top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Frontiers of 4d- and 5d- transition metal oxides / / Gang Cao, Lance DeLong, University of Kentucky, USA
Frontiers of 4d- and 5d- transition metal oxides / / Gang Cao, Lance DeLong, University of Kentucky, USA
Autore Cao Gang
Pubbl/distr/stampa [River Edge], N.J., : World Scientific, c2013
Descrizione fisica 1 online resource (viii, 319 pages) : illustrations (some color)
Disciplina 530.41
Collana Gale eBooks
Soggetto topico Transition metal oxides
ISBN 981-4374-86-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; CONTENTS; Chapter 1 Introduction Gang Cao and Lance E. DeLong; Chapter 2 Spectroscopic Studies of Strong Spin-Orbit Coupling in 4d and 5d Transition Metal Oxides Soon Jae Moon and Tae Won Noh; 2.1. Introduction; 2.2. Spin-orbit Coupling-induced Fermi Surface Modification in 4d Sr2RuO4 and Sr2RhO4; 2.3. Spin-orbit Coupling-induced Jeff = 1/2 Mott State of 5d Sr2IrO4; 2.3.1. Theoretical Description of the Jeff = 1/2 Mott State of Sr2IrO4; 2.3.1.1. Schematic Model for the Jeff = 1/2 Mott State in the Atomic Limit; 2.3.1.2. Density-functional-theory Calculations
2.3.2. Spectroscopic Studies of the Jeff = 1/2 Mott State in Sr2IrO4 2.3.2.1. Optical Spectroscopy; 2.3.2.2. Angle-Resolved Photoemission Spectroscopy; 2.3.2.3. X-ray Absorption Spectroscopy; 2.3.2.4. Resonant X-ray Scattering; 2.3.3. Temperature-dependence of the Electronic Structure of the Jeff = 1/2 Mott State; 2.4. Correlated Metallic State of 5d Iridates; 2.4.1. Dimensionality-controlled Insulator-Metal Transition in Ruddlesden-Popper Series Srn+1IrnO3n+1 (n = 1, 2, and ); 2.4.2. Electronic Structure Evolution in the Bandwidth-controlled Ca1-xSrxIrO3 System
2.5. Roles of Spin-orbit Coupling in Double Perovskite Rhenates and Other Iridates 2.5.1. Double perovskite A2FeReO6 (A = Ba, Ca); 2.5.2. Large Orbital Magnetism and Spin-orbit Effects in BaIrO3; 2.5.3. Pyrochlore Iridates R2Ir2O7 (R: rare earth ions); 2.6. Future Studies; Acknowledgments; References; Chapter 3 X-Ray Scattering Studies of 4d- and 5d-Electron Transition Metal Oxides Ioannis Zegkinoglou and Bernhard Keimer; 3.1. Introduction; 3.2. Non-Resonant X-Ray Scattering; 3.3. Resonant X-Ray Diffraction; 3.3.1. Basic Principles and Historical Background
3.3.2. Resonant Electric Dipole Scattering Length 3.4. Orbital Ordering in Ca2RuO4; 3.4.1. Introduction; 3.4.2. Main Properties; 3.4.3. Orbital Order; 3.4.4. X-Ray Investigations; 3.5. Spin Reorientation in Ca3Ru2O7; 3.5.1. Introduction; 3.5.2. Main Properties; 3.5.3. X-Ray Investigations; 3.6. Magnetic Structure Determination in RuSr2GdCu2O8; 3.6.1. Introduction; 3.6.2. Main Properties; 3.6.3. X-Ray Investigations; 3.7. Spin Orbital Mott State in Sr2IrO4; 3.7.1. Introduction; 3.7.2. Main Properties; 3.7.3. X-Ray Investigations; References
Chapter 4 Exploring the Magnetostructural Phases of the Layered Ruthenates with Raman Scattering S. L. Cooper 4.1. Introduction-Overview of the Layered Ruthenate Materials; 4.2. Raman Scattering as a Probe of Correlated Materials; 4.2.1. General Raman Scattering Details; 4.2.2. Raman Scattering Cross Section; 4.2.2.1. Phonon Raman Scattering; 4.2.2.2. Magnon Raman Scattering; 4.3. Experimental Details; 4.3.1. Raman Scattering System; 4.3.2. High Magnetic Field Measurements; 4.3.3. High Pressure Measurements; 4.4. Raman Scattering Studies of Single-Layer (Ca,Sr)2RuO4; 4.4.1. Overview
4.4.1.1. Temperature-Dependent Effects in Ca2RuO4
Record Nr. UNINA-9910787694603321
Cao Gang  
[River Edge], N.J., : World Scientific, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Frontiers of 4d- and 5d- transition metal oxides / / Gang Cao, Lance DeLong, University of Kentucky, USA
Frontiers of 4d- and 5d- transition metal oxides / / Gang Cao, Lance DeLong, University of Kentucky, USA
Autore Cao Gang
Pubbl/distr/stampa [River Edge], N.J., : World Scientific, c2013
Descrizione fisica 1 online resource (viii, 319 pages) : illustrations (some color)
Disciplina 530.41
Collana Gale eBooks
Soggetto topico Transition metal oxides
ISBN 981-4374-86-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; CONTENTS; Chapter 1 Introduction Gang Cao and Lance E. DeLong; Chapter 2 Spectroscopic Studies of Strong Spin-Orbit Coupling in 4d and 5d Transition Metal Oxides Soon Jae Moon and Tae Won Noh; 2.1. Introduction; 2.2. Spin-orbit Coupling-induced Fermi Surface Modification in 4d Sr2RuO4 and Sr2RhO4; 2.3. Spin-orbit Coupling-induced Jeff = 1/2 Mott State of 5d Sr2IrO4; 2.3.1. Theoretical Description of the Jeff = 1/2 Mott State of Sr2IrO4; 2.3.1.1. Schematic Model for the Jeff = 1/2 Mott State in the Atomic Limit; 2.3.1.2. Density-functional-theory Calculations
2.3.2. Spectroscopic Studies of the Jeff = 1/2 Mott State in Sr2IrO4 2.3.2.1. Optical Spectroscopy; 2.3.2.2. Angle-Resolved Photoemission Spectroscopy; 2.3.2.3. X-ray Absorption Spectroscopy; 2.3.2.4. Resonant X-ray Scattering; 2.3.3. Temperature-dependence of the Electronic Structure of the Jeff = 1/2 Mott State; 2.4. Correlated Metallic State of 5d Iridates; 2.4.1. Dimensionality-controlled Insulator-Metal Transition in Ruddlesden-Popper Series Srn+1IrnO3n+1 (n = 1, 2, and ); 2.4.2. Electronic Structure Evolution in the Bandwidth-controlled Ca1-xSrxIrO3 System
2.5. Roles of Spin-orbit Coupling in Double Perovskite Rhenates and Other Iridates 2.5.1. Double perovskite A2FeReO6 (A = Ba, Ca); 2.5.2. Large Orbital Magnetism and Spin-orbit Effects in BaIrO3; 2.5.3. Pyrochlore Iridates R2Ir2O7 (R: rare earth ions); 2.6. Future Studies; Acknowledgments; References; Chapter 3 X-Ray Scattering Studies of 4d- and 5d-Electron Transition Metal Oxides Ioannis Zegkinoglou and Bernhard Keimer; 3.1. Introduction; 3.2. Non-Resonant X-Ray Scattering; 3.3. Resonant X-Ray Diffraction; 3.3.1. Basic Principles and Historical Background
3.3.2. Resonant Electric Dipole Scattering Length 3.4. Orbital Ordering in Ca2RuO4; 3.4.1. Introduction; 3.4.2. Main Properties; 3.4.3. Orbital Order; 3.4.4. X-Ray Investigations; 3.5. Spin Reorientation in Ca3Ru2O7; 3.5.1. Introduction; 3.5.2. Main Properties; 3.5.3. X-Ray Investigations; 3.6. Magnetic Structure Determination in RuSr2GdCu2O8; 3.6.1. Introduction; 3.6.2. Main Properties; 3.6.3. X-Ray Investigations; 3.7. Spin Orbital Mott State in Sr2IrO4; 3.7.1. Introduction; 3.7.2. Main Properties; 3.7.3. X-Ray Investigations; References
Chapter 4 Exploring the Magnetostructural Phases of the Layered Ruthenates with Raman Scattering S. L. Cooper 4.1. Introduction-Overview of the Layered Ruthenate Materials; 4.2. Raman Scattering as a Probe of Correlated Materials; 4.2.1. General Raman Scattering Details; 4.2.2. Raman Scattering Cross Section; 4.2.2.1. Phonon Raman Scattering; 4.2.2.2. Magnon Raman Scattering; 4.3. Experimental Details; 4.3.1. Raman Scattering System; 4.3.2. High Magnetic Field Measurements; 4.3.3. High Pressure Measurements; 4.4. Raman Scattering Studies of Single-Layer (Ca,Sr)2RuO4; 4.4.1. Overview
4.4.1.1. Temperature-Dependent Effects in Ca2RuO4
Record Nr. UNINA-9910820036103321
Cao Gang  
[River Edge], N.J., : World Scientific, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Frontiers of 4D- and 5D-transition metal oxides [[electronic resource] /] / Gang Cao, Lance DeLong
Frontiers of 4D- and 5D-transition metal oxides [[electronic resource] /] / Gang Cao, Lance DeLong
Autore Cao Gang
Pubbl/distr/stampa [River Edge], N.J., : World Scientific, c2013
Descrizione fisica 1 online resource (328 p.)
Disciplina 530.41
Altri autori (Persone) DeLongLance
Soggetto topico Transition metal oxides
Electric insulators and insulation - Metallic oxides
Soggetto genere / forma Electronic books.
ISBN 981-4374-86-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; CONTENTS; Chapter 1 Introduction Gang Cao and Lance E. DeLong; Chapter 2 Spectroscopic Studies of Strong Spin-Orbit Coupling in 4d and 5d Transition Metal Oxides Soon Jae Moon and Tae Won Noh; 2.1. Introduction; 2.2. Spin-orbit Coupling-induced Fermi Surface Modification in 4d Sr2RuO4 and Sr2RhO4; 2.3. Spin-orbit Coupling-induced Jeff = 1/2 Mott State of 5d Sr2IrO4; 2.3.1. Theoretical Description of the Jeff = 1/2 Mott State of Sr2IrO4; 2.3.1.1. Schematic Model for the Jeff = 1/2 Mott State in the Atomic Limit; 2.3.1.2. Density-functional-theory Calculations
2.3.2. Spectroscopic Studies of the Jeff = 1/2 Mott State in Sr2IrO4 2.3.2.1. Optical Spectroscopy; 2.3.2.2. Angle-Resolved Photoemission Spectroscopy; 2.3.2.3. X-ray Absorption Spectroscopy; 2.3.2.4. Resonant X-ray Scattering; 2.3.3. Temperature-dependence of the Electronic Structure of the Jeff = 1/2 Mott State; 2.4. Correlated Metallic State of 5d Iridates; 2.4.1. Dimensionality-controlled Insulator-Metal Transition in Ruddlesden-Popper Series Srn+1IrnO3n+1 (n = 1, 2, and ); 2.4.2. Electronic Structure Evolution in the Bandwidth-controlled Ca1-xSrxIrO3 System
2.5. Roles of Spin-orbit Coupling in Double Perovskite Rhenates and Other Iridates 2.5.1. Double perovskite A2FeReO6 (A = Ba, Ca); 2.5.2. Large Orbital Magnetism and Spin-orbit Effects in BaIrO3; 2.5.3. Pyrochlore Iridates R2Ir2O7 (R: rare earth ions); 2.6. Future Studies; Acknowledgments; References; Chapter 3 X-Ray Scattering Studies of 4d- and 5d-Electron Transition Metal Oxides Ioannis Zegkinoglou and Bernhard Keimer; 3.1. Introduction; 3.2. Non-Resonant X-Ray Scattering; 3.3. Resonant X-Ray Diffraction; 3.3.1. Basic Principles and Historical Background
3.3.2. Resonant Electric Dipole Scattering Length 3.4. Orbital Ordering in Ca2RuO4; 3.4.1. Introduction; 3.4.2. Main Properties; 3.4.3. Orbital Order; 3.4.4. X-Ray Investigations; 3.5. Spin Reorientation in Ca3Ru2O7; 3.5.1. Introduction; 3.5.2. Main Properties; 3.5.3. X-Ray Investigations; 3.6. Magnetic Structure Determination in RuSr2GdCu2O8; 3.6.1. Introduction; 3.6.2. Main Properties; 3.6.3. X-Ray Investigations; 3.7. Spin Orbital Mott State in Sr2IrO4; 3.7.1. Introduction; 3.7.2. Main Properties; 3.7.3. X-Ray Investigations; References
Chapter 4 Exploring the Magnetostructural Phases of the Layered Ruthenates with Raman Scattering S. L. Cooper 4.1. Introduction-Overview of the Layered Ruthenate Materials; 4.2. Raman Scattering as a Probe of Correlated Materials; 4.2.1. General Raman Scattering Details; 4.2.2. Raman Scattering Cross Section; 4.2.2.1. Phonon Raman Scattering; 4.2.2.2. Magnon Raman Scattering; 4.3. Experimental Details; 4.3.1. Raman Scattering System; 4.3.2. High Magnetic Field Measurements; 4.3.3. High Pressure Measurements; 4.4. Raman Scattering Studies of Single-Layer (Ca,Sr)2RuO4; 4.4.1. Overview
4.4.1.1. Temperature-Dependent Effects in Ca2RuO4
Record Nr. UNINA-9910464118803321
Cao Gang  
[River Edge], N.J., : World Scientific, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transition metal oxides [[electronic resource] ] : crystal chemistry, phase transition, and related aspects / / C.N.R. Rao and G.V. Subba Rao
Transition metal oxides [[electronic resource] ] : crystal chemistry, phase transition, and related aspects / / C.N.R. Rao and G.V. Subba Rao
Autore Rao C. N. R (Chintamani Nagesa Ramachandra), <1934->
Pubbl/distr/stampa Washington, [D.C.] : , : U.S. Dept. of Commerce, National Bureau of Standards, , 1974
Descrizione fisica v, 130 pages : illustrations ; ; 26 cm
Altri autori (Persone) Subba RaoG. V
Collana NSRDS-NBS
Soggetto topico Transition metal oxides
Chemistry, Inorganic
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Transition metal oxides
Record Nr. UNINA-9910697868603321
Rao C. N. R (Chintamani Nagesa Ramachandra), <1934->  
Washington, [D.C.] : , : U.S. Dept. of Commerce, National Bureau of Standards, , 1974
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transition metal oxides for electrochemical energystorage / / edited by Jagjit Nanda, Veronica Augustyn
Transition metal oxides for electrochemical energystorage / / edited by Jagjit Nanda, Veronica Augustyn
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (435 pages)
Disciplina 621.3126
Soggetto topico Transition metal oxides
Soggetto genere / forma Electronic books.
ISBN 3-527-81725-5
3-527-81722-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Foreword -- Chapter 1 An Overview of Transition Metal Oxides for Electrochemical Energy Storage -- 1.1 Fundamentals of Electrochemical Cells -- 1.2 Li‐Ion Batteries: Basic Principles and TMO Electrodes -- 1.3 Brief History of Lithium‐Ion Batteries -- 1.4 The Role of Advanced Characterization and Computing Resources -- 1.5 Beyond Lithium‐Ion Batteries -- Acknowledgments -- References -- Chapter 2 Metal-Ion‐Coupled Electron Transfer Kinetics in Intercalation‐Based Transition Metal Oxides* -- 2.1 Introduction -- 2.2 Thermodynamic Control -- 2.3 Diffusional Control -- 2.4 Kinetic Control -- 2.5 Effect of Surface Layers on Ion Transfer Kinetics -- 2.6 Slow Desolvation as a Limiting Intercalation Step -- 2.7 Concluding Remarks -- References -- Chapter 3 Next‐Generation Cobalt‐Free Cathodes - A Prospective Solution to the Battery Industry's Cobalt Problem* -- 3.1 Introduction -- 3.2 Potential of Cobalt‐Free Cathode Materials -- 3.3 Layered Cathodes -- 3.3.1 Conventional Layered Cathodes -- 3.3.2 Binary Layered Ni‐Rich Cathode Materials -- 3.3.3 Ternary Layered Ni‐Rich Cathode Materials -- 3.4 Spinel and Olivine Cathodes -- 3.5 Disordered Rocksalt (DRX) Cathodes -- 3.6 Challenges in Commercial Adoption of New Cobalt‐Free Chemistries -- 3.6.1 Synthesis of Cathode Precursors -- 3.6.2 Synthesis of Final Cathode Powders -- 3.6.3 Electrode Fabrication -- 3.6.4 Battery Assembly -- 3.7 Summary and Perspective -- Acknowledgments -- Conflict of Interest -- References -- Chapter 4 Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium‐ and Sodium‐Ion Batteries* -- 4.1 Introduction -- 4.2 Potential Advantages and Challenges of the Conversion Mechanism -- 4.3 Transition Metal Oxides as Anode Materials -- 4.3.1 Iron Oxide (Fe3O4, Fe2O3) -- 4.3.2 Cobalt Oxide (CoO, Co3O4).
4.3.3 Manganese Oxide (MnO, Mn3O4, MnO2) -- 4.3.4 Copper Oxide (Cu2O, CuO) -- 4.3.5 Nickel Oxide (NiO) -- 4.3.6 Ruthenium Oxide (RuO2) -- 4.3.7 Other Transition Metal Oxides -- 4.4 Summary and Outlook -- References -- Chapter 5 Layered Na‐Ion Transition‐Metal Oxide Electrodes for Sodium‐Ion Batteries -- 5.1 Introduction -- 5.2 Layered Transition‐Metal Oxides -- 5.2.1 Structural Classification -- 5.2.2 Single Transition‐Metal‐Based Layered Transition‐Metal Oxides -- 5.2.3 Mixed‐Metal‐Based Layered Transition‐Metal Oxides -- 5.2.4 Anionic Redox Activity for High Capacity -- 5.3 Summary and Outlook -- References -- Chapter 6 Anionic Redox Reaction in Li‐Excess High‐Capacity Transition‐Metal Oxides -- 6.1 Stoichiometric Layered Oxides for Rechargeable Lithium Batteries -- 6.2 Li‐Excess Rocksalt Oxides as High‐Capacity Positive Electrode Materials -- 6.3 Reversible and Irreversible Anionic Redox for Li3NbO4‐ and Li2TiO3‐Based Oxides -- 6.4 Activation of Anionic Redox by Chemical Bonds with High Ionic Characters -- 6.5 Li4MoO5 as a Host Structure for Lithium‐Excess Oxides -- 6.6 Extremely Reversible Anionic Redox for Li2RuO3 System -- 6.7 Anionic Redox for Sodium‐Storage Applications -- 6.8 Future Perspectives of Anionic Redox for Energy‐Storage Applications -- References -- Chapter 7 Transition Metal Oxides in Aqueous Electrolytes -- 7.1 Introduction: Opportunities and Challenges of Aqueous Batteries -- 7.2 Electrochemistry of Aqueous Batteries -- 7.2.1 Potential Window -- 7.2.2 Diverse Charge Transfer and Storage Processes in Aqueous Batteries -- 7.2.2.1 Overview of Various Storage Mechanisms -- 7.2.2.2 Semi‐quantitative Analysis of Storage Mechanism from Sweeping Voltammetry Analysis -- 7.2.2.3 Storage Mechanisms in Electrolyte with Different pH Values -- 7.3 Transition Metal Oxides for Aqueous EES -- 7.3.1 Manganese Compounds.
7.3.1.1 Crystal Structures of Manganese Oxides for Aqueous Storage -- 7.3.1.2 Compositing Manganese Oxides with Other Additives -- 7.3.1.3 Surface Engineering Crystal Facets, Edge Sites, and Bulk/Nano Size Domain -- 7.3.1.4 Doping and Defect Chemistry -- 7.3.1.5 Pre‐intercalated Species -- 7.3.2 Ni Compounds -- 7.3.3 Vanadium Compounds -- 7.3.3.1 Li or Na Vanadates -- 7.3.4 Iron Compounds -- 7.3.4.1 Fe/Fe3O4 -- 7.3.4.2 Fe2O3/FeOOH -- 7.4 Conclusion -- Acknowledgments -- References -- Chapter 8 Nanostructured Transition Metal Oxides for Electrochemical Energy Storage -- 8.1 Fundamental Electrochemistry of Nanostructured TMOs -- 8.1.1 Thermodynamics of Charge Storage in Nanostructured TMOs -- 8.1.2 Kinetics of Charge Storage in Nanostructured TMOs -- 8.2 Emerging Nanostructured TMOs -- 8.2.1 Nanostructured TMO Cathodes for LIBs -- 8.2.2 Nanostructured Binary TMOs for Conversion‐Type Charge Storage -- 8.2.3 Nanostructured Binary TMOs for Intercalation‐Type Charge Storage -- 8.3 Implementation of Nanostructured TMOs in Electrode Architectures -- 8.3.1 One‐Dimensional and Two‐Dimensional Architectures -- 8.3.1.1 Nanowires and Nanotubes -- 8.3.2 Three‐Dimensional Architectures -- 8.3.2.1 Assemblies -- 8.3.2.2 Foams -- 8.3.2.3 Aerogels -- 8.4 Conclusions -- References -- Chapter 9 Interfaces in Oxide‐Based Li Metal Batteries* -- 9.1 Introduction -- 9.2 Solid Oxide Electrolytes -- 9.3 Cathode: Toward True Solid -- 9.3.1 Origin of Interfacial Impedance and Current Pressing Issues at Cathode/Solid Electrolyte Interfaces -- 9.3.1.1 Interfacial Reaction During Cell Fabrication -- 9.3.1.2 Electrochemical Oxidation and Chemical Reaction During Cycle -- 9.3.1.3 Chemo‐mechanical Degradation During Cycling -- 9.3.2 Strategies and Approaches Toward Enhanced Stability and Performance -- 9.3.2.1 Cathode Coating.
9.3.2.2 Geometric Arrangement Concerns and Strategies Toward Maximizing Reaction Sites -- 9.3.2.3 Conductive Additives in Solid‐State Cathode -- 9.4 Anode: Adopting Lithium Metal in the Solid -- 9.4.1 Li/Solid-Electrolyte Interface: Chemical, Electrochemical, and Mechanical Considerations, Including Mitigation Strategies -- 9.4.2 Li Dendrite Formation and Propagation in Solid Electrolytes: Challenges and Strategies -- 9.5 Outlook and Perspective -- Acknowledgments -- Contributions -- Ethics Declarations -- References -- Chapter 10 Degradation and Life Performance of Transition Metal Oxide Cathodes used in Lithium‐Ion Batteries -- 10.1 Introduction -- 10.2 Degradation Trends -- 10.3 Transition Metal Oxide Cathodes -- 10.3.1 Spinel Cathodes -- 10.3.2 NCM System of Cathodes -- 10.3.3 NCMA Cathodes -- 10.4 Degradation Mechanism -- 10.5 Concluding Remarks -- References -- Chapter 11 Mechanical Behavior of Transition Metal Oxide‐Based Battery Materials -- 11.1 Introduction -- 11.2 Mechanical Responses to Compositional Changes -- 11.2.1 Volume Changes and Deformation in Electrode Particles -- 11.2.2 Particle Fracture -- 11.3 Impact of Strain Energy on Chemical Phenomena -- 11.3.1 Thermodynamics -- 11.3.2 Two‐Phase Equilibrium -- 11.4 Solid Electrolytes -- 11.4.1 Electrode/Electrolyte Interfaces -- 11.4.2 Electrolyte Fracture -- 11.5 Summary -- References -- Chapter 12 Solid‐State NMR and EPR Characterization of Transition‐Metal Oxides for Electrochemical Energy Storage -- 12.1 Introduction -- 12.2 Brief Introduction of NMR Basics -- 12.2.1 Nuclear Spins -- 12.2.2 NMR Spin Interactions -- 12.2.3 Paramagnetic Interactions and Experimental Approaches to Achieve High Spectral Resolution -- 12.3 Multinuclear NMR Studies of Transition‐metal‐oxide Cathodes -- 12.3.1 Li Extraction and Insertion Dynamics -- 12.3.2 O Evolution -- 12.4 EPR Studies -- 12.5 Summary.
References -- Chapter 13 In Situ and In Operando Neutron Diffraction of Transition Metal Oxides for Electrochemical Storage -- 13.1 Introduction -- 13.1.1 Neutron Diffraction and Transition Metal Oxides -- 13.1.1.1 Neutron Reflectometry -- 13.1.1.2 Small‐Angle Neutron Scattering -- 13.1.1.3 Quasielastic and Inelastic Neutron Scattering -- 13.1.2 Neutron Diffraction Instrumentation -- 13.1.3 In Situ and In Operando Neutron Diffraction -- 13.2 Device Operation -- 13.2.1 Experimental Design and Approach to the Real‐Time Analysis of Battery Materials -- 13.2.2 Advancements in Understanding Electrode Structure During Battery Operation -- 13.3 Gas and Temperature Studies -- 13.3.1 Experimental Design and Approach to the In Situ Study of Solid Oxide Fuel‐Cell (SOFC) Electrodes -- 13.3.2 Advancements in Understanding Solid Oxide Fuel‐Cell Electrode Function -- 13.4 Materials Formation and Synthesis -- 13.5 Short‐Range Structure -- 13.6 Outlook -- Acknowledgments -- References -- Chapter 14 Synchrotron X‐ray Spectroscopy and Imaging for Metal Oxide Intercalation Cathode Chemistry -- 14.1 Introduction -- 14.2 X‐ray Absorption Spectroscopy -- 14.2.1 Soft X‐ray Absorption Spectroscopy -- 14.2.2 Hard X‐ray Absorption Spectroscopy -- 14.3 Real‐Space X‐ray Spectroscopic Imaging -- 14.3.1 2D Full‐Field X‐ray Imaging -- 14.3.2 X‐ray Tomographic Imaging -- 14.4 Conclusion -- References -- Chapter 15 Atomic‐Scale Simulations of the Solid Electrolyte Li7La3Zr2O12 -- 15.1 Introduction -- 15.1.1 Motivation -- 15.1.2 Solid Electrolytes -- 15.1.3 Li7La3Zr2O12 (LLZO) -- 15.1.4 Challenges -- 15.2 Elastic Properties of Li7La3Zr2O12 -- 15.3 Potential Failure Modes Arising from LLZO Microstructure -- 15.4 Conclusions -- Acknowledgements -- References.
Chapter 16 Machine‐Learning and Data‐Intensive Methods for Accelerating the Development of Rechargeable Battery Chemistries: A Review.
Record Nr. UNINA-9910566697403321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transition metal oxides for electrochemical energystorage / / edited by Jagjit Nanda, Veronica Augustyn
Transition metal oxides for electrochemical energystorage / / edited by Jagjit Nanda, Veronica Augustyn
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (435 pages)
Disciplina 621.3126
Soggetto topico Transition metal oxides
ISBN 3-527-81725-5
3-527-81722-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Foreword -- Chapter 1 An Overview of Transition Metal Oxides for Electrochemical Energy Storage -- 1.1 Fundamentals of Electrochemical Cells -- 1.2 Li‐Ion Batteries: Basic Principles and TMO Electrodes -- 1.3 Brief History of Lithium‐Ion Batteries -- 1.4 The Role of Advanced Characterization and Computing Resources -- 1.5 Beyond Lithium‐Ion Batteries -- Acknowledgments -- References -- Chapter 2 Metal-Ion‐Coupled Electron Transfer Kinetics in Intercalation‐Based Transition Metal Oxides* -- 2.1 Introduction -- 2.2 Thermodynamic Control -- 2.3 Diffusional Control -- 2.4 Kinetic Control -- 2.5 Effect of Surface Layers on Ion Transfer Kinetics -- 2.6 Slow Desolvation as a Limiting Intercalation Step -- 2.7 Concluding Remarks -- References -- Chapter 3 Next‐Generation Cobalt‐Free Cathodes - A Prospective Solution to the Battery Industry's Cobalt Problem* -- 3.1 Introduction -- 3.2 Potential of Cobalt‐Free Cathode Materials -- 3.3 Layered Cathodes -- 3.3.1 Conventional Layered Cathodes -- 3.3.2 Binary Layered Ni‐Rich Cathode Materials -- 3.3.3 Ternary Layered Ni‐Rich Cathode Materials -- 3.4 Spinel and Olivine Cathodes -- 3.5 Disordered Rocksalt (DRX) Cathodes -- 3.6 Challenges in Commercial Adoption of New Cobalt‐Free Chemistries -- 3.6.1 Synthesis of Cathode Precursors -- 3.6.2 Synthesis of Final Cathode Powders -- 3.6.3 Electrode Fabrication -- 3.6.4 Battery Assembly -- 3.7 Summary and Perspective -- Acknowledgments -- Conflict of Interest -- References -- Chapter 4 Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium‐ and Sodium‐Ion Batteries* -- 4.1 Introduction -- 4.2 Potential Advantages and Challenges of the Conversion Mechanism -- 4.3 Transition Metal Oxides as Anode Materials -- 4.3.1 Iron Oxide (Fe3O4, Fe2O3) -- 4.3.2 Cobalt Oxide (CoO, Co3O4).
4.3.3 Manganese Oxide (MnO, Mn3O4, MnO2) -- 4.3.4 Copper Oxide (Cu2O, CuO) -- 4.3.5 Nickel Oxide (NiO) -- 4.3.6 Ruthenium Oxide (RuO2) -- 4.3.7 Other Transition Metal Oxides -- 4.4 Summary and Outlook -- References -- Chapter 5 Layered Na‐Ion Transition‐Metal Oxide Electrodes for Sodium‐Ion Batteries -- 5.1 Introduction -- 5.2 Layered Transition‐Metal Oxides -- 5.2.1 Structural Classification -- 5.2.2 Single Transition‐Metal‐Based Layered Transition‐Metal Oxides -- 5.2.3 Mixed‐Metal‐Based Layered Transition‐Metal Oxides -- 5.2.4 Anionic Redox Activity for High Capacity -- 5.3 Summary and Outlook -- References -- Chapter 6 Anionic Redox Reaction in Li‐Excess High‐Capacity Transition‐Metal Oxides -- 6.1 Stoichiometric Layered Oxides for Rechargeable Lithium Batteries -- 6.2 Li‐Excess Rocksalt Oxides as High‐Capacity Positive Electrode Materials -- 6.3 Reversible and Irreversible Anionic Redox for Li3NbO4‐ and Li2TiO3‐Based Oxides -- 6.4 Activation of Anionic Redox by Chemical Bonds with High Ionic Characters -- 6.5 Li4MoO5 as a Host Structure for Lithium‐Excess Oxides -- 6.6 Extremely Reversible Anionic Redox for Li2RuO3 System -- 6.7 Anionic Redox for Sodium‐Storage Applications -- 6.8 Future Perspectives of Anionic Redox for Energy‐Storage Applications -- References -- Chapter 7 Transition Metal Oxides in Aqueous Electrolytes -- 7.1 Introduction: Opportunities and Challenges of Aqueous Batteries -- 7.2 Electrochemistry of Aqueous Batteries -- 7.2.1 Potential Window -- 7.2.2 Diverse Charge Transfer and Storage Processes in Aqueous Batteries -- 7.2.2.1 Overview of Various Storage Mechanisms -- 7.2.2.2 Semi‐quantitative Analysis of Storage Mechanism from Sweeping Voltammetry Analysis -- 7.2.2.3 Storage Mechanisms in Electrolyte with Different pH Values -- 7.3 Transition Metal Oxides for Aqueous EES -- 7.3.1 Manganese Compounds.
7.3.1.1 Crystal Structures of Manganese Oxides for Aqueous Storage -- 7.3.1.2 Compositing Manganese Oxides with Other Additives -- 7.3.1.3 Surface Engineering Crystal Facets, Edge Sites, and Bulk/Nano Size Domain -- 7.3.1.4 Doping and Defect Chemistry -- 7.3.1.5 Pre‐intercalated Species -- 7.3.2 Ni Compounds -- 7.3.3 Vanadium Compounds -- 7.3.3.1 Li or Na Vanadates -- 7.3.4 Iron Compounds -- 7.3.4.1 Fe/Fe3O4 -- 7.3.4.2 Fe2O3/FeOOH -- 7.4 Conclusion -- Acknowledgments -- References -- Chapter 8 Nanostructured Transition Metal Oxides for Electrochemical Energy Storage -- 8.1 Fundamental Electrochemistry of Nanostructured TMOs -- 8.1.1 Thermodynamics of Charge Storage in Nanostructured TMOs -- 8.1.2 Kinetics of Charge Storage in Nanostructured TMOs -- 8.2 Emerging Nanostructured TMOs -- 8.2.1 Nanostructured TMO Cathodes for LIBs -- 8.2.2 Nanostructured Binary TMOs for Conversion‐Type Charge Storage -- 8.2.3 Nanostructured Binary TMOs for Intercalation‐Type Charge Storage -- 8.3 Implementation of Nanostructured TMOs in Electrode Architectures -- 8.3.1 One‐Dimensional and Two‐Dimensional Architectures -- 8.3.1.1 Nanowires and Nanotubes -- 8.3.2 Three‐Dimensional Architectures -- 8.3.2.1 Assemblies -- 8.3.2.2 Foams -- 8.3.2.3 Aerogels -- 8.4 Conclusions -- References -- Chapter 9 Interfaces in Oxide‐Based Li Metal Batteries* -- 9.1 Introduction -- 9.2 Solid Oxide Electrolytes -- 9.3 Cathode: Toward True Solid -- 9.3.1 Origin of Interfacial Impedance and Current Pressing Issues at Cathode/Solid Electrolyte Interfaces -- 9.3.1.1 Interfacial Reaction During Cell Fabrication -- 9.3.1.2 Electrochemical Oxidation and Chemical Reaction During Cycle -- 9.3.1.3 Chemo‐mechanical Degradation During Cycling -- 9.3.2 Strategies and Approaches Toward Enhanced Stability and Performance -- 9.3.2.1 Cathode Coating.
9.3.2.2 Geometric Arrangement Concerns and Strategies Toward Maximizing Reaction Sites -- 9.3.2.3 Conductive Additives in Solid‐State Cathode -- 9.4 Anode: Adopting Lithium Metal in the Solid -- 9.4.1 Li/Solid-Electrolyte Interface: Chemical, Electrochemical, and Mechanical Considerations, Including Mitigation Strategies -- 9.4.2 Li Dendrite Formation and Propagation in Solid Electrolytes: Challenges and Strategies -- 9.5 Outlook and Perspective -- Acknowledgments -- Contributions -- Ethics Declarations -- References -- Chapter 10 Degradation and Life Performance of Transition Metal Oxide Cathodes used in Lithium‐Ion Batteries -- 10.1 Introduction -- 10.2 Degradation Trends -- 10.3 Transition Metal Oxide Cathodes -- 10.3.1 Spinel Cathodes -- 10.3.2 NCM System of Cathodes -- 10.3.3 NCMA Cathodes -- 10.4 Degradation Mechanism -- 10.5 Concluding Remarks -- References -- Chapter 11 Mechanical Behavior of Transition Metal Oxide‐Based Battery Materials -- 11.1 Introduction -- 11.2 Mechanical Responses to Compositional Changes -- 11.2.1 Volume Changes and Deformation in Electrode Particles -- 11.2.2 Particle Fracture -- 11.3 Impact of Strain Energy on Chemical Phenomena -- 11.3.1 Thermodynamics -- 11.3.2 Two‐Phase Equilibrium -- 11.4 Solid Electrolytes -- 11.4.1 Electrode/Electrolyte Interfaces -- 11.4.2 Electrolyte Fracture -- 11.5 Summary -- References -- Chapter 12 Solid‐State NMR and EPR Characterization of Transition‐Metal Oxides for Electrochemical Energy Storage -- 12.1 Introduction -- 12.2 Brief Introduction of NMR Basics -- 12.2.1 Nuclear Spins -- 12.2.2 NMR Spin Interactions -- 12.2.3 Paramagnetic Interactions and Experimental Approaches to Achieve High Spectral Resolution -- 12.3 Multinuclear NMR Studies of Transition‐metal‐oxide Cathodes -- 12.3.1 Li Extraction and Insertion Dynamics -- 12.3.2 O Evolution -- 12.4 EPR Studies -- 12.5 Summary.
References -- Chapter 13 In Situ and In Operando Neutron Diffraction of Transition Metal Oxides for Electrochemical Storage -- 13.1 Introduction -- 13.1.1 Neutron Diffraction and Transition Metal Oxides -- 13.1.1.1 Neutron Reflectometry -- 13.1.1.2 Small‐Angle Neutron Scattering -- 13.1.1.3 Quasielastic and Inelastic Neutron Scattering -- 13.1.2 Neutron Diffraction Instrumentation -- 13.1.3 In Situ and In Operando Neutron Diffraction -- 13.2 Device Operation -- 13.2.1 Experimental Design and Approach to the Real‐Time Analysis of Battery Materials -- 13.2.2 Advancements in Understanding Electrode Structure During Battery Operation -- 13.3 Gas and Temperature Studies -- 13.3.1 Experimental Design and Approach to the In Situ Study of Solid Oxide Fuel‐Cell (SOFC) Electrodes -- 13.3.2 Advancements in Understanding Solid Oxide Fuel‐Cell Electrode Function -- 13.4 Materials Formation and Synthesis -- 13.5 Short‐Range Structure -- 13.6 Outlook -- Acknowledgments -- References -- Chapter 14 Synchrotron X‐ray Spectroscopy and Imaging for Metal Oxide Intercalation Cathode Chemistry -- 14.1 Introduction -- 14.2 X‐ray Absorption Spectroscopy -- 14.2.1 Soft X‐ray Absorption Spectroscopy -- 14.2.2 Hard X‐ray Absorption Spectroscopy -- 14.3 Real‐Space X‐ray Spectroscopic Imaging -- 14.3.1 2D Full‐Field X‐ray Imaging -- 14.3.2 X‐ray Tomographic Imaging -- 14.4 Conclusion -- References -- Chapter 15 Atomic‐Scale Simulations of the Solid Electrolyte Li7La3Zr2O12 -- 15.1 Introduction -- 15.1.1 Motivation -- 15.1.2 Solid Electrolytes -- 15.1.3 Li7La3Zr2O12 (LLZO) -- 15.1.4 Challenges -- 15.2 Elastic Properties of Li7La3Zr2O12 -- 15.3 Potential Failure Modes Arising from LLZO Microstructure -- 15.4 Conclusions -- Acknowledgements -- References.
Chapter 16 Machine‐Learning and Data‐Intensive Methods for Accelerating the Development of Rechargeable Battery Chemistries: A Review.
Record Nr. UNINA-9910829905103321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transition metal oxides in organic light emitting diodes : dissertation / / von Sami Hamwi
Transition metal oxides in organic light emitting diodes : dissertation / / von Sami Hamwi
Autore Hamwi Sami
Edizione [1. Auflage.]
Pubbl/distr/stampa Göttingen, [Germany] : , : Cuvillier Verlag, , 2010
Descrizione fisica 1 online resource (154 pages) : illustrations, tables
Disciplina 546.6
Collana Forum Organic Electronics
Soggetto topico Transition metal oxides
Soggetto genere / forma Electronic books.
ISBN 3-7369-3484-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910485552403321
Hamwi Sami  
Göttingen, [Germany] : , : Cuvillier Verlag, , 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transition metal oxides in organic light emitting diodes : dissertation / / von Sami Hamwi
Transition metal oxides in organic light emitting diodes : dissertation / / von Sami Hamwi
Autore Hamwi Sami
Edizione [1. Auflage.]
Pubbl/distr/stampa Göttingen, [Germany] : , : Cuvillier Verlag, , 2010
Descrizione fisica 1 online resource (154 pages) : illustrations, tables
Disciplina 546.6
Collana Forum Organic Electronics
Soggetto topico Transition metal oxides
ISBN 3-7369-3484-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910794702803321
Hamwi Sami  
Göttingen, [Germany] : , : Cuvillier Verlag, , 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transition metal oxides in organic light emitting diodes : dissertation / / von Sami Hamwi
Transition metal oxides in organic light emitting diodes : dissertation / / von Sami Hamwi
Autore Hamwi Sami
Edizione [1. Auflage.]
Pubbl/distr/stampa Göttingen, [Germany] : , : Cuvillier Verlag, , 2010
Descrizione fisica 1 online resource (154 pages) : illustrations, tables
Disciplina 546.6
Collana Forum Organic Electronics
Soggetto topico Transition metal oxides
ISBN 3-7369-3484-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910812651703321
Hamwi Sami  
Göttingen, [Germany] : , : Cuvillier Verlag, , 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui