Advanced trigonometric relations through Nbic functions [[electronic resource] /] / NIsith K. Bairagi |
Autore | Bairagi Nisith K |
Pubbl/distr/stampa | New Delhi, : New Age International, 2012 |
Descrizione fisica | 1 online resource (281 p.) |
Soggetto topico |
Trigonometry
Mathematics |
Soggetto genere / forma | Electronic books. |
ISBN | 81-224-3491-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Cover ""; ""Preface ""; ""Acknowledgement ""; ""Notation ""; ""Contents ""; ""Chapter 1 Nbic Functions and Nbic Trigonometric Relations ""; ""1.1 Introduction ""; ""1.1.1 Circular Angle ""; ""1.1.2 Definition of Hyperbolic Angle and Tan-equivalent Hyperbolic (tehy) Angle ""; ""1.2 Definition and Interpretation of Nbic Angle ""; ""1.2.1 Nbic Angle and its Interpretation ""; ""1.2.2 Tan-Equivalent Nbic (teN) Angle ""; ""1.3 Symbolic Identification of Nbic Functions ""; ""1.3.1 Nbic Trigonometry ""; ""1.3.2 Interchangeability of Trigonometric and Hyperbolic Functions ""
""1.3.3 Surface, Gaussian Curvature and Angle Sum """"1.3.4 Nbic Functions and Nbic Trigonometric Relations ""; ""1.4 Complex Nbic Functions ""; ""1.4.1 Some Basic Complex Functions ""; ""1.4.2 Generation of Single Nbic Function, N (x, y) ""; ""1.4.3 Single Nbic Function With Suffixes A and B ""; ""1.4.4 Particular Case ""; ""1.4.5 Complex Single Nbic Function with Suffixes A and B, [NA / (x, x), NB / (x, x)] ""; ""1.5 Generation of Double Nbic Function,N2 (x,y) ""; ""1.5.1 As Generated from Complex Double Nbic Function, N2/(x, y) ""; ""1.5.2 Category 1 : (E type) "" ""1.5.3 Particular Case """"1.5.4 Category 2 : (F type) ""; ""1.5.5 Particular Case ""; ""1.5.6 Double Nbic Function with Suffixes A and B ""; ""1.6 Generation of Triple Nbic Function, N3(x, y) ""; ""1.6.1 As Generated from Complex Triple Nbic Function, N3 / (x, y) ""; ""1.6.2 Category 1 : (E type) ""; ""1.6.3 Particular Case ""; ""1.6.4 Category 2 : (F type) ""; ""1.6.5 Particular Case ""; ""1.6.6 Category M (Mixed Category) ""; ""1.6.7 Triple Nbic Function with Suffixes A and B ""; ""1.6.8 Particular Case ""; ""1.7 Definition and Development of Nbic Function "" ""1.7.1 Single Nbic Function with Variable (x, y) : N(x, y) """"1.7.2 Single Nbic Function with Variable of x Only : N(x, x) ""; ""1.7.3 Graphical Determination of Single Nbic Functions ""; ""1.7.4 Single Nbic Function with Complex Variable of (ix) Only : N (ix, ix) ""; ""1.7.5 Comparison with Corresponding Circular and Hyperbolic Functions ""; ""1.8 Derivation of Expressions of Other Basic Nbic Functions ""; ""1.8.1 To Find sinNx and cosNx, when only, tanNx is given ""; ""1.8.2 Differentiation Rule for Single Nbic Functions ""; ""1.8.3 Numerical Verification of Expressions "" ""1.8.4 Basic Nbic Functions and their Derivatives """"1.8.5 Integration Rule for Single Nbic Functions ""; ""1.8.6 Related Expressions Involving Differentiation and Integration ""; ""1.8.7 Interpretation and Representation in Terms of Circular Functions ""; ""1.9 Nbic Functions with Variable (2x, ± 2x) AND (2x, ± x) ""; ""1.9.1 Similarity of Forms ""; ""1.9.2 Single Nbic Function with Double Angle, N(2x, 2x) in Terms of, N(2x, x) ""; ""1.9.3 Some Examples Related to Nbic Functions with Variable (2x, ± 2x) and (2x, ± x) ""; ""Chapter 2 Complex Nbic Function and Associated Topics "" ""2.1 De Moivre's form Extended in Nbic Function "" |
Record Nr. | UNINA-9910461902703321 |
Bairagi Nisith K | ||
New Delhi, : New Age International, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced trigonometric relations through Nbic functions [[electronic resource] /] / NIsith K. Bairagi |
Autore | Bairagi Nisith K |
Pubbl/distr/stampa | New Delhi, : New Age International, 2012 |
Descrizione fisica | 1 online resource (281 p.) |
Soggetto topico |
Trigonometry
Mathematics |
ISBN | 81-224-3491-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Cover ""; ""Preface ""; ""Acknowledgement ""; ""Notation ""; ""Contents ""; ""Chapter 1 Nbic Functions and Nbic Trigonometric Relations ""; ""1.1 Introduction ""; ""1.1.1 Circular Angle ""; ""1.1.2 Definition of Hyperbolic Angle and Tan-equivalent Hyperbolic (tehy) Angle ""; ""1.2 Definition and Interpretation of Nbic Angle ""; ""1.2.1 Nbic Angle and its Interpretation ""; ""1.2.2 Tan-Equivalent Nbic (teN) Angle ""; ""1.3 Symbolic Identification of Nbic Functions ""; ""1.3.1 Nbic Trigonometry ""; ""1.3.2 Interchangeability of Trigonometric and Hyperbolic Functions ""
""1.3.3 Surface, Gaussian Curvature and Angle Sum """"1.3.4 Nbic Functions and Nbic Trigonometric Relations ""; ""1.4 Complex Nbic Functions ""; ""1.4.1 Some Basic Complex Functions ""; ""1.4.2 Generation of Single Nbic Function, N (x, y) ""; ""1.4.3 Single Nbic Function With Suffixes A and B ""; ""1.4.4 Particular Case ""; ""1.4.5 Complex Single Nbic Function with Suffixes A and B, [NA / (x, x), NB / (x, x)] ""; ""1.5 Generation of Double Nbic Function,N2 (x,y) ""; ""1.5.1 As Generated from Complex Double Nbic Function, N2/(x, y) ""; ""1.5.2 Category 1 : (E type) "" ""1.5.3 Particular Case """"1.5.4 Category 2 : (F type) ""; ""1.5.5 Particular Case ""; ""1.5.6 Double Nbic Function with Suffixes A and B ""; ""1.6 Generation of Triple Nbic Function, N3(x, y) ""; ""1.6.1 As Generated from Complex Triple Nbic Function, N3 / (x, y) ""; ""1.6.2 Category 1 : (E type) ""; ""1.6.3 Particular Case ""; ""1.6.4 Category 2 : (F type) ""; ""1.6.5 Particular Case ""; ""1.6.6 Category M (Mixed Category) ""; ""1.6.7 Triple Nbic Function with Suffixes A and B ""; ""1.6.8 Particular Case ""; ""1.7 Definition and Development of Nbic Function "" ""1.7.1 Single Nbic Function with Variable (x, y) : N(x, y) """"1.7.2 Single Nbic Function with Variable of x Only : N(x, x) ""; ""1.7.3 Graphical Determination of Single Nbic Functions ""; ""1.7.4 Single Nbic Function with Complex Variable of (ix) Only : N (ix, ix) ""; ""1.7.5 Comparison with Corresponding Circular and Hyperbolic Functions ""; ""1.8 Derivation of Expressions of Other Basic Nbic Functions ""; ""1.8.1 To Find sinNx and cosNx, when only, tanNx is given ""; ""1.8.2 Differentiation Rule for Single Nbic Functions ""; ""1.8.3 Numerical Verification of Expressions "" ""1.8.4 Basic Nbic Functions and their Derivatives """"1.8.5 Integration Rule for Single Nbic Functions ""; ""1.8.6 Related Expressions Involving Differentiation and Integration ""; ""1.8.7 Interpretation and Representation in Terms of Circular Functions ""; ""1.9 Nbic Functions with Variable (2x, ± 2x) AND (2x, ± x) ""; ""1.9.1 Similarity of Forms ""; ""1.9.2 Single Nbic Function with Double Angle, N(2x, 2x) in Terms of, N(2x, x) ""; ""1.9.3 Some Examples Related to Nbic Functions with Variable (2x, ± 2x) and (2x, ± x) ""; ""Chapter 2 Complex Nbic Function and Associated Topics "" ""2.1 De Moivre's form Extended in Nbic Function "" |
Record Nr. | UNINA-9910785808303321 |
Bairagi Nisith K | ||
New Delhi, : New Age International, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced trigonometric relations through Nbic functions / / NIsith K. Bairagi |
Autore | Bairagi Nisith K |
Edizione | [1st ed.] |
Pubbl/distr/stampa | New Delhi, : New Age International, 2012 |
Descrizione fisica | 1 online resource (281 p.) |
Soggetto topico |
Trigonometry
Mathematics |
ISBN | 81-224-3491-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Cover ""; ""Preface ""; ""Acknowledgement ""; ""Notation ""; ""Contents ""; ""Chapter 1 Nbic Functions and Nbic Trigonometric Relations ""; ""1.1 Introduction ""; ""1.1.1 Circular Angle ""; ""1.1.2 Definition of Hyperbolic Angle and Tan-equivalent Hyperbolic (tehy) Angle ""; ""1.2 Definition and Interpretation of Nbic Angle ""; ""1.2.1 Nbic Angle and its Interpretation ""; ""1.2.2 Tan-Equivalent Nbic (teN) Angle ""; ""1.3 Symbolic Identification of Nbic Functions ""; ""1.3.1 Nbic Trigonometry ""; ""1.3.2 Interchangeability of Trigonometric and Hyperbolic Functions ""
""1.3.3 Surface, Gaussian Curvature and Angle Sum """"1.3.4 Nbic Functions and Nbic Trigonometric Relations ""; ""1.4 Complex Nbic Functions ""; ""1.4.1 Some Basic Complex Functions ""; ""1.4.2 Generation of Single Nbic Function, N (x, y) ""; ""1.4.3 Single Nbic Function With Suffixes A and B ""; ""1.4.4 Particular Case ""; ""1.4.5 Complex Single Nbic Function with Suffixes A and B, [NA / (x, x), NB / (x, x)] ""; ""1.5 Generation of Double Nbic Function,N2 (x,y) ""; ""1.5.1 As Generated from Complex Double Nbic Function, N2/(x, y) ""; ""1.5.2 Category 1 : (E type) "" ""1.5.3 Particular Case """"1.5.4 Category 2 : (F type) ""; ""1.5.5 Particular Case ""; ""1.5.6 Double Nbic Function with Suffixes A and B ""; ""1.6 Generation of Triple Nbic Function, N3(x, y) ""; ""1.6.1 As Generated from Complex Triple Nbic Function, N3 / (x, y) ""; ""1.6.2 Category 1 : (E type) ""; ""1.6.3 Particular Case ""; ""1.6.4 Category 2 : (F type) ""; ""1.6.5 Particular Case ""; ""1.6.6 Category M (Mixed Category) ""; ""1.6.7 Triple Nbic Function with Suffixes A and B ""; ""1.6.8 Particular Case ""; ""1.7 Definition and Development of Nbic Function "" ""1.7.1 Single Nbic Function with Variable (x, y) : N(x, y) """"1.7.2 Single Nbic Function with Variable of x Only : N(x, x) ""; ""1.7.3 Graphical Determination of Single Nbic Functions ""; ""1.7.4 Single Nbic Function with Complex Variable of (ix) Only : N (ix, ix) ""; ""1.7.5 Comparison with Corresponding Circular and Hyperbolic Functions ""; ""1.8 Derivation of Expressions of Other Basic Nbic Functions ""; ""1.8.1 To Find sinNx and cosNx, when only, tanNx is given ""; ""1.8.2 Differentiation Rule for Single Nbic Functions ""; ""1.8.3 Numerical Verification of Expressions "" ""1.8.4 Basic Nbic Functions and their Derivatives """"1.8.5 Integration Rule for Single Nbic Functions ""; ""1.8.6 Related Expressions Involving Differentiation and Integration ""; ""1.8.7 Interpretation and Representation in Terms of Circular Functions ""; ""1.9 Nbic Functions with Variable (2x, ± 2x) AND (2x, ± x) ""; ""1.9.1 Similarity of Forms ""; ""1.9.2 Single Nbic Function with Double Angle, N(2x, 2x) in Terms of, N(2x, x) ""; ""1.9.3 Some Examples Related to Nbic Functions with Variable (2x, ± 2x) and (2x, ± x) ""; ""Chapter 2 Complex Nbic Function and Associated Topics "" ""2.1 De Moivre's form Extended in Nbic Function "" |
Record Nr. | UNINA-9910825012103321 |
Bairagi Nisith K | ||
New Delhi, : New Age International, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Algebra & trigonometry / / Michael Sullivan |
Autore | Sullivan Michael |
Edizione | [Ninth edition, Pearson new international editon.] |
Pubbl/distr/stampa | Harlow, England : , : Pearson, , 2014 |
Descrizione fisica | 1 online resource (1,118 pages) : illustrations, tables |
Disciplina | 512.9 |
Soggetto topico |
Algebra
Algebra - Study and teaching (Higher) Trigonometry Trigonometry - Study and teaching (Higher) |
ISBN | 1-292-03739-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Cover -- Table of Contents -- 1. Equations and Inequalities -- 2. Graphs -- 3. Functions and Their Graphs -- 4. Linear and Quadratic Functions -- 5. Polynomial and Rational Functions -- 6. Exponential and Logarithmic Functions -- 7. Trigonometric Functions -- 8. Analytic Trigonometry -- 9. Applications of Trigonometric Functions -- 10. Polar Coordinates -- Vectors -- 11. Analytic Geometry -- 12. Systems of Equations and Inequalities -- 13. Sequences -- Induction -- the Binomial Theorem -- Appendix: Graphing Utilities -- Useful Mathematical Information -- Review -- Prepare for Class "Read the Book -- Practice "Work the Problems -- Review "Study for Quizzes and Tests -- Index. |
Altri titoli varianti | Algebra and trigonometry |
Record Nr. | UNINA-9910153124503321 |
Sullivan Michael | ||
Harlow, England : , : Pearson, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Algebra and trigonometry / / Robert F. Blitzer |
Autore | Blitzer Robert |
Edizione | [Fifth edition, Pearson new international edition.] |
Pubbl/distr/stampa | Harlow, England : , : Pearson, , 2014 |
Descrizione fisica | 1 online resource (1,148 pages) : illustrations (some color), photographs, tables, graphs |
Disciplina | 512.9 |
Soggetto topico |
Algebra
Trigonometry |
ISBN | 1-292-03574-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Cover -- Table of Contents -- 1. Prerequisites: Fundamental Concepts of Algebra -- 2. Equations and Inequalities -- 3. Functions and Graphs -- 4. Polynomial and Rational Functions -- 5. Exponential and Logarithmic Functions -- 6. Trigonometric Functions -- 7. Analytic Trigonometry -- 8. Additional Topics in Trigonometry -- 9. Systems of Equations and Inequalities -- 10. Matrices and Determinants -- 11. Conic Sections and Analytic Geometry -- Index. |
Record Nr. | UNINA-9910153126503321 |
Blitzer Robert | ||
Harlow, England : , : Pearson, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Arithmetical trigonometry [[electronic resource] ] : being the solution of all the usual cases in plain trigonometry by common arithmetick, without any tables whatsoever. To which is added an easy, exact and speedy method for making the tables of natural sines, tangents and secants: as also the making of the tables of logarithms, and of the artificial sines, tangents and secants. With some useful tables in gunnery. by Mark Forster |
Autore | Forster Mark |
Pubbl/distr/stampa | London, : printed for Richard Mount, at the Postern on Tower-Hill, 1700.where you may have all sorts of mathematical and sea-books, [1700] |
Descrizione fisica | [8], 84, [2], 85-212, [2] p., [1] leaf of plates : tables |
Soggetto topico |
Trigonometry
Arithmetic Gunnery |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996390128903316 |
Forster Mark | ||
London, : printed for Richard Mount, at the Postern on Tower-Hill, 1700.where you may have all sorts of mathematical and sea-books, [1700] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Arithmetical trigonometry [[electronic resource] ] : being the solution of all the usual cases in plain trigonometry by common arithmetick without any tables whatsoever : to which is added an easie, exact and speedy method for making the tables of natural sines, tangents and secants ; as also the making of the tables of logarithms and of the artificial sines, tangents and secants : with some useful tables in gunnery / / by Mark Foster |
Autore | Forster Mark |
Pubbl/distr/stampa | London, : Printed by J. Richardson for William Court, 1650 |
Descrizione fisica | [7], 212, [1] p., [3] leaves of plates (2 folded) : ill |
Soggetto topico |
Trigonometry
Arithmetic |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996389171703316 |
Forster Mark | ||
London, : Printed by J. Richardson for William Court, 1650 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
A breefe treatise of sphæricall triangles [[electronic resource] ] : wherein is handled the sixteene cases of a right angled triangle, being all extracted out of one diagram, and reduced into theorems, with the totall sine in the first place, so that by addition onely, they may be effected : as also, the twelue cases of an oblique sphæricall triangle, being likewise reduced into theorems, whereby with one or two additions at the most, any of them may be resolued by helpe of this canon following made with secants, and that only by such numbers as are therein to be founde, without first making any substraction, or vsing any mentall operation ... / / by Iohn Speidell ... ; whereunto is annexed a Geometricall extraction formerly published by this author, containing diuers delightfull and necessarie geometricall problemes for all surueighers and others, affected to the mathematickes |
Autore | Speidell John <fl. 1600-1634.> |
Pubbl/distr/stampa | London, : Printed by Edward Allde dwelling neere Christ-church, 1627 |
Descrizione fisica | [8], 43, [6], 126 p. : ill |
Soggetto topico |
Geometry
Trigonometry |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996388125503316 |
Speidell John <fl. 1600-1634.> | ||
London, : Printed by Edward Allde dwelling neere Christ-church, 1627 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
A brief (but full) account of the doctrine of trigonometry, both plain and spherical [[electronic resource] /] / by John Caswell . |
Autore | Caswell John <1654 or 5-1712.> |
Pubbl/distr/stampa | London, : Printed by John Playford for Richard Davis ..., 1685 |
Descrizione fisica | [2], 17 p. : ill |
Soggetto topico | Trigonometry |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996396417703316 |
Caswell John <1654 or 5-1712.> | ||
London, : Printed by John Playford for Richard Davis ..., 1685 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
A brief (but full) account of the doctrine of trigonometry, both plain and spherical [[electronic resource] /] / By John Caswell . |
Autore | Caswell John <1654 or 5-1712.> |
Pubbl/distr/stampa | London : , : Printed by John Playford, for Richard Davis, bookseller, in the University of Oxford, M. DC. LXXXV. [1685] |
Descrizione fisica | [2], 17 p. : ill |
Soggetto topico |
Mathematics
Trigonometry |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996386717703316 |
Caswell John <1654 or 5-1712.> | ||
London : , : Printed by John Playford, for Richard Davis, bookseller, in the University of Oxford, M. DC. LXXXV. [1685] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|