top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
A conformal-mapping treatment of the effect of a semi-infinite gate on a two-dimensional electron gas [[electronic resource] /] / Frank J. Crowne
A conformal-mapping treatment of the effect of a semi-infinite gate on a two-dimensional electron gas [[electronic resource] /] / Frank J. Crowne
Autore Crowne Frank
Pubbl/distr/stampa Adelphi, MD : , : Army Research Laboratory, , [2000]
Descrizione fisica 1 online resource (iii, 15 pages) : illustrations (some color)
Collana ARL-TR
Soggetto topico Electron mobility
Transistors - Mathematical models
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910699643603321
Crowne Frank  
Adelphi, MD : , : Army Research Laboratory, , [2000]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear transistor model parameter extraction techniques / / edited by Matthias Rudolph, Christian Fager, David E. Root [[electronic resource]]
Nonlinear transistor model parameter extraction techniques / / edited by Matthias Rudolph, Christian Fager, David E. Root [[electronic resource]]
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2012
Descrizione fisica 1 online resource (xiv, 352 pages) : digital, PDF file(s)
Disciplina 621.3815/28
Collana The Cambridge RF and microwave engineering series
Soggetto topico Transistors - Mathematical models
Electronic circuit design
ISBN 1-107-22467-5
1-283-34235-9
1-139-16026-5
9786613342355
1-139-15465-6
1-139-16126-1
1-139-15569-5
1-139-15744-2
1-139-15921-6
1-139-01496-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Nonlinear Transistor Model Parameter Extraction Techniques; The Cambridge RF and Microwave Engineering Series; Title; Copyright; Contents; List of contributors; Preface; 1 Introduction; 1.1 Model extraction challenges; 1.1.1 Accuracy; 1.1.1.1 Circuit application; 1.1.1.2 Measurement uncertainty; 1.1.1.3 Process variations; 1.1.2 Numerical convergence; 1.1.2.1 Breakdown; 1.1.2.2 Self-heating; 1.1.3 Choice of the modeling transistor; 1.2 Model extraction workflow; References; 2 DC and thermal modeling: III--V FETs and HBTs; 2.1 Introduction; 2.2 Basic DC characteristics
2.3 FET DC parameters and modeling2.4 HBT DC parameters and modeling; 2.5 Process control monitoring; 2.6 Thermal modeling overview; 2.7 Physics-based thermal scaling model for HBTs; 2.8 Measurement-based thermal model for FETs; 2.9 Transistor reliability evaluation; Acknowledgments; References; 3 Extrinsic parameter and parasitic elements in III--V HBT and HEMT modeling; 3.1 Introduction; 3.2 Test structures with calibration and de-embedding; 3.3 Methods for extrinsic parameter extraction used in HBTs; 3.3.1 Equivalent circuit topology
3.3.2 Physical description of contact resistances and overlap capacitances3.3.3 Extrinsic resistance and inductance extraction; 3.4 Methods for extrinsic parameter extraction used in HEMTs; 3.4.1 Cold FET technique; 3.4.2 Unbiased technique; 3.4.3 GaN HEMTs exceptions; 3.5 Scaling for multicell arrays; References; 4 Uncertainties in small-signal equivalent circuit modeling; 4.1 Introduction; 4.1.1 Sources of uncertainty in modeling; 4.1.2 Measurement uncertainty; 4.2 Uncertainties in direct extraction methods; 4.2.1 Simple direct extraction example; 4.2.1.1 Example circuit and measurements
4.2.1.2 Uncertainty analysis4.2.1.3 Parameter estimation; 4.2.1.4 Parameter correlations; 4.2.2 Results using transistor measurements; 4.2.2.1 Uncertainty contributions; 4.2.2.2 Intrinsic model parameter sensitivities; 4.2.2.3 Intrinsic model parameter uncertainties; 4.2.2.4 Multibias extraction results; 4.3 Optimizer-based estimation techniques; 4.3.1 Maximum likelihood estimation; 4.3.1.1 Simple example; 4.3.1.2 MLE uncertainty; 4.3.2 MLE of small-signal transistor model parameters; 4.3.2.1 Parasitic parameter estimation; 4.3.2.2 Application to parasitic FET model extraction
4.3.2.3 MLE of intrinsic model parameters4.3.2.4 Application to intrinsic FET model extraction; 4.3.3 Comparison between MLE and the direct extraction method; 4.3.4 Application of MLE in RF-CMOS de-embedding; 4.3.4.1 Method description; 4.3.4.2 Example using 130 nm RF-CMOS measurements; 4.3.4.3 Comparison between different de-embedding methods; 4.3.5 Discussion; 4.4 Complexity versus uncertainty in equivalent circuit modeling; 4.4.1 Finding an optimum model topology; 4.4.2 An illustrative example; 4.4.2.1 MSE estimation procedure; 4.4.2.2 Results; 4.5 Summary and discussion; References
5 The large-signal model: theoretical foundations, practical considerations, and recent trends
Record Nr. UNINA-9910457508703321
Cambridge : , : Cambridge University Press, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear transistor model parameter extraction techniques / / edited by Matthias Rudolph, Christian Fager, David E. Root [[electronic resource]]
Nonlinear transistor model parameter extraction techniques / / edited by Matthias Rudolph, Christian Fager, David E. Root [[electronic resource]]
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2012
Descrizione fisica 1 online resource (xiv, 352 pages) : digital, PDF file(s)
Disciplina 621.3815/28
Collana The Cambridge RF and microwave engineering series
Soggetto topico Transistors - Mathematical models
Electronic circuit design
ISBN 1-107-22467-5
1-283-34235-9
1-139-16026-5
9786613342355
1-139-15465-6
1-139-16126-1
1-139-15569-5
1-139-15744-2
1-139-15921-6
1-139-01496-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Nonlinear Transistor Model Parameter Extraction Techniques; The Cambridge RF and Microwave Engineering Series; Title; Copyright; Contents; List of contributors; Preface; 1 Introduction; 1.1 Model extraction challenges; 1.1.1 Accuracy; 1.1.1.1 Circuit application; 1.1.1.2 Measurement uncertainty; 1.1.1.3 Process variations; 1.1.2 Numerical convergence; 1.1.2.1 Breakdown; 1.1.2.2 Self-heating; 1.1.3 Choice of the modeling transistor; 1.2 Model extraction workflow; References; 2 DC and thermal modeling: III--V FETs and HBTs; 2.1 Introduction; 2.2 Basic DC characteristics
2.3 FET DC parameters and modeling2.4 HBT DC parameters and modeling; 2.5 Process control monitoring; 2.6 Thermal modeling overview; 2.7 Physics-based thermal scaling model for HBTs; 2.8 Measurement-based thermal model for FETs; 2.9 Transistor reliability evaluation; Acknowledgments; References; 3 Extrinsic parameter and parasitic elements in III--V HBT and HEMT modeling; 3.1 Introduction; 3.2 Test structures with calibration and de-embedding; 3.3 Methods for extrinsic parameter extraction used in HBTs; 3.3.1 Equivalent circuit topology
3.3.2 Physical description of contact resistances and overlap capacitances3.3.3 Extrinsic resistance and inductance extraction; 3.4 Methods for extrinsic parameter extraction used in HEMTs; 3.4.1 Cold FET technique; 3.4.2 Unbiased technique; 3.4.3 GaN HEMTs exceptions; 3.5 Scaling for multicell arrays; References; 4 Uncertainties in small-signal equivalent circuit modeling; 4.1 Introduction; 4.1.1 Sources of uncertainty in modeling; 4.1.2 Measurement uncertainty; 4.2 Uncertainties in direct extraction methods; 4.2.1 Simple direct extraction example; 4.2.1.1 Example circuit and measurements
4.2.1.2 Uncertainty analysis4.2.1.3 Parameter estimation; 4.2.1.4 Parameter correlations; 4.2.2 Results using transistor measurements; 4.2.2.1 Uncertainty contributions; 4.2.2.2 Intrinsic model parameter sensitivities; 4.2.2.3 Intrinsic model parameter uncertainties; 4.2.2.4 Multibias extraction results; 4.3 Optimizer-based estimation techniques; 4.3.1 Maximum likelihood estimation; 4.3.1.1 Simple example; 4.3.1.2 MLE uncertainty; 4.3.2 MLE of small-signal transistor model parameters; 4.3.2.1 Parasitic parameter estimation; 4.3.2.2 Application to parasitic FET model extraction
4.3.2.3 MLE of intrinsic model parameters4.3.2.4 Application to intrinsic FET model extraction; 4.3.3 Comparison between MLE and the direct extraction method; 4.3.4 Application of MLE in RF-CMOS de-embedding; 4.3.4.1 Method description; 4.3.4.2 Example using 130 nm RF-CMOS measurements; 4.3.4.3 Comparison between different de-embedding methods; 4.3.5 Discussion; 4.4 Complexity versus uncertainty in equivalent circuit modeling; 4.4.1 Finding an optimum model topology; 4.4.2 An illustrative example; 4.4.2.1 MSE estimation procedure; 4.4.2.2 Results; 4.5 Summary and discussion; References
5 The large-signal model: theoretical foundations, practical considerations, and recent trends
Record Nr. UNINA-9910781864603321
Cambridge : , : Cambridge University Press, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear transistor model parameter extraction techniques / / edited by Matthias Rudolph, Christian Fager, David E. Root [[electronic resource]]
Nonlinear transistor model parameter extraction techniques / / edited by Matthias Rudolph, Christian Fager, David E. Root [[electronic resource]]
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2012
Descrizione fisica 1 online resource (xiv, 352 pages) : digital, PDF file(s)
Disciplina 621.3815/28
Collana The Cambridge RF and microwave engineering series
Soggetto topico Transistors - Mathematical models
Electronic circuit design
ISBN 1-107-22467-5
1-283-34235-9
1-139-16026-5
9786613342355
1-139-15465-6
1-139-16126-1
1-139-15569-5
1-139-15744-2
1-139-15921-6
1-139-01496-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Nonlinear Transistor Model Parameter Extraction Techniques; The Cambridge RF and Microwave Engineering Series; Title; Copyright; Contents; List of contributors; Preface; 1 Introduction; 1.1 Model extraction challenges; 1.1.1 Accuracy; 1.1.1.1 Circuit application; 1.1.1.2 Measurement uncertainty; 1.1.1.3 Process variations; 1.1.2 Numerical convergence; 1.1.2.1 Breakdown; 1.1.2.2 Self-heating; 1.1.3 Choice of the modeling transistor; 1.2 Model extraction workflow; References; 2 DC and thermal modeling: III--V FETs and HBTs; 2.1 Introduction; 2.2 Basic DC characteristics
2.3 FET DC parameters and modeling2.4 HBT DC parameters and modeling; 2.5 Process control monitoring; 2.6 Thermal modeling overview; 2.7 Physics-based thermal scaling model for HBTs; 2.8 Measurement-based thermal model for FETs; 2.9 Transistor reliability evaluation; Acknowledgments; References; 3 Extrinsic parameter and parasitic elements in III--V HBT and HEMT modeling; 3.1 Introduction; 3.2 Test structures with calibration and de-embedding; 3.3 Methods for extrinsic parameter extraction used in HBTs; 3.3.1 Equivalent circuit topology
3.3.2 Physical description of contact resistances and overlap capacitances3.3.3 Extrinsic resistance and inductance extraction; 3.4 Methods for extrinsic parameter extraction used in HEMTs; 3.4.1 Cold FET technique; 3.4.2 Unbiased technique; 3.4.3 GaN HEMTs exceptions; 3.5 Scaling for multicell arrays; References; 4 Uncertainties in small-signal equivalent circuit modeling; 4.1 Introduction; 4.1.1 Sources of uncertainty in modeling; 4.1.2 Measurement uncertainty; 4.2 Uncertainties in direct extraction methods; 4.2.1 Simple direct extraction example; 4.2.1.1 Example circuit and measurements
4.2.1.2 Uncertainty analysis4.2.1.3 Parameter estimation; 4.2.1.4 Parameter correlations; 4.2.2 Results using transistor measurements; 4.2.2.1 Uncertainty contributions; 4.2.2.2 Intrinsic model parameter sensitivities; 4.2.2.3 Intrinsic model parameter uncertainties; 4.2.2.4 Multibias extraction results; 4.3 Optimizer-based estimation techniques; 4.3.1 Maximum likelihood estimation; 4.3.1.1 Simple example; 4.3.1.2 MLE uncertainty; 4.3.2 MLE of small-signal transistor model parameters; 4.3.2.1 Parasitic parameter estimation; 4.3.2.2 Application to parasitic FET model extraction
4.3.2.3 MLE of intrinsic model parameters4.3.2.4 Application to intrinsic FET model extraction; 4.3.3 Comparison between MLE and the direct extraction method; 4.3.4 Application of MLE in RF-CMOS de-embedding; 4.3.4.1 Method description; 4.3.4.2 Example using 130 nm RF-CMOS measurements; 4.3.4.3 Comparison between different de-embedding methods; 4.3.5 Discussion; 4.4 Complexity versus uncertainty in equivalent circuit modeling; 4.4.1 Finding an optimum model topology; 4.4.2 An illustrative example; 4.4.2.1 MSE estimation procedure; 4.4.2.2 Results; 4.5 Summary and discussion; References
5 The large-signal model: theoretical foundations, practical considerations, and recent trends
Record Nr. UNINA-9910827953503321
Cambridge : , : Cambridge University Press, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui