and speedy method for making the tables of natural sines, tangents and secants: as also the making of the tables of logarithms, and of the artificial sines, tangents and secants. With some useful tables in gunnery. by Mark Forster
Arithmetical trigonometry [[electronic resource] ] : being the solution of all the usual cases in plain trigonometry by common arithmetick, without any tables whatsoever. To which is added an easy, exact and speedy method for making the tables of natural sines, tangents and secants: as also the making of the tables of logarithms, and of the artificial sines, tangents and secants. With some useful tables in gunnery. by Mark Forster
Autore Forster Mark
Pubbl/distr/stampa London, : printed for Richard Mount, at the Postern on Tower-Hill, 1700.where you may have all sorts of mathematical and sea-books, [1700]
Descrizione fisica [8], 84, [2], 85-212, [2] p., [1] leaf of plates : tables
Soggetto topico Trigonometry
Arithmetic
Gunnery
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996390128903316
Forster Mark  
London, : printed for Richard Mount, at the Postern on Tower-Hill, 1700.where you may have all sorts of mathematical and sea-books, [1700]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Arithmetical trigonometry [[electronic resource] ] : being the solution of all the usual cases in plain trigonometry by common arithmetick without any tables whatsoever : to which is added an easie, exact and speedy method for making the tables of natural sines, tangents and secants ; as also the making of the tables of logarithms and of the artificial sines, tangents and secants : with some useful tables in gunnery / / by Mark Foster
Arithmetical trigonometry [[electronic resource] ] : being the solution of all the usual cases in plain trigonometry by common arithmetick without any tables whatsoever : to which is added an easie, exact and speedy method for making the tables of natural sines, tangents and secants ; as also the making of the tables of logarithms and of the artificial sines, tangents and secants : with some useful tables in gunnery / / by Mark Foster
Autore Forster Mark
Pubbl/distr/stampa London, : Printed by J. Richardson for William Court, 1650
Descrizione fisica [7], 212, [1] p., [3] leaves of plates (2 folded) : ill
Soggetto topico Trigonometry
Arithmetic
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996389171703316
Forster Mark  
London, : Printed by J. Richardson for William Court, 1650
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
A breefe treatise of sphæricall triangles [[electronic resource] ] : wherein is handled the sixteene cases of a right angled triangle, being all extracted out of one diagram, and reduced into theorems, with the totall sine in the first place, so that by addition onely, they may be effected : as also, the twelue cases of an oblique sphæricall triangle, being likewise reduced into theorems, whereby with one or two additions at the most, any of them may be resolued by helpe of this canon following made with secants, and that only by such numbers as are therein to be founde, without first making any substraction, or vsing any mentall operation ... / / by Iohn Speidell ... ; whereunto is annexed a Geometricall extraction formerly published by this author, containing diuers delightfull and necessarie geometricall problemes for all surueighers and others, affected to the mathematickes
A breefe treatise of sphæricall triangles [[electronic resource] ] : wherein is handled the sixteene cases of a right angled triangle, being all extracted out of one diagram, and reduced into theorems, with the totall sine in the first place, so that by addition onely, they may be effected : as also, the twelue cases of an oblique sphæricall triangle, being likewise reduced into theorems, whereby with one or two additions at the most, any of them may be resolued by helpe of this canon following made with secants, and that only by such numbers as are therein to be founde, without first making any substraction, or vsing any mentall operation ... / / by Iohn Speidell ... ; whereunto is annexed a Geometricall extraction formerly published by this author, containing diuers delightfull and necessarie geometricall problemes for all surueighers and others, affected to the mathematickes
Autore Speidell John <fl. 1600-1634.>
Pubbl/distr/stampa London, : Printed by Edward Allde dwelling neere Christ-church, 1627
Descrizione fisica [8], 43, [6], 126 p. : ill
Soggetto topico Geometry
Trigonometry
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996388125503316
Speidell John <fl. 1600-1634.>  
London, : Printed by Edward Allde dwelling neere Christ-church, 1627
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
A brief (but full) account of the doctrine of trigonometry, both plain and spherical [[electronic resource] /] / by John Caswell .
A brief (but full) account of the doctrine of trigonometry, both plain and spherical [[electronic resource] /] / by John Caswell .
Autore Caswell John <1654 or 5-1712.>
Pubbl/distr/stampa London, : Printed by John Playford for Richard Davis ..., 1685
Descrizione fisica [2], 17 p. : ill
Soggetto topico Trigonometry
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996396417703316
Caswell John <1654 or 5-1712.>  
London, : Printed by John Playford for Richard Davis ..., 1685
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
A brief (but full) account of the doctrine of trigonometry, both plain and spherical [[electronic resource] /] / By John Caswell .
A brief (but full) account of the doctrine of trigonometry, both plain and spherical [[electronic resource] /] / By John Caswell .
Autore Caswell John <1654 or 5-1712.>
Pubbl/distr/stampa London : , : Printed by John Playford, for Richard Davis, bookseller, in the University of Oxford, M. DC. LXXXV. [1685]
Descrizione fisica [2], 17 p. : ill
Soggetto topico Mathematics
Trigonometry
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996386717703316
Caswell John <1654 or 5-1712.>  
London : , : Printed by John Playford, for Richard Davis, bookseller, in the University of Oxford, M. DC. LXXXV. [1685]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui