top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Cable system transients : theory, modeling and simulation / / Akihiro Ametani, Teruo Ohno, Naoto Nagaoka
Cable system transients : theory, modeling and simulation / / Akihiro Ametani, Teruo Ohno, Naoto Nagaoka
Autore Ametani Akihiro
Pubbl/distr/stampa Chichester, West Sussex, : , : John Wiley & Sons, Ltd, , [2015]
Descrizione fisica 1 online resource (414 pages)
Disciplina 621.387/84
Altri autori (Persone) OhnoTeruo
NagaokaNaoto
Soggetto topico Transients (Electricity) - Simulation methods
Electric lines - Simulation methods
ISBN 1-118-70218-2
1-118-70215-8
1-118-70216-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Authors xi -- Preface xiii -- Acknowledgements xv -- 1 Various Cables Used in Practice 1 /Teruo Ohno -- 1.1 Introduction 1 -- 1.2 Land Cables 3 -- 1.2.1 Introduction 3 -- 1.2.2 XLPE Cables 4 -- 1.2.3 SCOF Cables 9 -- 1.2.4 HPOF Cables 10 -- 1.3 Submarine Cables 11 -- 1.3.1 Introduction 11 -- 1.3.2 HVAC Submarine Cables 11 -- 1.3.3 HVDC Submarine Cables 12 -- 1.4 Laying Configurations 13 -- 1.4.1 Burial Condition 13 -- 1.4.2 Sheath Bonding 14 -- References 19 -- 2 Impedance and Admittance Formulas 21 /Akihiro Ametani -- 2.1 Single-core Coaxial Cable (SC Cable) 22 -- 2.1.1 Impedance 22 -- 2.1.2 Potential Coefficient 25 -- 2.2 Pipe-enclosed Type Cable (PT Cable) 27 -- 2.2.1 Impedance 27 -- 2.2.2 Potential Coefficient 29 -- 2.3 Arbitrary Cross-section Conductor 31 -- 2.3.1 Equivalent Cylindrical Conductor 31 -- 2.3.2 Examples 32 -- 2.4 Semiconducting Layer Impedance 35 -- 2.4.1 Derivation of Impedance 35 -- 2.4.2 Impedance of Two-layered Conductor 38 -- 2.4.3 Discussion of the Impedance Formula 38 -- 2.4.4 Admittance of Semiconducting Layer 40 -- 2.4.5 Wave Propagation Characteristic of Cable with Core Outer Semiconducting Layer 40 -- 2.4.6 Concluding Remarks 47 -- 2.5 Discussion of the Formulation 47 -- 2.5.1 Discussion of the Formulas 47 -- 2.5.2 Parameters Influencing Cable Impedance and Admittance 49 -- 2.6 EMTP Subroutines “Cable Constants” and “Cable Parameters” 52 -- 2.6.1 Overhead Line 52 -- 2.6.2 Underground/Overhead Cable 52 -- Appendix 2.A Impedance of an SC Cable Consisting of a Core, a Sheath and an Armor 54 -- Appendix 2.B Potential Coefficient 56 -- Appendix 2.C Internal Impedances of Arbitrary Cross-section Conductor 57 -- Appendix 2.D Derivation of Semiconducting Layer Impedance 58 -- References 61 -- 3 Theory ofWave Propagation in Cables 63 /Akihiro Ametani -- 3.1 Modal Theory 63 -- 3.1.1 Eigenvalues and Vectors 63 -- 3.1.2 Calculation of a Matrix Function by Eigenvalues/Vectors 65 -- 3.1.3 Direct Application of Eigenvalue Theory to a Multi-conductor System 66.
3.1.4 Modal Theory 67 -- 3.1.5 Formulation of Multi-conductor Voltages and Currents 69 -- 3.1.6 Boundary Conditions and Two-port Theory 71 -- 3.1.7 Problems 77 -- 3.2 Basic Characteristics of Wave Propagation on Single-phase SC Cables 78 -- 3.2.1 Basic Propagation Characteristics for a Transient 78 -- 3.2.2 Frequency-dependent Characteristics 81 -- 3.2.3 Time Response of Wave Deformation 84 -- 3.3 Three-phase Underground SC Cables 84 -- 3.3.1 Mutual Coupling between Phases 84 -- 3.3.2 Transformation Matrix 86 -- 3.3.3 Attenuation and Velocity 87 -- 3.3.4 Characteristic Impedance 88 -- 3.4 Effect of Various Parameters of an SC Cable 90 -- 3.4.1 Buried Depth h 91 -- 3.4.2 Earth Resistivity ��e 91 -- 3.4.3 Sheath Thickness d 91 -- 3.4.4 Sheath Resistivity ��s 91 -- 3.4.5 Arrangement of a Three-phase SC Cable 93 -- 3.5 Cross-bonded Cable 94 -- 3.5.1 Introduction of Cross-bonded Cable 94 -- 3.5.2 Theoretical Formulation of a Cross-bonded Cable 95 -- 3.5.3 Homogeneous Model of a Cross-bonded Cable 102 -- 3.5.4 Difference between Tunnel-installed and Buried Cables 105 -- 3.6 PT Cable 114 -- 3.6.1 Introduction of PT Cable 114 -- 3.6.2 PT Cable with Finite-pipe Thickness 115 -- 3.6.3 Effect of Eccentricity of Inner Conductor 128 -- 3.6.4 Effect of the Permittivity of the Pipe Inner Insulator 133 -- 3.6.5 Overhead PT Cable 133 -- 3.7 Propagation Characteristics of Intersheath Modes 134 -- 3.7.1 Theoretical Analysis of Intersheath Modes 134 -- 3.7.2 Transients on a Cross-bonded Cable 144 -- 3.7.3 Earth-return Mode 159 -- 3.7.4 Concluding Remarks 160 -- References 160 -- 4 Cable Modeling for Transient Simulations 163 /Teruo Ohno and Akihiro Ametani -- 4.1 Sequence Impedances Using a Lumped PI-circuit Model 163 -- 4.1.1 Solidly Bonded Cables 163 -- 4.1.2 Cross-bonded Cables 167 -- 4.1.3 Derivation of Sequence Impedance Formulas 168 -- 4.2 Electromagnetic Transients Program (EMTP) Cable Models for Transient Simulations 174 -- 4.3 Dommel Model 175 -- 4.4 Semlyen Frequency-dependent Model 176.
4.4.1 Semlyen Model 177 -- 4.4.2 Linear Model 178 -- 4.5 Marti Model 178 -- 4.6 Latest Frequency-dependent Models 179 -- 4.6.1 Vector Fitting 179 -- 4.6.2 Frequency Region Partitioning Algorithm 181 -- References 182 -- 5 Basic Characteristics of Transients on Single-phase Cables 185 /Akihiro Ametani -- 5.1 Single-core Coaxial (SC) Cable 185 -- 5.1.1 Experimental Observations 185 -- 5.1.2 EMTP Simulations 187 -- 5.1.3 Theoretical Analysis 192 -- 5.1.4 Analytical Evaluation of Parameters 203 -- 5.1.5 Analytical Calculation of Transient Voltages 204 -- 5.1.6 Concluding Remarks 211 -- 5.2 Pipe-enclosed Type (PT) Cable-Effect of Eccentricity 212 -- 5.2.1 Model Circuit for the EMTP Simulation 212 -- 5.2.2 Simulation Results for Step-function Voltage Source 214 -- 5.2.3 FDTD Simulation 218 -- 5.2.4 Theoretical Analysis 218 -- 5.2.5 Concluding Remarks 224 -- 5.3 Effect of a Semiconducting Layer on a Transient 225 -- 5.3.1 Step Function Voltage Applied to a 2 km Cable 225 -- 5.3.2 5 x 70 μs Impulse Voltage Applied to a 40 km Cable 226 -- References 227 -- 6 Transient on Three-phase Cables in a Real System 229 /Akihiro Ametani -- 6.1 Cross-bonded Cable 229 -- 6.1.1 Field Test on an 110 kV Oil-filled (OF) Cable 229 -- 6.1.2 Effect of Cross-bonding 229 -- 6.1.3 Effect of Various Parameters 232 -- 6.1.4 Homogeneous Model (See Section 3.5.3) 237 -- 6.1.5 PAI-circuit Model 239 -- 6.2 Tunnel-installed 275 kV Cable 240 -- 6.2.1 Cable Configuration 240 -- 6.2.2 Effect of Geometrical Parameters on Wave Propagation 241 -- 6.2.3 Field Test on 275 kV XLPE Cable 243 -- 6.2.4 Concluding Remarks 249 -- 6.3 Cable Installed Underneath a Bridge 252 -- 6.3.1 Model System 252 -- 6.3.2 Effect of an Overhead Cable and a Bridge 253 -- 6.3.3 Effect of Overhead Lines on a Cable Transient 257 -- 6.4 Cable Modeling in EMTP Simulations 262 -- 6.4.1 Marti's and Dommel's Cable Models 262 -- 6.4.2 Homogeneous Cable Model (See Section 3.5.3) 265 -- 6.4.3 Effect of Tunnel-installed Cable 265 -- 6.5 Pipe-enclosed Type (PT) Cable 266.
6.5.1 Field Test on a 275 kV Pressure Oil-filled (POF) Cable 266 -- 6.5.2 Measured Results 267 -- 6.5.3 FTP Simulation 269 -- 6.6 Gas-insulated Substation (GIS) - Overhead Cables 274 -- 6.6.1 Basic Characteristic of an Overhead Cable 274 -- 6.6.2 Effect of Spacer in a Bus 275 -- 6.6.3 Three-phase Underground Gas-insulated Line 281 -- 6.6.4 Switching Surges in a 500 kV GIS 282 -- 6.6.5 Basic Characteristics of Switching Surges Induced to a Control Cable 284 -- Appendix 6.A 293 -- Appendix 6.B 295 -- References 295 -- 7 Examples of Cable System Transients 297 /Teruo Ohno -- 7.1 Reactive Power Compensation 297 -- 7.2 Temporary Overvoltages 298 -- 7.2.1 Series Resonance Overvoltage 298 -- 7.2.2 Parallel Resonance Overvoltage 310 -- 7.2.3 Overvoltage Caused by System Islanding 314 -- 7.3 Slow-front Overvoltages 317 -- 7.3.1 Line Energization Overvoltages from a Lumped Source 317 -- 7.3.2 Line Energization Overvoltages from a Complex Source 329 -- 7.3.3 Analysis of Statistical Distribution of Energization Overvoltages 332 -- 7.4 Leading Current Interruption 341 -- 7.5 Zero-missing Phenomenon 342 -- 7.5.1 Zero-missing Phenomenon and Countermeasures 342 -- 7.5.2 Sequential Switching 344 -- 7.6 Cable Discharge 346 -- References 347 -- 8 Cable Transient in Distributed Generation System 351 /Naoto Nagaoka -- 8.1 Transient Simulation of Wind Farm 351 -- 8.1.1 Circuit Diagram 351 -- 8.1.2 Cable Model and Dominant Frequency 352 -- 8.1.3 Data for Cable Parameters 354 -- 8.1.4 EMTP Data Structure 359 -- 8.1.5 Results of Pre-calculation 363 -- 8.1.6 Cable Energization 364 -- 8.2 Transients in a Solar Plant 374 -- 8.2.1 Modeling of Solar Plant 374 -- 8.2.2 Simulated Results 379 -- References 388 -- Index 391.
Record Nr. UNINA-9910131273703321
Ametani Akihiro  
Chichester, West Sussex, : , : John Wiley & Sons, Ltd, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cable system transients : theory, modeling and simulation / / Akihiro Ametani, Teruo Ohno, Naoto Nagaoka
Cable system transients : theory, modeling and simulation / / Akihiro Ametani, Teruo Ohno, Naoto Nagaoka
Autore Ametani Akihiro
Pubbl/distr/stampa Chichester, West Sussex, : , : John Wiley & Sons, Ltd, , [2015]
Descrizione fisica 1 online resource (414 pages)
Disciplina 621.387/84
Altri autori (Persone) OhnoTeruo
NagaokaNaoto
Soggetto topico Transients (Electricity) - Simulation methods
Electric lines - Simulation methods
ISBN 1-118-70218-2
1-118-70215-8
1-118-70216-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Authors xi -- Preface xiii -- Acknowledgements xv -- 1 Various Cables Used in Practice 1 /Teruo Ohno -- 1.1 Introduction 1 -- 1.2 Land Cables 3 -- 1.2.1 Introduction 3 -- 1.2.2 XLPE Cables 4 -- 1.2.3 SCOF Cables 9 -- 1.2.4 HPOF Cables 10 -- 1.3 Submarine Cables 11 -- 1.3.1 Introduction 11 -- 1.3.2 HVAC Submarine Cables 11 -- 1.3.3 HVDC Submarine Cables 12 -- 1.4 Laying Configurations 13 -- 1.4.1 Burial Condition 13 -- 1.4.2 Sheath Bonding 14 -- References 19 -- 2 Impedance and Admittance Formulas 21 /Akihiro Ametani -- 2.1 Single-core Coaxial Cable (SC Cable) 22 -- 2.1.1 Impedance 22 -- 2.1.2 Potential Coefficient 25 -- 2.2 Pipe-enclosed Type Cable (PT Cable) 27 -- 2.2.1 Impedance 27 -- 2.2.2 Potential Coefficient 29 -- 2.3 Arbitrary Cross-section Conductor 31 -- 2.3.1 Equivalent Cylindrical Conductor 31 -- 2.3.2 Examples 32 -- 2.4 Semiconducting Layer Impedance 35 -- 2.4.1 Derivation of Impedance 35 -- 2.4.2 Impedance of Two-layered Conductor 38 -- 2.4.3 Discussion of the Impedance Formula 38 -- 2.4.4 Admittance of Semiconducting Layer 40 -- 2.4.5 Wave Propagation Characteristic of Cable with Core Outer Semiconducting Layer 40 -- 2.4.6 Concluding Remarks 47 -- 2.5 Discussion of the Formulation 47 -- 2.5.1 Discussion of the Formulas 47 -- 2.5.2 Parameters Influencing Cable Impedance and Admittance 49 -- 2.6 EMTP Subroutines “Cable Constants” and “Cable Parameters” 52 -- 2.6.1 Overhead Line 52 -- 2.6.2 Underground/Overhead Cable 52 -- Appendix 2.A Impedance of an SC Cable Consisting of a Core, a Sheath and an Armor 54 -- Appendix 2.B Potential Coefficient 56 -- Appendix 2.C Internal Impedances of Arbitrary Cross-section Conductor 57 -- Appendix 2.D Derivation of Semiconducting Layer Impedance 58 -- References 61 -- 3 Theory ofWave Propagation in Cables 63 /Akihiro Ametani -- 3.1 Modal Theory 63 -- 3.1.1 Eigenvalues and Vectors 63 -- 3.1.2 Calculation of a Matrix Function by Eigenvalues/Vectors 65 -- 3.1.3 Direct Application of Eigenvalue Theory to a Multi-conductor System 66.
3.1.4 Modal Theory 67 -- 3.1.5 Formulation of Multi-conductor Voltages and Currents 69 -- 3.1.6 Boundary Conditions and Two-port Theory 71 -- 3.1.7 Problems 77 -- 3.2 Basic Characteristics of Wave Propagation on Single-phase SC Cables 78 -- 3.2.1 Basic Propagation Characteristics for a Transient 78 -- 3.2.2 Frequency-dependent Characteristics 81 -- 3.2.3 Time Response of Wave Deformation 84 -- 3.3 Three-phase Underground SC Cables 84 -- 3.3.1 Mutual Coupling between Phases 84 -- 3.3.2 Transformation Matrix 86 -- 3.3.3 Attenuation and Velocity 87 -- 3.3.4 Characteristic Impedance 88 -- 3.4 Effect of Various Parameters of an SC Cable 90 -- 3.4.1 Buried Depth h 91 -- 3.4.2 Earth Resistivity ��e 91 -- 3.4.3 Sheath Thickness d 91 -- 3.4.4 Sheath Resistivity ��s 91 -- 3.4.5 Arrangement of a Three-phase SC Cable 93 -- 3.5 Cross-bonded Cable 94 -- 3.5.1 Introduction of Cross-bonded Cable 94 -- 3.5.2 Theoretical Formulation of a Cross-bonded Cable 95 -- 3.5.3 Homogeneous Model of a Cross-bonded Cable 102 -- 3.5.4 Difference between Tunnel-installed and Buried Cables 105 -- 3.6 PT Cable 114 -- 3.6.1 Introduction of PT Cable 114 -- 3.6.2 PT Cable with Finite-pipe Thickness 115 -- 3.6.3 Effect of Eccentricity of Inner Conductor 128 -- 3.6.4 Effect of the Permittivity of the Pipe Inner Insulator 133 -- 3.6.5 Overhead PT Cable 133 -- 3.7 Propagation Characteristics of Intersheath Modes 134 -- 3.7.1 Theoretical Analysis of Intersheath Modes 134 -- 3.7.2 Transients on a Cross-bonded Cable 144 -- 3.7.3 Earth-return Mode 159 -- 3.7.4 Concluding Remarks 160 -- References 160 -- 4 Cable Modeling for Transient Simulations 163 /Teruo Ohno and Akihiro Ametani -- 4.1 Sequence Impedances Using a Lumped PI-circuit Model 163 -- 4.1.1 Solidly Bonded Cables 163 -- 4.1.2 Cross-bonded Cables 167 -- 4.1.3 Derivation of Sequence Impedance Formulas 168 -- 4.2 Electromagnetic Transients Program (EMTP) Cable Models for Transient Simulations 174 -- 4.3 Dommel Model 175 -- 4.4 Semlyen Frequency-dependent Model 176.
4.4.1 Semlyen Model 177 -- 4.4.2 Linear Model 178 -- 4.5 Marti Model 178 -- 4.6 Latest Frequency-dependent Models 179 -- 4.6.1 Vector Fitting 179 -- 4.6.2 Frequency Region Partitioning Algorithm 181 -- References 182 -- 5 Basic Characteristics of Transients on Single-phase Cables 185 /Akihiro Ametani -- 5.1 Single-core Coaxial (SC) Cable 185 -- 5.1.1 Experimental Observations 185 -- 5.1.2 EMTP Simulations 187 -- 5.1.3 Theoretical Analysis 192 -- 5.1.4 Analytical Evaluation of Parameters 203 -- 5.1.5 Analytical Calculation of Transient Voltages 204 -- 5.1.6 Concluding Remarks 211 -- 5.2 Pipe-enclosed Type (PT) Cable-Effect of Eccentricity 212 -- 5.2.1 Model Circuit for the EMTP Simulation 212 -- 5.2.2 Simulation Results for Step-function Voltage Source 214 -- 5.2.3 FDTD Simulation 218 -- 5.2.4 Theoretical Analysis 218 -- 5.2.5 Concluding Remarks 224 -- 5.3 Effect of a Semiconducting Layer on a Transient 225 -- 5.3.1 Step Function Voltage Applied to a 2 km Cable 225 -- 5.3.2 5 x 70 μs Impulse Voltage Applied to a 40 km Cable 226 -- References 227 -- 6 Transient on Three-phase Cables in a Real System 229 /Akihiro Ametani -- 6.1 Cross-bonded Cable 229 -- 6.1.1 Field Test on an 110 kV Oil-filled (OF) Cable 229 -- 6.1.2 Effect of Cross-bonding 229 -- 6.1.3 Effect of Various Parameters 232 -- 6.1.4 Homogeneous Model (See Section 3.5.3) 237 -- 6.1.5 PAI-circuit Model 239 -- 6.2 Tunnel-installed 275 kV Cable 240 -- 6.2.1 Cable Configuration 240 -- 6.2.2 Effect of Geometrical Parameters on Wave Propagation 241 -- 6.2.3 Field Test on 275 kV XLPE Cable 243 -- 6.2.4 Concluding Remarks 249 -- 6.3 Cable Installed Underneath a Bridge 252 -- 6.3.1 Model System 252 -- 6.3.2 Effect of an Overhead Cable and a Bridge 253 -- 6.3.3 Effect of Overhead Lines on a Cable Transient 257 -- 6.4 Cable Modeling in EMTP Simulations 262 -- 6.4.1 Marti's and Dommel's Cable Models 262 -- 6.4.2 Homogeneous Cable Model (See Section 3.5.3) 265 -- 6.4.3 Effect of Tunnel-installed Cable 265 -- 6.5 Pipe-enclosed Type (PT) Cable 266.
6.5.1 Field Test on a 275 kV Pressure Oil-filled (POF) Cable 266 -- 6.5.2 Measured Results 267 -- 6.5.3 FTP Simulation 269 -- 6.6 Gas-insulated Substation (GIS) - Overhead Cables 274 -- 6.6.1 Basic Characteristic of an Overhead Cable 274 -- 6.6.2 Effect of Spacer in a Bus 275 -- 6.6.3 Three-phase Underground Gas-insulated Line 281 -- 6.6.4 Switching Surges in a 500 kV GIS 282 -- 6.6.5 Basic Characteristics of Switching Surges Induced to a Control Cable 284 -- Appendix 6.A 293 -- Appendix 6.B 295 -- References 295 -- 7 Examples of Cable System Transients 297 /Teruo Ohno -- 7.1 Reactive Power Compensation 297 -- 7.2 Temporary Overvoltages 298 -- 7.2.1 Series Resonance Overvoltage 298 -- 7.2.2 Parallel Resonance Overvoltage 310 -- 7.2.3 Overvoltage Caused by System Islanding 314 -- 7.3 Slow-front Overvoltages 317 -- 7.3.1 Line Energization Overvoltages from a Lumped Source 317 -- 7.3.2 Line Energization Overvoltages from a Complex Source 329 -- 7.3.3 Analysis of Statistical Distribution of Energization Overvoltages 332 -- 7.4 Leading Current Interruption 341 -- 7.5 Zero-missing Phenomenon 342 -- 7.5.1 Zero-missing Phenomenon and Countermeasures 342 -- 7.5.2 Sequential Switching 344 -- 7.6 Cable Discharge 346 -- References 347 -- 8 Cable Transient in Distributed Generation System 351 /Naoto Nagaoka -- 8.1 Transient Simulation of Wind Farm 351 -- 8.1.1 Circuit Diagram 351 -- 8.1.2 Cable Model and Dominant Frequency 352 -- 8.1.3 Data for Cable Parameters 354 -- 8.1.4 EMTP Data Structure 359 -- 8.1.5 Results of Pre-calculation 363 -- 8.1.6 Cable Energization 364 -- 8.2 Transients in a Solar Plant 374 -- 8.2.1 Modeling of Solar Plant 374 -- 8.2.2 Simulated Results 379 -- References 388 -- Index 391.
Record Nr. UNINA-9910808622403321
Ametani Akihiro  
Chichester, West Sussex, : , : John Wiley & Sons, Ltd, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Real-time electromagnetic transient simulation of AC-DC networks / / Venkata Dinavahi, Ning Lin
Real-time electromagnetic transient simulation of AC-DC networks / / Venkata Dinavahi, Ning Lin
Autore Dinavahi Venkata
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley : , : IEEE Press, , [2021]
Descrizione fisica 1 online resource (595 pages)
Disciplina 621.31921
Collana IEEE Press series on power and energy systems
Soggetto topico Transients (Electricity) - Simulation methods
Soggetto genere / forma Electronic books.
ISBN 1-119-69547-3
1-119-81903-2
1-119-69549-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- List of Acronyms -- Chapter 1 Field Programmable Gate Arrays -- 1.1 Overview -- 1.1.1 FPGA Hardware Architecture -- 1.1.2 Configurable Logic Block -- 1.1.3 Block RAM -- 1.1.4 Digital Signal Processing Slice -- 1.2 Multiprocessing System‐on‐Chip Architecture -- 1.3 Communication -- 1.4 HIL Emulation -- 1.4.1 Vivado® High‐Level Synthesis Tool -- 1.4.2 Vivado® Top‐Level Design -- 1.4.3 Number Representation and Operations -- 1.4.4 FPGA Design Schemes -- 1.4.4.1 Pipeline Design Architecture -- 1.4.4.2 Parallel Design Architecture -- 1.4.5 FPGA Experiment -- 1.5 Summary -- Chapter 2 Hardware Emulation Building Blocks for Power System Components -- 2.1 Overview -- 2.2 Concept of HEBB -- 2.3 Numerical Integration -- 2.4 Linear Lumped Passive Elements -- 2.4.1 Model Formulation -- 2.4.1.1 Resistance R -- 2.4.1.2 Inductance L -- 2.4.1.3 Capacitance C -- 2.4.1.4 RL Branch -- 2.4.1.5 LC Branch -- 2.4.1.6 RLCG Branch -- 2.4.2 Hardware Emulation of Linear Lumped Passive Elements -- 2.5 Sources -- 2.5.1 Hardware Emulation of Sources -- 2.6 Switches -- 2.6.1 Hardware Emulation of Switches -- 2.7 Transmission Lines -- 2.7.1 Traveling Waves -- 2.7.2 Traveling Wave Model -- 2.7.2.1 Modal Transformation -- 2.7.3 Hardware Emulation of the TWM -- 2.7.3.1 Transformation Unit -- 2.7.3.2 Update Unit -- 2.7.4 Frequency Dependent Line Model -- 2.7.5 Hardware Emulation of FDLM -- 2.7.5.1 Convolution Unit -- 2.7.5.2 Update Unit -- 2.7.6 Universal Line Model -- 2.7.6.1 Frequency‐Domain Formulation -- 2.7.6.2 Time‐Domain Formulation -- 2.7.7 Hardware Emulation of the ULM -- 2.7.7.1 Update x Unit -- 2.7.7.2 Convolution Unit -- 2.7.7.3 Interpolation Unit -- 2.8 Network Solver -- 2.8.1 Hardware Emulation of Network Solver -- 2.8.2 Paralleled EMT Solution Algorithm.
2.8.3 MainControl Module -- 2.8.4 Real‐Time Emulation Case Study -- 2.9 Nonlinear Elements: Iterative Real‐Time EMT Solver -- 2.9.1 Compensation Method -- 2.9.2 Newton-Raphson Method -- 2.9.3 Hardware Emulation of Nonlinear Solver -- 2.9.3.1 Nonlinear Function Evaluation -- 2.9.3.2 Parallel Calculation of J and F(ikm) -- 2.9.3.3 Parallel Gauss-Jordan Elimination -- 2.9.3.4 Computing vc -- 2.9.4 Case Studies -- 2.10 Summary -- Chapter 3 Power Transformers -- 3.1 Overview -- 3.2 Nonlinear Admittance‐Based Real‐Time Transformer Model -- 3.2.1 Linear Model Formulation -- 3.2.2 Linear Module Hardware Design -- 3.2.3 Inode Unit Module -- 3.2.4 Nonlinear Model Solution -- 3.2.4.1 Preisach Hysteresis Model -- 3.2.4.2 Nonlinear Module Hardware Design -- 3.2.5 Frequency‐Dependent Eddy Current Model -- 3.2.6 Hardware Emulation of Power Transformer -- 3.2.7 Real‐Time Emulation Case Studies -- 3.2.7.1 Case I -- 3.2.7.2 Case II -- 3.3 Nonlinear Magnetic Equivalent Circuit Based Real‐time Multi‐Winding Transformer Model -- 3.3.1 Topological ST EMT Model -- 3.3.1.1 ST Operating Principle -- 3.3.1.2 Tap‐selection Algorithm -- 3.3.1.3 High‐Fidelity Nonlinear MEC‐Based ST Model -- 3.3.1.4 Iron Core Hysteresis and Eddy Currents -- 3.3.2 High‐Fidelity Nonlinear MEC‐Based ST Hardware Emulation -- 3.3.2.1 Network Transient Emulation with Embedded ST -- 3.3.3 Real‐Time Emulation Case Studies -- 3.3.3.1 Finite Element Modeling and Validation -- 3.3.3.2 Case Studies -- 3.4 Real‐Time Finite‐Element Model of Power Transformer -- 3.4.1 Magnetodynamic Problem Formulation -- 3.4.1.1 Refined TLM Solution -- 3.4.1.2 Field‐Circuit Coupling -- 3.4.2 Hardware Emulation of Finite Element Model -- 3.4.3 Case Studies -- 3.4.3.1 Results and Validation -- 3.4.3.2 Speed‐up and Scalability -- 3.5 Summary -- Chapter 4 Rotating Machines -- 4.1 Overview -- 4.2 Lumped Universal Machine (UM) Model.
4.2.1 UM Model Formulation -- 4.2.2 Interfacing UM Model with Network -- 4.2.3 UM HEBB -- 4.2.3.1 Speed & -- Angle Unit -- 4.2.3.2 FrmTran Unit -- 4.2.3.3 Compidq0 Unit -- 4.2.3.4 Flux & -- Torque Unit -- 4.2.3.5 Update & -- CompVc Unit -- 4.2.4 Real‐Time Emulation Case Study -- 4.2.5 Overall Power System HEBB for Real‐Time EMT Emulation -- 4.3 General Framework for State‐Space Electrical Machine Emulation -- 4.3.1 FPGA Design Approaches for Electrical Machine Emulation -- 4.3.2 State‐Space Representation of Machine Models -- 4.3.3 System Configuration on FPGA -- 4.3.3.1 Number Representation -- 4.3.3.2 Floating‐Point Implementation by VHDL -- 4.3.3.3 Fixed‐Point Implementation by Schematic -- 4.3.4 Evaluation of Designed Architectures -- 4.3.4.1 Real‐Time Emulation Accuracy Assessment -- 4.3.4.2 Off‐line Validation -- 4.3.4.3 Hardware Resource Utilization -- 4.3.5 Real‐Time Emulation Case Studies -- 4.3.5.1 Case I: Induction Motor Transients -- 4.3.5.2 Case II: Synchronous Generator Transients -- 4.3.5.3 Case III: Line Start‐Permanent Magnet Synchronous Motor Transients -- 4.3.5.4 Case IV: DC Motor Transients -- 4.4 Nonlinear Magnetic Equivalent Circuit Based Induction Machine Model -- 4.4.1 Magnetic Circuit -- 4.4.2 Interfacing of Magnetic and Electric Circuits -- 4.4.3 Electric Circuit -- 4.4.4 Nonlinear Solution of Detailed MEC -- 4.4.5 Hardware Emulation of Nonlinear MEC -- 4.4.5.1 Parallel Gauss-Jordan Elimination Unit -- 4.4.5.2 Parallel Computational Unit for Residual Vector -- 4.4.5.3 Nonlinear Evaluation Unit -- 4.4.6 Evaluation of Real‐Time Emulation of Induction Machine -- 4.5 Summary -- Chapter 5 Protective Relays -- 5.1 Overview -- 5.2 Hardware Emulation of Multifunction Protection System -- 5.2.1 Signal Processing HEBB -- 5.2.1.1 CORDIC HEBB -- 5.2.1.2 Symmetrical Components HEBB -- 5.2.1.3 DFT HEBB.
5.2.1.4 Zero‐Crossing Detection HEBB -- 5.2.2 Multifunction Protective System HEBB -- 5.2.2.1 Fault Detection HEBB -- 5.2.2.2 Directional Overcurrent Protection HEBB -- 5.2.2.3 Over/Under Voltage Protection HEBB -- 5.2.2.4 Distance Protection HEBB -- 5.2.2.5 Under/Over Frequency Protection HEBB -- 5.3 Test Setup and Real‐Time Results -- 5.3.1 Case I -- 5.3.2 Case II -- 5.4 Summary -- Chapter 6 Adaptive Time‐Stepping Based Real‐Time EMT Emulation -- 6.1 Overview -- 6.2 Nonlinear Solution and Adaptive Time‐Stepping Schemes -- 6.2.1 Nonlinear Element Solution Methods -- 6.2.1.1 Newton-Raphson Method -- 6.2.1.2 Piecewise Linearization (PWL) Method -- 6.2.1.3 Piecewise N‐R Method -- 6.2.2 Adaptive Time‐Stepping Schemes -- 6.2.2.1 Local Truncation Error Method -- 6.2.2.2 Iteration Count Method -- 6.2.2.3 DVDT or DIDT Method -- 6.2.3 Combinations of Adaptive Time‐Stepping Schemes -- 6.2.3.1 Measurements and Restrictions for Real‐Time Emulation -- 6.2.4 Case Studies -- 6.2.4.1 Diode Full‐Bridge Circuit -- 6.2.4.2 Power Transmission System -- 6.2.4.3 FPGA Implementation -- 6.2.4.4 Real‐Time Emulation Results -- 6.3 Adaptive Time‐Stepping Universal Line Model and Universal Machine Model for Real‐Time Hardware Emulation -- 6.3.1 Subsystem‐Based Adaptive Time‐Stepping Scheme -- 6.3.2 Adaptive Time‐Stepping ULM and UM Models -- 6.3.2.1 ULM Computation -- 6.3.2.2 Universal Machine Model Computation -- 6.3.3 Real‐Time Emulation Case Study -- 6.3.3.1 Hardware Implementation -- 6.3.3.2 Latency and Hardware Resource Utilization -- 6.3.4 Results and Validation -- 6.3.4.1 Validation of the ULM Model -- 6.3.4.2 Real‐Time Emulation Results -- 6.4 Summary -- Chapter 7 Power Electronic Switches -- 7.1 Overview -- 7.2 IGBT/Diode Nonlinear Behavioral Model -- 7.2.1 Power Diode -- 7.2.1.1 Mathematical Model -- 7.2.1.2 Hardware Module Architecture -- 7.2.2 IGBT.
7.2.2.1 Model Formulation -- 7.2.2.2 Hardware Module Architecture -- 7.2.2.3 Multiple Parallel Devices -- 7.2.3 Electro‐Thermal Network -- 7.2.4 Hardware Emulation Results -- 7.3 Physics‐Based Nonlinear IGBT/Diode Model -- 7.3.1 Physics‐Based Nonlinear p-i-n Diode Model -- 7.3.1.1 Model Formulation -- 7.3.1.2 Model Discretization and Linearization -- 7.3.1.3 Hardware Emulation on FPGA -- 7.3.2 Physics‐Based Nonlinear IGBT Model -- 7.3.2.1 Model Formulation -- 7.3.2.2 Model Discretization and Linearization -- 7.3.2.3 Hardware Emulation on FPGA -- 7.3.3 Hardware Emulation Results -- 7.3.3.1 Test circuit -- 7.3.3.2 Results and comparison -- 7.4 IGBT/Diode Curve‐Fitting Model -- 7.4.1 Linear Static Curve‐fitting Model -- 7.4.1.1 Static Characteristics -- 7.4.1.2 Switching Transients -- 7.4.2 Nonlinear Dynamic Curve‐fitting Model -- 7.4.3 Hardware Emulation Results -- 7.5 Summary -- Chapter 8 AC-DC Converters -- 8.1 Overview -- 8.2 Detailed Model -- 8.2.1 Detailed Equivalent Circuit Model -- 8.3 Equivalenced Device‐Level Model -- 8.3.1 Power Loss Calculation -- 8.3.2 Thermal Network Calculation -- 8.3.3 Hardware Emulation of SM Model on FPGA -- 8.3.4 MMC System Hardware Emulation -- 8.3.5 Real‐Time Emulation Results -- 8.3.5.1 Test Circuit and Hardware Resource Utilization -- 8.3.5.2 Results and Comparison for Single‐Phase Five‐Level MMC -- 8.3.5.3 Results for Three‐Phase Nine‐Level MMC -- 8.4 Virtual‐Line‐Partitioned Device‐Level Models -- 8.4.1 TLM‐Link Partitioning -- 8.4.2 Hardware Design on FPGA -- 8.4.2.1 Hardware Platform -- 8.4.2.2 Controller Emulation -- 8.4.2.3 MMC Emulation on FPGA -- 8.4.3 Real‐Time Emulation Results -- 8.4.3.1 MMC -- 8.4.3.2 Induction Machine Driven by Five‐Level MMC -- 8.5 MMC Partitioned by Coupled Voltage-Current Sources -- 8.5.1 V-I Coupling -- 8.5.2 Hardware Emulation Case of NBM‐Based MMC.
8.5.2.1 Power Converter HIL Emulation.
Record Nr. UNINA-9910554813203321
Dinavahi Venkata  
Hoboken, New Jersey : , : Wiley : , : IEEE Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Real-time electromagnetic transient simulation of AC-DC networks / / Venkata Dinavahi, Ning Lin
Real-time electromagnetic transient simulation of AC-DC networks / / Venkata Dinavahi, Ning Lin
Autore Dinavahi Venkata
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley : , : IEEE Press, , [2021]
Descrizione fisica 1 online resource (595 pages)
Disciplina 621.31921
Collana IEEE Press series on power and energy systems
Soggetto topico Transients (Electricity) - Simulation methods
ISBN 1-119-69547-3
1-119-81903-2
1-119-69549-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- List of Acronyms -- Chapter 1 Field Programmable Gate Arrays -- 1.1 Overview -- 1.1.1 FPGA Hardware Architecture -- 1.1.2 Configurable Logic Block -- 1.1.3 Block RAM -- 1.1.4 Digital Signal Processing Slice -- 1.2 Multiprocessing System‐on‐Chip Architecture -- 1.3 Communication -- 1.4 HIL Emulation -- 1.4.1 Vivado® High‐Level Synthesis Tool -- 1.4.2 Vivado® Top‐Level Design -- 1.4.3 Number Representation and Operations -- 1.4.4 FPGA Design Schemes -- 1.4.4.1 Pipeline Design Architecture -- 1.4.4.2 Parallel Design Architecture -- 1.4.5 FPGA Experiment -- 1.5 Summary -- Chapter 2 Hardware Emulation Building Blocks for Power System Components -- 2.1 Overview -- 2.2 Concept of HEBB -- 2.3 Numerical Integration -- 2.4 Linear Lumped Passive Elements -- 2.4.1 Model Formulation -- 2.4.1.1 Resistance R -- 2.4.1.2 Inductance L -- 2.4.1.3 Capacitance C -- 2.4.1.4 RL Branch -- 2.4.1.5 LC Branch -- 2.4.1.6 RLCG Branch -- 2.4.2 Hardware Emulation of Linear Lumped Passive Elements -- 2.5 Sources -- 2.5.1 Hardware Emulation of Sources -- 2.6 Switches -- 2.6.1 Hardware Emulation of Switches -- 2.7 Transmission Lines -- 2.7.1 Traveling Waves -- 2.7.2 Traveling Wave Model -- 2.7.2.1 Modal Transformation -- 2.7.3 Hardware Emulation of the TWM -- 2.7.3.1 Transformation Unit -- 2.7.3.2 Update Unit -- 2.7.4 Frequency Dependent Line Model -- 2.7.5 Hardware Emulation of FDLM -- 2.7.5.1 Convolution Unit -- 2.7.5.2 Update Unit -- 2.7.6 Universal Line Model -- 2.7.6.1 Frequency‐Domain Formulation -- 2.7.6.2 Time‐Domain Formulation -- 2.7.7 Hardware Emulation of the ULM -- 2.7.7.1 Update x Unit -- 2.7.7.2 Convolution Unit -- 2.7.7.3 Interpolation Unit -- 2.8 Network Solver -- 2.8.1 Hardware Emulation of Network Solver -- 2.8.2 Paralleled EMT Solution Algorithm.
2.8.3 MainControl Module -- 2.8.4 Real‐Time Emulation Case Study -- 2.9 Nonlinear Elements: Iterative Real‐Time EMT Solver -- 2.9.1 Compensation Method -- 2.9.2 Newton-Raphson Method -- 2.9.3 Hardware Emulation of Nonlinear Solver -- 2.9.3.1 Nonlinear Function Evaluation -- 2.9.3.2 Parallel Calculation of J and F(ikm) -- 2.9.3.3 Parallel Gauss-Jordan Elimination -- 2.9.3.4 Computing vc -- 2.9.4 Case Studies -- 2.10 Summary -- Chapter 3 Power Transformers -- 3.1 Overview -- 3.2 Nonlinear Admittance‐Based Real‐Time Transformer Model -- 3.2.1 Linear Model Formulation -- 3.2.2 Linear Module Hardware Design -- 3.2.3 Inode Unit Module -- 3.2.4 Nonlinear Model Solution -- 3.2.4.1 Preisach Hysteresis Model -- 3.2.4.2 Nonlinear Module Hardware Design -- 3.2.5 Frequency‐Dependent Eddy Current Model -- 3.2.6 Hardware Emulation of Power Transformer -- 3.2.7 Real‐Time Emulation Case Studies -- 3.2.7.1 Case I -- 3.2.7.2 Case II -- 3.3 Nonlinear Magnetic Equivalent Circuit Based Real‐time Multi‐Winding Transformer Model -- 3.3.1 Topological ST EMT Model -- 3.3.1.1 ST Operating Principle -- 3.3.1.2 Tap‐selection Algorithm -- 3.3.1.3 High‐Fidelity Nonlinear MEC‐Based ST Model -- 3.3.1.4 Iron Core Hysteresis and Eddy Currents -- 3.3.2 High‐Fidelity Nonlinear MEC‐Based ST Hardware Emulation -- 3.3.2.1 Network Transient Emulation with Embedded ST -- 3.3.3 Real‐Time Emulation Case Studies -- 3.3.3.1 Finite Element Modeling and Validation -- 3.3.3.2 Case Studies -- 3.4 Real‐Time Finite‐Element Model of Power Transformer -- 3.4.1 Magnetodynamic Problem Formulation -- 3.4.1.1 Refined TLM Solution -- 3.4.1.2 Field‐Circuit Coupling -- 3.4.2 Hardware Emulation of Finite Element Model -- 3.4.3 Case Studies -- 3.4.3.1 Results and Validation -- 3.4.3.2 Speed‐up and Scalability -- 3.5 Summary -- Chapter 4 Rotating Machines -- 4.1 Overview -- 4.2 Lumped Universal Machine (UM) Model.
4.2.1 UM Model Formulation -- 4.2.2 Interfacing UM Model with Network -- 4.2.3 UM HEBB -- 4.2.3.1 Speed & -- Angle Unit -- 4.2.3.2 FrmTran Unit -- 4.2.3.3 Compidq0 Unit -- 4.2.3.4 Flux & -- Torque Unit -- 4.2.3.5 Update & -- CompVc Unit -- 4.2.4 Real‐Time Emulation Case Study -- 4.2.5 Overall Power System HEBB for Real‐Time EMT Emulation -- 4.3 General Framework for State‐Space Electrical Machine Emulation -- 4.3.1 FPGA Design Approaches for Electrical Machine Emulation -- 4.3.2 State‐Space Representation of Machine Models -- 4.3.3 System Configuration on FPGA -- 4.3.3.1 Number Representation -- 4.3.3.2 Floating‐Point Implementation by VHDL -- 4.3.3.3 Fixed‐Point Implementation by Schematic -- 4.3.4 Evaluation of Designed Architectures -- 4.3.4.1 Real‐Time Emulation Accuracy Assessment -- 4.3.4.2 Off‐line Validation -- 4.3.4.3 Hardware Resource Utilization -- 4.3.5 Real‐Time Emulation Case Studies -- 4.3.5.1 Case I: Induction Motor Transients -- 4.3.5.2 Case II: Synchronous Generator Transients -- 4.3.5.3 Case III: Line Start‐Permanent Magnet Synchronous Motor Transients -- 4.3.5.4 Case IV: DC Motor Transients -- 4.4 Nonlinear Magnetic Equivalent Circuit Based Induction Machine Model -- 4.4.1 Magnetic Circuit -- 4.4.2 Interfacing of Magnetic and Electric Circuits -- 4.4.3 Electric Circuit -- 4.4.4 Nonlinear Solution of Detailed MEC -- 4.4.5 Hardware Emulation of Nonlinear MEC -- 4.4.5.1 Parallel Gauss-Jordan Elimination Unit -- 4.4.5.2 Parallel Computational Unit for Residual Vector -- 4.4.5.3 Nonlinear Evaluation Unit -- 4.4.6 Evaluation of Real‐Time Emulation of Induction Machine -- 4.5 Summary -- Chapter 5 Protective Relays -- 5.1 Overview -- 5.2 Hardware Emulation of Multifunction Protection System -- 5.2.1 Signal Processing HEBB -- 5.2.1.1 CORDIC HEBB -- 5.2.1.2 Symmetrical Components HEBB -- 5.2.1.3 DFT HEBB.
5.2.1.4 Zero‐Crossing Detection HEBB -- 5.2.2 Multifunction Protective System HEBB -- 5.2.2.1 Fault Detection HEBB -- 5.2.2.2 Directional Overcurrent Protection HEBB -- 5.2.2.3 Over/Under Voltage Protection HEBB -- 5.2.2.4 Distance Protection HEBB -- 5.2.2.5 Under/Over Frequency Protection HEBB -- 5.3 Test Setup and Real‐Time Results -- 5.3.1 Case I -- 5.3.2 Case II -- 5.4 Summary -- Chapter 6 Adaptive Time‐Stepping Based Real‐Time EMT Emulation -- 6.1 Overview -- 6.2 Nonlinear Solution and Adaptive Time‐Stepping Schemes -- 6.2.1 Nonlinear Element Solution Methods -- 6.2.1.1 Newton-Raphson Method -- 6.2.1.2 Piecewise Linearization (PWL) Method -- 6.2.1.3 Piecewise N‐R Method -- 6.2.2 Adaptive Time‐Stepping Schemes -- 6.2.2.1 Local Truncation Error Method -- 6.2.2.2 Iteration Count Method -- 6.2.2.3 DVDT or DIDT Method -- 6.2.3 Combinations of Adaptive Time‐Stepping Schemes -- 6.2.3.1 Measurements and Restrictions for Real‐Time Emulation -- 6.2.4 Case Studies -- 6.2.4.1 Diode Full‐Bridge Circuit -- 6.2.4.2 Power Transmission System -- 6.2.4.3 FPGA Implementation -- 6.2.4.4 Real‐Time Emulation Results -- 6.3 Adaptive Time‐Stepping Universal Line Model and Universal Machine Model for Real‐Time Hardware Emulation -- 6.3.1 Subsystem‐Based Adaptive Time‐Stepping Scheme -- 6.3.2 Adaptive Time‐Stepping ULM and UM Models -- 6.3.2.1 ULM Computation -- 6.3.2.2 Universal Machine Model Computation -- 6.3.3 Real‐Time Emulation Case Study -- 6.3.3.1 Hardware Implementation -- 6.3.3.2 Latency and Hardware Resource Utilization -- 6.3.4 Results and Validation -- 6.3.4.1 Validation of the ULM Model -- 6.3.4.2 Real‐Time Emulation Results -- 6.4 Summary -- Chapter 7 Power Electronic Switches -- 7.1 Overview -- 7.2 IGBT/Diode Nonlinear Behavioral Model -- 7.2.1 Power Diode -- 7.2.1.1 Mathematical Model -- 7.2.1.2 Hardware Module Architecture -- 7.2.2 IGBT.
7.2.2.1 Model Formulation -- 7.2.2.2 Hardware Module Architecture -- 7.2.2.3 Multiple Parallel Devices -- 7.2.3 Electro‐Thermal Network -- 7.2.4 Hardware Emulation Results -- 7.3 Physics‐Based Nonlinear IGBT/Diode Model -- 7.3.1 Physics‐Based Nonlinear p-i-n Diode Model -- 7.3.1.1 Model Formulation -- 7.3.1.2 Model Discretization and Linearization -- 7.3.1.3 Hardware Emulation on FPGA -- 7.3.2 Physics‐Based Nonlinear IGBT Model -- 7.3.2.1 Model Formulation -- 7.3.2.2 Model Discretization and Linearization -- 7.3.2.3 Hardware Emulation on FPGA -- 7.3.3 Hardware Emulation Results -- 7.3.3.1 Test circuit -- 7.3.3.2 Results and comparison -- 7.4 IGBT/Diode Curve‐Fitting Model -- 7.4.1 Linear Static Curve‐fitting Model -- 7.4.1.1 Static Characteristics -- 7.4.1.2 Switching Transients -- 7.4.2 Nonlinear Dynamic Curve‐fitting Model -- 7.4.3 Hardware Emulation Results -- 7.5 Summary -- Chapter 8 AC-DC Converters -- 8.1 Overview -- 8.2 Detailed Model -- 8.2.1 Detailed Equivalent Circuit Model -- 8.3 Equivalenced Device‐Level Model -- 8.3.1 Power Loss Calculation -- 8.3.2 Thermal Network Calculation -- 8.3.3 Hardware Emulation of SM Model on FPGA -- 8.3.4 MMC System Hardware Emulation -- 8.3.5 Real‐Time Emulation Results -- 8.3.5.1 Test Circuit and Hardware Resource Utilization -- 8.3.5.2 Results and Comparison for Single‐Phase Five‐Level MMC -- 8.3.5.3 Results for Three‐Phase Nine‐Level MMC -- 8.4 Virtual‐Line‐Partitioned Device‐Level Models -- 8.4.1 TLM‐Link Partitioning -- 8.4.2 Hardware Design on FPGA -- 8.4.2.1 Hardware Platform -- 8.4.2.2 Controller Emulation -- 8.4.2.3 MMC Emulation on FPGA -- 8.4.3 Real‐Time Emulation Results -- 8.4.3.1 MMC -- 8.4.3.2 Induction Machine Driven by Five‐Level MMC -- 8.5 MMC Partitioned by Coupled Voltage-Current Sources -- 8.5.1 V-I Coupling -- 8.5.2 Hardware Emulation Case of NBM‐Based MMC.
8.5.2.1 Power Converter HIL Emulation.
Record Nr. UNINA-9910829920603321
Dinavahi Venkata  
Hoboken, New Jersey : , : Wiley : , : IEEE Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transient analysis of power systems : a practical approach / / edited by Juan A. Martinez-Velasco, Retired Professor, Polytechnic University of Catalonia, Barcelona, Spain
Transient analysis of power systems : a practical approach / / edited by Juan A. Martinez-Velasco, Retired Professor, Polytechnic University of Catalonia, Barcelona, Spain
Autore Martinez-Velasco Juan A
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-IEEE Press, , 2020
Descrizione fisica 1 online resource (621 pages)
Disciplina 621.31921
Soggetto topico Transients (Electricity) - Simulation methods
ISBN 1-119-48049-3
1-119-48054-X
1-119-48030-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Editor xv -- List of Contributors xvii -- Preface xix -- About the Companion Website xxi -- 1 Introduction to Transients Analysis of Power Systems with ATP 1 / Juan A. Martinez-Velasco -- 1.1 Overview 1 -- 1.2 The ATP Package 3 -- 1.3 ATP Documentation 5 -- 1.4 Scope of the Book 6 -- References 8 -- 2 Modelling of Power Components for Transients Studies 11 / Juan A. Martinez-Velasco -- 2.1 Introduction 11 -- 2.2 Overhead Lines 12 -- 2.2.1 Overview 12 -- 2.2.2 Multi-conductor Transmission Line Equations and Models 13 -- 2.2.2.1 Transmission Line Equations 13 -- 2.2.2.2 Corona Effect 15 -- 2.2.2.3 Line Constants Routine 15 -- 2.2.3 Transmission Line Towers 16 -- 2.2.4 Transmission Line Grounding 17 -- 2.2.4.1 Introduction 17 -- 2.2.4.2 Low-Frequency Models 17 -- 2.2.4.3 High-Frequency Models 18 -- 2.2.4.4 Treatment of Soil Ionization 20 -- 2.2.5 Transmission Line Insulation 21 -- 2.2.5.1 Voltage-Time Curves 21 -- 2.2.5.2 Integration Methods 22 -- 2.2.5.3 Physical Models 22 -- 2.3 Insulated Cables 23 -- 2.3.1 Overview 23 -- 2.3.2 Insulated Cable Designs 24 -- 2.3.3 Bonding Techniques 25 -- 2.3.4 Material Properties 26 -- 2.3.5 Discussion 27 -- 2.3.6 Cable Constants/Parameters Routines 27 -- 2.4 Transformers 28 -- 2.4.1 Overview 28 -- 2.4.2 Transformer Models for Low-Frequency Transients 31 -- 2.4.2.1 Introduction to Low-Frequency Models 31 -- 2.4.2.2 Single-Phase Transformer Models 32 -- 2.4.2.3 Three-Phase Transformer Models 36 -- 2.4.3 Transformer Modelling for High-Frequency Transients 37 -- 2.4.3.1 Introduction to High-Frequency Models 37 -- 2.4.3.2 Models for Internal Voltage Calculation 39 -- 2.4.3.3 Terminal Models 41 -- 2.5 Rotating Machines 45 -- 2.5.1 Overview 45 -- 2.5.2 Rotating Machine Models for Low-Frequency Transients 46 -- 2.5.2.1 Introduction 46 -- 2.5.2.2 Modelling of Induction Machines 46 -- 2.5.2.3 Modelling of Synchronous Machines 51 -- 2.5.3 High-Frequency Models for Rotating Machine Windings 55 -- 2.5.3.1 Introduction 55 -- 2.5.3.2 Internal Models 56.
2.5.3.3 Terminal Models 58 -- 2.6 Circuit Breakers 58 -- 2.6.1 Overview 58 -- 2.6.2 Circuit Breaker Models for Opening Operations 59 -- 2.6.2.1 Current Interruption 59 -- 2.6.2.2 Circuit Breaker Models 60 -- 2.6.2.3 Gas-Filled Circuit Breaker Models 61 -- 2.6.2.4 Vacuum Circuit Breaker Models 62 -- 2.6.3 Circuit Breaker Models for Closing Operations 64 -- 2.6.3.1 Introduction 64 -- 2.6.3.2 Statistical Switches 65 -- 2.6.3.3 Prestrike Models 66 -- Acknowledgement 66 -- References 66 -- 3 Solution Techniques for Electromagnetic Transient Analysis 75 / Juan A. Martinez-Velasco -- 3.1 Introduction 75 -- 3.2 Modelling of Power System Components for Transient Analysis 76 -- 3.3 Solution Techniques for Electromagnetic Transients Analysis 78 -- 3.3.1 Introduction 78 -- 3.3.2 Solution Techniques for Linear Networks 78 -- 3.3.2.1 The Trapezoidal Rule 78 -- 3.3.2.2 Companion Circuits of Basic Circuit Elements 79 -- 3.3.2.3 Computation of Transients in Linear Networks 85 -- 3.3.2.4 Example: Transient Solution of a Linear Network 86 -- 3.3.3 Networks with Nonlinear Elements 87 -- 3.3.3.1 Introduction 87 -- 3.3.3.2 Compensation Methods 87 -- 3.3.3.3 Piecewise Linear Representation 89 -- 3.3.4 Solution Methods for Networks with Switches 90 -- 3.3.5 Numerical Oscillations 91 -- 3.4 Transient Analysis of Control Systems 96 -- 3.5 Initialization 97 -- 3.5.1 Introduction 97 -- 3.5.2 Initialization of the Power Network 97 -- 3.5.2.1 Options for Steady-State Solution Without Harmonics 97 -- 3.5.2.2 Steady-State Solution 98 -- 3.5.3 Load Flow Solution 99 -- 3.5.4 Initialization of Control Systems 100 -- 3.6 Discussion 100 -- 3.6.1 Solution Techniques Implemented in ATP 101 -- 3.6.2 Other Solution Techniques 101 -- 3.6.2.1 Transient Solution of Networks 101 -- 3.6.2.2 Transient Analysis of Control Systems 102 -- 3.6.2.3 Steady-State Initialization 102 -- Acknowledgement 103 -- References 103 -- To Probe Further 106 -- 4 The ATP Package: Capabilities and Applications 107 / Juan A. Martinez-Velasco and Jacinto Martin-Arnedo.
4.1 Introduction 107 -- 4.2 Capabilities of the ATP Package 108 -- 4.2.1 Overview 108 -- 4.2.2 The Simulation Module ́ô TPBIG 109 -- 4.2.2.1 Overview 109 -- 4.2.2.2 Modelling Capabilities 110 -- 4.2.2.3 Solution Techniques 117 -- 4.2.3 The Graphical User Interface ́ô ATPDraw 120 -- 4.2.3.1 Overview 120 -- 4.2.3.2 Main Functionalities 120 -- 4.2.3.3 Supporting Modules for Power System Components 123 -- 4.2.4 The Postprocessor ́ô TOP 125 -- 4.2.4.1 Data Management 125 -- 4.2.4.2 Data Display 126 -- 4.2.4.3 Data Processing 127 -- 4.2.4.4 Data Formatting 127 -- 4.2.4.5 Graphical Output 127 -- 4.3 Applications 128 -- 4.4 Illustrative Case Studies 129 -- 4.4.1 Introduction 129 -- 4.4.2 Case Study 1: Optimum Allocation of Capacitor Banks 130 -- 4.4.3 Case Study 2: Parallel Resonance Between Transmission Lines 132 -- 4.4.4 Case Study 3: Selection of Surge Arresters 133 -- 4.5 Remarks 136 -- References 136 -- To Probe Further 138 -- 5 Introduction to the Simulation of Electromagnetic Transients Using ATP 139 / Juan A. Martinez-Velasco and Francisco Gonz©ílez-Molin -- 5.1 Introduction 139 -- 5.2 Input Data File Using ATP Formats 140 -- 5.3 Some Important Issues 142 -- 5.3.1 Before Simulating the Test Case 142 -- 5.3.1.1 Setting Up a System Model 142 -- 5.3.1.2 Topology Requirements 142 -- 5.3.1.3 Selection of the Time-Step Size and the Simulation Time 143 -- 5.3.1.4 Units 143 -- 5.3.1.5 Output Selection 144 -- 5.3.2 After Simulating the Test Case 144 -- 5.3.2.1 Verifying the Results 144 -- 5.3.2.2 Debugging Suggestions 144 -- 5.4 Introductory Cases. Linear Circuits 145 -- 5.4.1 The Series and Parallel RLC Circuits 145 -- 5.4.2 The Series RLC Circuit: Energization Transient 145 -- 5.4.2.1 Theoretical Analysis 145 -- 5.4.2.2 ATP Implementation 147 -- 5.4.2.3 Simulation Results 148 -- 5.4.3 The Parallel RLC Circuit: De-energization Transient 150 -- 5.4.3.1 Theoretical Analysis 150 -- 5.4.3.2 ATP Implementation 152 -- 5.4.3.3 Simulation Results 153 -- 5.5 Switching of Capacitive Currents 155.
5.5.1 Introduction 155 -- 5.5.2 Switching Transients in Simple Capacitive Circuits ́ô DC Supply 155 -- 5.5.2.1 Energization of a Capacitor Bank 155 -- 5.5.2.2 Energization of a Back-to-Back Capacitor Bank 157 -- 5.5.3 Switching Transients in Simple Capacitive Circuits ́ô AC Supply 159 -- 5.5.3.1 Energization of a Capacitor Bank 159 -- 5.5.3.2 Energization of a Back-to-Back Capacitor Bank 160 -- 5.5.3.3 Reclosing into Trapped Charge 162 -- 5.5.4 Discharge of a Capacitor Bank 164 -- 5.6 Switching of Inductive Currents 168 -- 5.6.1 Introduction 168 -- 5.6.2 Switching of Inductive Currents in Linear Circuits 168 -- 5.6.2.1 Interruption of Inductive Currents 168 -- 5.6.2.2 Voltage Escalation During the Interruption of Inductive Currents 170 -- 5.6.2.3 Current Chopping 172 -- 5.6.2.4 Making of Inductive Currents 175 -- 5.6.3 Switching of Inductive Currents in Nonlinear Circuits 176 -- 5.6.4 Transients in Nonlinear Reactances 178 -- 5.6.4.1 Interruption of an Inductive Current 180 -- 5.6.4.2 Energization of a Nonlinear Reactance 181 -- 5.6.5 Ferroresonance 184 -- 5.7 Transient Analysis of Circuits with Distributed Parameters 187 -- 5.7.1 Introduction 187 -- 5.7.2 Transients in Linear Circuits with Distributed-Parameter Components 187 -- 5.7.2.1 Energization of Lines and Cables 187 -- 5.7.2.2 Transient Recovery Voltage During Fault Clearing 191 -- 5.7.3 Transients in Nonlinear Circuits with Distributed-Parameter Components 195 -- 5.7.3.1 Surge Arrester Protection 195 -- 5.7.3.2 Protection Against Lightning Overvoltages Using Surge Arresters 196 -- References 201 -- Acknowledgement 202 -- To Probe Further 202 -- 6 Calculation of Power System Overvoltages 203 / Juan A. Martinez-Velasco and Ferley Castro-Aranda -- 6.1 Introduction 203 -- 6.2 Power System Overvoltages: Causes and Characterization 204 -- 6.3 Modelling for Simulation of Power System Overvoltages 206 -- 6.3.1 Introduction 206 -- 6.3.2 Modelling Guidelines for Temporary Overvoltages 207 -- 6.3.3 Modelling Guidelines for Slow-Front Overvoltages 208.
6.3.3.1 Lines and Cables 208 -- 6.3.3.2 Transformers 208 -- 6.3.3.3 Switchgear 208 -- 6.3.3.4 Capacitors and Reactors 209 -- 6.3.3.5 Surge Arresters 209 -- 6.3.3.6 Loads 210 -- 6.3.3.7 Power Supply 210 -- 6.3.4 Modelling Guidelines for Fast-Front Overvoltages 210 -- 6.3.4.1 Overhead Transmission Lines 210 -- 6.3.4.2 Substations 212 -- 6.3.4.3 Surge Arresters 213 -- 6.3.4.4 Sources 214 -- 6.3.5 Modelling Guidelines for Very Fast-Front Overvoltages in Gas Insulated Substations 214 -- 6.4 ATP Capabilities for Power System Overvoltage Studies 216 -- 6.5 Case Studies 216 -- 6.5.1 Introduction 216 -- 6.5.2 Low-Frequency Overvoltages 216 -- 6.5.2.1 Case Study 1: Resonance Between Parallel Lines 217 -- 6.5.2.2 Case Study 2: Ferroresonance in a Distribution System 219 -- 6.5.3 Slow-Front Overvoltages 225 -- 6.5.3.1 Case Study 3: Transmission Line Energization 227 -- 6.5.3.2 Case Study 4: Capacitor Bank Switching 238 -- 6.5.4 Fast-Front Overvoltages 243 -- 6.5.4.1 Case Study 5: Lightning Performance of an Overhead Transmission Line 244 -- 6.5.5 Very Fast-Front Overvoltages 261 -- 6.5.5.1 Case Study 6: Origin of Very Fast-Front Transients in GIS 262 -- 6.5.5.2 Case Study 7: Propagation of Very Fast-Front Transients in GIS 263 -- 6.5.5.3 Case Study 8: Very Fast-Front Transients in a 765 kV GIS 267 -- References 270 -- To Probe Further 274 -- 7 Simulation of Rotating Machine Dynamics 275 / Juan A. Martinez-Velasco -- 7.1 Introduction 275 -- 7.2 Representation of Rotating Machines in Transients Studies 275 -- 7.3 ATP Rotating Machines Models 276 -- 7.3.1 Background 276 -- 7.3.2 Built-in Rotating Machine Models 276 -- 7.3.3 Rotating Machine Models for Fast Transients Simulation 278 -- 7.4 Solution Methods 278 -- 7.4.1 Introduction 278 -- 7.4.2 Three-Phase Synchronous Machine Model 278 -- 7.4.3 Universal Machine Module 281 -- 7.4.4 WindSyn-Based Models 284 -- 7.5 Procedure to Edit Machine Data Input 284 -- 7.6 Capabilities of Rotating Machine Models 285 -- 7.7 Case Studies: Three-Phase Synchronous Machine 287.
7.7.1 Overview 287 -- 7.7.2 Case Study 1: Stand-Alone Three-Phase Synchronous Generator 288 -- 7.7.3 Case Study 2: Load Rejection 288 -- 7.7.4 Case Study 3: Transient Stability 298 -- 7.7.5 Case Study 4: Subsynchronous Resonance 302 -- 7.8 Case Studies: Three-Phase Induction Machine 309 -- 7.8.1 Overview 309 -- 7.8.2 Case Study 5: Induction Machine Test 310 -- 7.8.3 Case Study 6: Transient Response of the Induction Machine 313 -- 7.8.3.1 First Case 314 -- 7.8.3.2 Second Case 314 -- 7.8.3.3 Third Case 318 -- 7.8.4 Case Study 7: SCIM-Based Wind Power Generation 323 -- References 328 -- To Probe Further 331 -- 8 Power Electronics Applications 333 / Juan A. Martinez-Velasco and Jacinto Martin-Arnedo -- 8.1 Introduction 333 -- 8.2 Converter Models 334 -- 8.2.1 Switching Models 334 -- 8.2.2 Dynamic Average Models 334 -- 8.3 Power Semiconductor Models 335 -- 8.3.1 Introduction 335 -- 8.3.2 Ideal Device Models 335 -- 8.3.3 More Detailed Device Models 335 -- 8.3.4 Approximate Models 336 -- 8.4 Solution Methods for Power Electronics Studies 337 -- 8.4.1 Introduction 337 -- 8.4.2 Time-Domain Transient Solution 337 -- 8.4.3 Initialization 338 -- 8.5 ATP Simulation of Power Electronics Systems 338 -- 8.5.1 Introduction 338 -- 8.5.2 Switching Devices 339 -- 8.5.2.1 Built-in Semiconductor Models 339 -- 8.5.2.2 Custom-made Semiconductor Models 340 -- 8.5.3 Power Electronics Systems 342 -- 8.5.4 Power Systems 343 -- 8.5.5 Control Systems 343 -- 8.5.6 Rotating Machines 344 -- 8.5.6.1 Built-in Rotating Machine Models 344 -- 8.5.6.2 Custom-made Rotating Machine Models 344 -- 8.5.7 Simulation Errors 345 -- 8.6 Power Electronics Applications in Transmission, Distribution, Generation and Storage Systems 345 -- 8.6.1 Overview 345 -- 8.6.2 Transmission Systems 346 -- 8.6.3 Distribution Systems 346 -- 8.6.4 DER Systems 347 -- 8.7 Introduction to the Simulation of Power Electronics Systems 349 -- 8.7.1 Overview 349 -- 8.7.2 One-Switch Case Studies 350 -- 8.7.3 Two-Switches Case Studies 351.
8.7.4 Application of the GIFU Request 355 -- 8.7.5 Simulation of Power Electronics Converters 361 -- 8.7.5.1 Single-phase Inverter 361 -- 8.7.5.2 Three-phase Line-Commutated Diode Bridge Rectifier 362 -- 8.7.6 Discussion 365 -- 8.8 Case Studies 367 -- 8.8.1 Introduction 367 -- 8.8.2 Case Study 1: Three-phase Controlled Rectifier 367 -- 8.8.3 Case Study 2: Three-phase Adjustable Speed AC Drive 369 -- 8.8.4 Case Study 3: Digitally-controlled Static VAR Compensator 373 -- 8.8.4.1 Test System 375 -- 8.8.4.2 Control Strategy 375 -- 8.8.5 Case Study 4: Unified Power Flow Controller 382 -- 8.8.5.1 Configuration 382 -- 8.8.5.2 Control 382 -- 8.8.5.3 Modelling 384 -- 8.8.5.4 ATPDraw Implementation 385 -- 8.8.5.5 Simulation Results 385 -- 8.8.6 Case Study 5: Solid State Transformer 386 -- 8.8.6.1 Introduction 386 -- 8.8.6.2 SST Configuration 388 -- 8.8.6.3 Control Strategies 388 -- 8.8.6.4 Test System and Modelling Guidelines 393 -- 8.8.6.5 Case Studies 396 -- Acknowledgement 399 -- References 399 -- To Probe Further 404 -- 9 Creation of Libraries 405 / Juan A. Martinez Velasco and Jacinto Martin-Arnedo -- 9.1 Introduction 405 -- 9.2 Creation of Custom-Made Modules 406 -- 9.2.1 Introduction 406 -- 9.2.2 Application of DATA BASE MODULE 406 -- 9.2.3 Application of MODELS 411 -- 9.2.4 The Group Option 417 -- 9.3 Application of the ATP to Power Quality Studies 419 -- 9.3.1 Introduction 419 -- 9.3.2 Power Quality Issues 419 -- 9.3.3 Simulation of Power Quality Problems 422 -- 9.3.4 Power Quality Studies 423 -- 9.4 Custom-Made Modules for Power Quality Studies 426 -- 9.5 Case Studies 426 -- 9.5.1 Overview 426 -- 9.5.2 Harmonics Analysis 426 -- 9.5.2.1 Case Study 1: Generation of Harmonic Waveforms 428 -- 9.5.2.2 Case Study 2: Harmonic Resonance 431 -- 9.5.2.3 Case Study 3: Harmonic Frequency Scan 434 -- 9.5.2.4 Case Study 4: Compensation of Harmonic Currents 441 -- 9.5.3 Voltage Dip Studies in Distribution Systems 447 -- 9.5.3.1 Overview 447 -- 9.5.3.2 Case Study 5: Voltage Dip Measurement 449.
9.5.3.3 Case Study 6: Voltage Dip Characterization 454 -- 9.5.3.4 Case Study 7: Voltage Dip Mitigation 462 -- References 466 -- To Probe Further 470 -- 10 Protection Systems 471 / Juan A. Martinez-Velasco and Jacinto Martin-Arnedo -- 10.1 Introduction 471 -- 10.2 Modelling Guidelines for Protection Studies 472 -- 10.2.1 Line and Cable Models 472 -- 10.2.1.1 Models for Steady-State Studies 473 -- 10.2.1.2 Models for Transient Studies 473 -- 10.2.2 Transformer Models 473 -- 10.2.2.1 Low-frequency Transformer Models 474 -- 10.2.2.2 High-frequency Transformer Models 475 -- 10.2.3 Source Models 475 -- 10.2.4 Circuit Breaker Models 475 -- 10.3 Models of Instrument Transformers 476 -- 10.3.1 Introduction 476 -- 10.3.2 Current Transformers 476 -- 10.3.3 Coupling Capacitor Voltage Transformers 478 -- 10.3.4 Voltage Transformers 479 -- 10.3.5 Case Studies 480 -- 10.3.5.1 Case Study 1: Current Transformer Test 480 -- 10.3.5.2 Case Study 2: Coupling Capacitor Voltage Transformer Test 482 -- 10.3.6 Discussion 484 -- 10.4 Relay Modelling 484 -- 10.4.1 Introduction 484 -- 10.4.2 Classification of Relay Models 485 -- 10.4.3 Implementation of Relay Models 486 -- 10.4.4 Applications of Relay Models 488 -- 10.4.5 Testing and Validation of Relay Models 488 -- 10.4.6 Accuracy and Limitations of Relay Models 490 -- 10.4.7 Case Studies 490 -- 10.4.7.1 Overview 490 -- 10.4.7.2 Case Study 3: Simulation of an Electromechanical Distance Relay 491 -- 10.4.7.3 Case Study 4: Simulation of a Numerical Distance Relay 497 -- 10.5 Protection of Distribution Systems 508 -- 10.5.1 Introduction 508 -- 10.5.2 Protection of Distribution Systems with Distributed Generation 508 -- 10.5.2.1 Distribution Feeder Protection 508 -- 10.5.2.2 Interconnection Protection 508 -- 10.5.3 Modelling of Distribution Feeder Protective Devices 509 -- 10.5.3.1 Circuit Breakers ́ô Overcurrent Relays 509 -- 10.5.3.2 Reclosers 511 -- 10.5.3.3 Fuses 511 -- 10.5.3.4 Sectionalizers 512 -- 10.5.4 Protection of the Interconnection of Distributed Generators 513.
10.5.5 Case Studies 514 -- 10.5.5.1 Case Study 5: Testing the Models 514 -- 10.5.5.2 Case Study 6: Coordination Between Protective Devices 524 -- 10.5.5.3 Case Study 7: Protection of Distributed Generation 525 -- 10.6 Discussion 531 -- Acknowledgement 533 -- References 533 -- To Probe Further 537 -- 11 ATP Applications Using a Parallel Computing Environment 539 / Javier A. Corea-Araujo, Gerardo Guerra and Juan A. Martinez-Velasco -- 11.1 Introduction 539 -- 11.2 Bifurcation Diagrams for Ferroresonance Characterization 540 -- 11.2.1 Introduction 540 -- 11.2.2 Characterization of Ferroresonance 540 -- 11.2.3 Modelling Guidelines for Ferroresonance Analysis 541 -- 11.2.4 Generation of Bifurcation Diagrams 541 -- 11.2.5 Parametric Analysis Using a Multicore Environment 542 -- 11.2.6 Case Studies 544 -- 11.2.6.1 Case 1: An Illustrative Example 544 -- 11.2.6.2 Case 2: Ferroresonant Behaviour of a Voltage Transformer 545 -- 11.2.6.3 Case 3: Ferroresonance in a Five-Legged Core Transformer 545 -- 11.2.7 Discussion 550 -- 11.3 Lightning Performance Analysis of Transmission Lines 550 -- 11.3.1 Introduction 550 -- 11.3.2 Lightning Stroke Characterization 551 -- 11.3.3 Modelling for Lightning Overvoltage Calculations 552 -- 11.3.4 Implementation of the Monte Carlo Procedure Using Parallel Computing 554 -- 11.3.5 Illustrative Example 555 -- 11.3.5.1 Test Line 555 -- 11.3.5.2 Line and Lightning Stroke Parameters 555 -- 11.3.5.3 Simulation Results 559 -- 11.3.6 Discussion 562 -- 11.4 Optimum Design of a Hybrid HVDC Circuit Breaker 563 -- 11.4.1 Introduction 563 -- 11.4.2 Design and Operation of the Hybrid HVDC Circuit Breaker 563 -- 11.4.3 ATP Implementation of the Hybrid HVDC Circuit Breaker 565 -- 11.4.4 Test System 566 -- 11.4.5 Transient Response of the Hybrid Circuit Breaker 567 -- 11.4.6 Implementation of a Parallel Genetic Algorithm 568 -- 11.4.7 Simulation Results 570 -- 11.4.8 Discussion 574 -- Acknowledgement 575 -- References 575 -- A Characteristics of the Multicore Installation 579.
B Test System Parameters for Ferroresonance Studies 579 -- To Probe Further 580 -- Index 581.
Record Nr. UNINA-9910554815403321
Martinez-Velasco Juan A  
Hoboken, New Jersey : , : Wiley-IEEE Press, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transient analysis of power systems : a practical approach / / edited by Juan A. Martinez-Velasco, Retired Professor, Polytechnic University of Catalonia, Barcelona, Spain
Transient analysis of power systems : a practical approach / / edited by Juan A. Martinez-Velasco, Retired Professor, Polytechnic University of Catalonia, Barcelona, Spain
Autore Martinez-Velasco Juan A
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-IEEE Press, , 2020
Descrizione fisica 1 online resource (621 pages)
Disciplina 621.31921
Soggetto topico Transients (Electricity) - Simulation methods
ISBN 1-119-48049-3
1-119-48054-X
1-119-48030-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Editor xv -- List of Contributors xvii -- Preface xix -- About the Companion Website xxi -- 1 Introduction to Transients Analysis of Power Systems with ATP 1 / Juan A. Martinez-Velasco -- 1.1 Overview 1 -- 1.2 The ATP Package 3 -- 1.3 ATP Documentation 5 -- 1.4 Scope of the Book 6 -- References 8 -- 2 Modelling of Power Components for Transients Studies 11 / Juan A. Martinez-Velasco -- 2.1 Introduction 11 -- 2.2 Overhead Lines 12 -- 2.2.1 Overview 12 -- 2.2.2 Multi-conductor Transmission Line Equations and Models 13 -- 2.2.2.1 Transmission Line Equations 13 -- 2.2.2.2 Corona Effect 15 -- 2.2.2.3 Line Constants Routine 15 -- 2.2.3 Transmission Line Towers 16 -- 2.2.4 Transmission Line Grounding 17 -- 2.2.4.1 Introduction 17 -- 2.2.4.2 Low-Frequency Models 17 -- 2.2.4.3 High-Frequency Models 18 -- 2.2.4.4 Treatment of Soil Ionization 20 -- 2.2.5 Transmission Line Insulation 21 -- 2.2.5.1 Voltage-Time Curves 21 -- 2.2.5.2 Integration Methods 22 -- 2.2.5.3 Physical Models 22 -- 2.3 Insulated Cables 23 -- 2.3.1 Overview 23 -- 2.3.2 Insulated Cable Designs 24 -- 2.3.3 Bonding Techniques 25 -- 2.3.4 Material Properties 26 -- 2.3.5 Discussion 27 -- 2.3.6 Cable Constants/Parameters Routines 27 -- 2.4 Transformers 28 -- 2.4.1 Overview 28 -- 2.4.2 Transformer Models for Low-Frequency Transients 31 -- 2.4.2.1 Introduction to Low-Frequency Models 31 -- 2.4.2.2 Single-Phase Transformer Models 32 -- 2.4.2.3 Three-Phase Transformer Models 36 -- 2.4.3 Transformer Modelling for High-Frequency Transients 37 -- 2.4.3.1 Introduction to High-Frequency Models 37 -- 2.4.3.2 Models for Internal Voltage Calculation 39 -- 2.4.3.3 Terminal Models 41 -- 2.5 Rotating Machines 45 -- 2.5.1 Overview 45 -- 2.5.2 Rotating Machine Models for Low-Frequency Transients 46 -- 2.5.2.1 Introduction 46 -- 2.5.2.2 Modelling of Induction Machines 46 -- 2.5.2.3 Modelling of Synchronous Machines 51 -- 2.5.3 High-Frequency Models for Rotating Machine Windings 55 -- 2.5.3.1 Introduction 55 -- 2.5.3.2 Internal Models 56.
2.5.3.3 Terminal Models 58 -- 2.6 Circuit Breakers 58 -- 2.6.1 Overview 58 -- 2.6.2 Circuit Breaker Models for Opening Operations 59 -- 2.6.2.1 Current Interruption 59 -- 2.6.2.2 Circuit Breaker Models 60 -- 2.6.2.3 Gas-Filled Circuit Breaker Models 61 -- 2.6.2.4 Vacuum Circuit Breaker Models 62 -- 2.6.3 Circuit Breaker Models for Closing Operations 64 -- 2.6.3.1 Introduction 64 -- 2.6.3.2 Statistical Switches 65 -- 2.6.3.3 Prestrike Models 66 -- Acknowledgement 66 -- References 66 -- 3 Solution Techniques for Electromagnetic Transient Analysis 75 / Juan A. Martinez-Velasco -- 3.1 Introduction 75 -- 3.2 Modelling of Power System Components for Transient Analysis 76 -- 3.3 Solution Techniques for Electromagnetic Transients Analysis 78 -- 3.3.1 Introduction 78 -- 3.3.2 Solution Techniques for Linear Networks 78 -- 3.3.2.1 The Trapezoidal Rule 78 -- 3.3.2.2 Companion Circuits of Basic Circuit Elements 79 -- 3.3.2.3 Computation of Transients in Linear Networks 85 -- 3.3.2.4 Example: Transient Solution of a Linear Network 86 -- 3.3.3 Networks with Nonlinear Elements 87 -- 3.3.3.1 Introduction 87 -- 3.3.3.2 Compensation Methods 87 -- 3.3.3.3 Piecewise Linear Representation 89 -- 3.3.4 Solution Methods for Networks with Switches 90 -- 3.3.5 Numerical Oscillations 91 -- 3.4 Transient Analysis of Control Systems 96 -- 3.5 Initialization 97 -- 3.5.1 Introduction 97 -- 3.5.2 Initialization of the Power Network 97 -- 3.5.2.1 Options for Steady-State Solution Without Harmonics 97 -- 3.5.2.2 Steady-State Solution 98 -- 3.5.3 Load Flow Solution 99 -- 3.5.4 Initialization of Control Systems 100 -- 3.6 Discussion 100 -- 3.6.1 Solution Techniques Implemented in ATP 101 -- 3.6.2 Other Solution Techniques 101 -- 3.6.2.1 Transient Solution of Networks 101 -- 3.6.2.2 Transient Analysis of Control Systems 102 -- 3.6.2.3 Steady-State Initialization 102 -- Acknowledgement 103 -- References 103 -- To Probe Further 106 -- 4 The ATP Package: Capabilities and Applications 107 / Juan A. Martinez-Velasco and Jacinto Martin-Arnedo.
4.1 Introduction 107 -- 4.2 Capabilities of the ATP Package 108 -- 4.2.1 Overview 108 -- 4.2.2 The Simulation Module ́ô TPBIG 109 -- 4.2.2.1 Overview 109 -- 4.2.2.2 Modelling Capabilities 110 -- 4.2.2.3 Solution Techniques 117 -- 4.2.3 The Graphical User Interface ́ô ATPDraw 120 -- 4.2.3.1 Overview 120 -- 4.2.3.2 Main Functionalities 120 -- 4.2.3.3 Supporting Modules for Power System Components 123 -- 4.2.4 The Postprocessor ́ô TOP 125 -- 4.2.4.1 Data Management 125 -- 4.2.4.2 Data Display 126 -- 4.2.4.3 Data Processing 127 -- 4.2.4.4 Data Formatting 127 -- 4.2.4.5 Graphical Output 127 -- 4.3 Applications 128 -- 4.4 Illustrative Case Studies 129 -- 4.4.1 Introduction 129 -- 4.4.2 Case Study 1: Optimum Allocation of Capacitor Banks 130 -- 4.4.3 Case Study 2: Parallel Resonance Between Transmission Lines 132 -- 4.4.4 Case Study 3: Selection of Surge Arresters 133 -- 4.5 Remarks 136 -- References 136 -- To Probe Further 138 -- 5 Introduction to the Simulation of Electromagnetic Transients Using ATP 139 / Juan A. Martinez-Velasco and Francisco Gonz©ílez-Molin -- 5.1 Introduction 139 -- 5.2 Input Data File Using ATP Formats 140 -- 5.3 Some Important Issues 142 -- 5.3.1 Before Simulating the Test Case 142 -- 5.3.1.1 Setting Up a System Model 142 -- 5.3.1.2 Topology Requirements 142 -- 5.3.1.3 Selection of the Time-Step Size and the Simulation Time 143 -- 5.3.1.4 Units 143 -- 5.3.1.5 Output Selection 144 -- 5.3.2 After Simulating the Test Case 144 -- 5.3.2.1 Verifying the Results 144 -- 5.3.2.2 Debugging Suggestions 144 -- 5.4 Introductory Cases. Linear Circuits 145 -- 5.4.1 The Series and Parallel RLC Circuits 145 -- 5.4.2 The Series RLC Circuit: Energization Transient 145 -- 5.4.2.1 Theoretical Analysis 145 -- 5.4.2.2 ATP Implementation 147 -- 5.4.2.3 Simulation Results 148 -- 5.4.3 The Parallel RLC Circuit: De-energization Transient 150 -- 5.4.3.1 Theoretical Analysis 150 -- 5.4.3.2 ATP Implementation 152 -- 5.4.3.3 Simulation Results 153 -- 5.5 Switching of Capacitive Currents 155.
5.5.1 Introduction 155 -- 5.5.2 Switching Transients in Simple Capacitive Circuits ́ô DC Supply 155 -- 5.5.2.1 Energization of a Capacitor Bank 155 -- 5.5.2.2 Energization of a Back-to-Back Capacitor Bank 157 -- 5.5.3 Switching Transients in Simple Capacitive Circuits ́ô AC Supply 159 -- 5.5.3.1 Energization of a Capacitor Bank 159 -- 5.5.3.2 Energization of a Back-to-Back Capacitor Bank 160 -- 5.5.3.3 Reclosing into Trapped Charge 162 -- 5.5.4 Discharge of a Capacitor Bank 164 -- 5.6 Switching of Inductive Currents 168 -- 5.6.1 Introduction 168 -- 5.6.2 Switching of Inductive Currents in Linear Circuits 168 -- 5.6.2.1 Interruption of Inductive Currents 168 -- 5.6.2.2 Voltage Escalation During the Interruption of Inductive Currents 170 -- 5.6.2.3 Current Chopping 172 -- 5.6.2.4 Making of Inductive Currents 175 -- 5.6.3 Switching of Inductive Currents in Nonlinear Circuits 176 -- 5.6.4 Transients in Nonlinear Reactances 178 -- 5.6.4.1 Interruption of an Inductive Current 180 -- 5.6.4.2 Energization of a Nonlinear Reactance 181 -- 5.6.5 Ferroresonance 184 -- 5.7 Transient Analysis of Circuits with Distributed Parameters 187 -- 5.7.1 Introduction 187 -- 5.7.2 Transients in Linear Circuits with Distributed-Parameter Components 187 -- 5.7.2.1 Energization of Lines and Cables 187 -- 5.7.2.2 Transient Recovery Voltage During Fault Clearing 191 -- 5.7.3 Transients in Nonlinear Circuits with Distributed-Parameter Components 195 -- 5.7.3.1 Surge Arrester Protection 195 -- 5.7.3.2 Protection Against Lightning Overvoltages Using Surge Arresters 196 -- References 201 -- Acknowledgement 202 -- To Probe Further 202 -- 6 Calculation of Power System Overvoltages 203 / Juan A. Martinez-Velasco and Ferley Castro-Aranda -- 6.1 Introduction 203 -- 6.2 Power System Overvoltages: Causes and Characterization 204 -- 6.3 Modelling for Simulation of Power System Overvoltages 206 -- 6.3.1 Introduction 206 -- 6.3.2 Modelling Guidelines for Temporary Overvoltages 207 -- 6.3.3 Modelling Guidelines for Slow-Front Overvoltages 208.
6.3.3.1 Lines and Cables 208 -- 6.3.3.2 Transformers 208 -- 6.3.3.3 Switchgear 208 -- 6.3.3.4 Capacitors and Reactors 209 -- 6.3.3.5 Surge Arresters 209 -- 6.3.3.6 Loads 210 -- 6.3.3.7 Power Supply 210 -- 6.3.4 Modelling Guidelines for Fast-Front Overvoltages 210 -- 6.3.4.1 Overhead Transmission Lines 210 -- 6.3.4.2 Substations 212 -- 6.3.4.3 Surge Arresters 213 -- 6.3.4.4 Sources 214 -- 6.3.5 Modelling Guidelines for Very Fast-Front Overvoltages in Gas Insulated Substations 214 -- 6.4 ATP Capabilities for Power System Overvoltage Studies 216 -- 6.5 Case Studies 216 -- 6.5.1 Introduction 216 -- 6.5.2 Low-Frequency Overvoltages 216 -- 6.5.2.1 Case Study 1: Resonance Between Parallel Lines 217 -- 6.5.2.2 Case Study 2: Ferroresonance in a Distribution System 219 -- 6.5.3 Slow-Front Overvoltages 225 -- 6.5.3.1 Case Study 3: Transmission Line Energization 227 -- 6.5.3.2 Case Study 4: Capacitor Bank Switching 238 -- 6.5.4 Fast-Front Overvoltages 243 -- 6.5.4.1 Case Study 5: Lightning Performance of an Overhead Transmission Line 244 -- 6.5.5 Very Fast-Front Overvoltages 261 -- 6.5.5.1 Case Study 6: Origin of Very Fast-Front Transients in GIS 262 -- 6.5.5.2 Case Study 7: Propagation of Very Fast-Front Transients in GIS 263 -- 6.5.5.3 Case Study 8: Very Fast-Front Transients in a 765 kV GIS 267 -- References 270 -- To Probe Further 274 -- 7 Simulation of Rotating Machine Dynamics 275 / Juan A. Martinez-Velasco -- 7.1 Introduction 275 -- 7.2 Representation of Rotating Machines in Transients Studies 275 -- 7.3 ATP Rotating Machines Models 276 -- 7.3.1 Background 276 -- 7.3.2 Built-in Rotating Machine Models 276 -- 7.3.3 Rotating Machine Models for Fast Transients Simulation 278 -- 7.4 Solution Methods 278 -- 7.4.1 Introduction 278 -- 7.4.2 Three-Phase Synchronous Machine Model 278 -- 7.4.3 Universal Machine Module 281 -- 7.4.4 WindSyn-Based Models 284 -- 7.5 Procedure to Edit Machine Data Input 284 -- 7.6 Capabilities of Rotating Machine Models 285 -- 7.7 Case Studies: Three-Phase Synchronous Machine 287.
7.7.1 Overview 287 -- 7.7.2 Case Study 1: Stand-Alone Three-Phase Synchronous Generator 288 -- 7.7.3 Case Study 2: Load Rejection 288 -- 7.7.4 Case Study 3: Transient Stability 298 -- 7.7.5 Case Study 4: Subsynchronous Resonance 302 -- 7.8 Case Studies: Three-Phase Induction Machine 309 -- 7.8.1 Overview 309 -- 7.8.2 Case Study 5: Induction Machine Test 310 -- 7.8.3 Case Study 6: Transient Response of the Induction Machine 313 -- 7.8.3.1 First Case 314 -- 7.8.3.2 Second Case 314 -- 7.8.3.3 Third Case 318 -- 7.8.4 Case Study 7: SCIM-Based Wind Power Generation 323 -- References 328 -- To Probe Further 331 -- 8 Power Electronics Applications 333 / Juan A. Martinez-Velasco and Jacinto Martin-Arnedo -- 8.1 Introduction 333 -- 8.2 Converter Models 334 -- 8.2.1 Switching Models 334 -- 8.2.2 Dynamic Average Models 334 -- 8.3 Power Semiconductor Models 335 -- 8.3.1 Introduction 335 -- 8.3.2 Ideal Device Models 335 -- 8.3.3 More Detailed Device Models 335 -- 8.3.4 Approximate Models 336 -- 8.4 Solution Methods for Power Electronics Studies 337 -- 8.4.1 Introduction 337 -- 8.4.2 Time-Domain Transient Solution 337 -- 8.4.3 Initialization 338 -- 8.5 ATP Simulation of Power Electronics Systems 338 -- 8.5.1 Introduction 338 -- 8.5.2 Switching Devices 339 -- 8.5.2.1 Built-in Semiconductor Models 339 -- 8.5.2.2 Custom-made Semiconductor Models 340 -- 8.5.3 Power Electronics Systems 342 -- 8.5.4 Power Systems 343 -- 8.5.5 Control Systems 343 -- 8.5.6 Rotating Machines 344 -- 8.5.6.1 Built-in Rotating Machine Models 344 -- 8.5.6.2 Custom-made Rotating Machine Models 344 -- 8.5.7 Simulation Errors 345 -- 8.6 Power Electronics Applications in Transmission, Distribution, Generation and Storage Systems 345 -- 8.6.1 Overview 345 -- 8.6.2 Transmission Systems 346 -- 8.6.3 Distribution Systems 346 -- 8.6.4 DER Systems 347 -- 8.7 Introduction to the Simulation of Power Electronics Systems 349 -- 8.7.1 Overview 349 -- 8.7.2 One-Switch Case Studies 350 -- 8.7.3 Two-Switches Case Studies 351.
8.7.4 Application of the GIFU Request 355 -- 8.7.5 Simulation of Power Electronics Converters 361 -- 8.7.5.1 Single-phase Inverter 361 -- 8.7.5.2 Three-phase Line-Commutated Diode Bridge Rectifier 362 -- 8.7.6 Discussion 365 -- 8.8 Case Studies 367 -- 8.8.1 Introduction 367 -- 8.8.2 Case Study 1: Three-phase Controlled Rectifier 367 -- 8.8.3 Case Study 2: Three-phase Adjustable Speed AC Drive 369 -- 8.8.4 Case Study 3: Digitally-controlled Static VAR Compensator 373 -- 8.8.4.1 Test System 375 -- 8.8.4.2 Control Strategy 375 -- 8.8.5 Case Study 4: Unified Power Flow Controller 382 -- 8.8.5.1 Configuration 382 -- 8.8.5.2 Control 382 -- 8.8.5.3 Modelling 384 -- 8.8.5.4 ATPDraw Implementation 385 -- 8.8.5.5 Simulation Results 385 -- 8.8.6 Case Study 5: Solid State Transformer 386 -- 8.8.6.1 Introduction 386 -- 8.8.6.2 SST Configuration 388 -- 8.8.6.3 Control Strategies 388 -- 8.8.6.4 Test System and Modelling Guidelines 393 -- 8.8.6.5 Case Studies 396 -- Acknowledgement 399 -- References 399 -- To Probe Further 404 -- 9 Creation of Libraries 405 / Juan A. Martinez Velasco and Jacinto Martin-Arnedo -- 9.1 Introduction 405 -- 9.2 Creation of Custom-Made Modules 406 -- 9.2.1 Introduction 406 -- 9.2.2 Application of DATA BASE MODULE 406 -- 9.2.3 Application of MODELS 411 -- 9.2.4 The Group Option 417 -- 9.3 Application of the ATP to Power Quality Studies 419 -- 9.3.1 Introduction 419 -- 9.3.2 Power Quality Issues 419 -- 9.3.3 Simulation of Power Quality Problems 422 -- 9.3.4 Power Quality Studies 423 -- 9.4 Custom-Made Modules for Power Quality Studies 426 -- 9.5 Case Studies 426 -- 9.5.1 Overview 426 -- 9.5.2 Harmonics Analysis 426 -- 9.5.2.1 Case Study 1: Generation of Harmonic Waveforms 428 -- 9.5.2.2 Case Study 2: Harmonic Resonance 431 -- 9.5.2.3 Case Study 3: Harmonic Frequency Scan 434 -- 9.5.2.4 Case Study 4: Compensation of Harmonic Currents 441 -- 9.5.3 Voltage Dip Studies in Distribution Systems 447 -- 9.5.3.1 Overview 447 -- 9.5.3.2 Case Study 5: Voltage Dip Measurement 449.
9.5.3.3 Case Study 6: Voltage Dip Characterization 454 -- 9.5.3.4 Case Study 7: Voltage Dip Mitigation 462 -- References 466 -- To Probe Further 470 -- 10 Protection Systems 471 / Juan A. Martinez-Velasco and Jacinto Martin-Arnedo -- 10.1 Introduction 471 -- 10.2 Modelling Guidelines for Protection Studies 472 -- 10.2.1 Line and Cable Models 472 -- 10.2.1.1 Models for Steady-State Studies 473 -- 10.2.1.2 Models for Transient Studies 473 -- 10.2.2 Transformer Models 473 -- 10.2.2.1 Low-frequency Transformer Models 474 -- 10.2.2.2 High-frequency Transformer Models 475 -- 10.2.3 Source Models 475 -- 10.2.4 Circuit Breaker Models 475 -- 10.3 Models of Instrument Transformers 476 -- 10.3.1 Introduction 476 -- 10.3.2 Current Transformers 476 -- 10.3.3 Coupling Capacitor Voltage Transformers 478 -- 10.3.4 Voltage Transformers 479 -- 10.3.5 Case Studies 480 -- 10.3.5.1 Case Study 1: Current Transformer Test 480 -- 10.3.5.2 Case Study 2: Coupling Capacitor Voltage Transformer Test 482 -- 10.3.6 Discussion 484 -- 10.4 Relay Modelling 484 -- 10.4.1 Introduction 484 -- 10.4.2 Classification of Relay Models 485 -- 10.4.3 Implementation of Relay Models 486 -- 10.4.4 Applications of Relay Models 488 -- 10.4.5 Testing and Validation of Relay Models 488 -- 10.4.6 Accuracy and Limitations of Relay Models 490 -- 10.4.7 Case Studies 490 -- 10.4.7.1 Overview 490 -- 10.4.7.2 Case Study 3: Simulation of an Electromechanical Distance Relay 491 -- 10.4.7.3 Case Study 4: Simulation of a Numerical Distance Relay 497 -- 10.5 Protection of Distribution Systems 508 -- 10.5.1 Introduction 508 -- 10.5.2 Protection of Distribution Systems with Distributed Generation 508 -- 10.5.2.1 Distribution Feeder Protection 508 -- 10.5.2.2 Interconnection Protection 508 -- 10.5.3 Modelling of Distribution Feeder Protective Devices 509 -- 10.5.3.1 Circuit Breakers ́ô Overcurrent Relays 509 -- 10.5.3.2 Reclosers 511 -- 10.5.3.3 Fuses 511 -- 10.5.3.4 Sectionalizers 512 -- 10.5.4 Protection of the Interconnection of Distributed Generators 513.
10.5.5 Case Studies 514 -- 10.5.5.1 Case Study 5: Testing the Models 514 -- 10.5.5.2 Case Study 6: Coordination Between Protective Devices 524 -- 10.5.5.3 Case Study 7: Protection of Distributed Generation 525 -- 10.6 Discussion 531 -- Acknowledgement 533 -- References 533 -- To Probe Further 537 -- 11 ATP Applications Using a Parallel Computing Environment 539 / Javier A. Corea-Araujo, Gerardo Guerra and Juan A. Martinez-Velasco -- 11.1 Introduction 539 -- 11.2 Bifurcation Diagrams for Ferroresonance Characterization 540 -- 11.2.1 Introduction 540 -- 11.2.2 Characterization of Ferroresonance 540 -- 11.2.3 Modelling Guidelines for Ferroresonance Analysis 541 -- 11.2.4 Generation of Bifurcation Diagrams 541 -- 11.2.5 Parametric Analysis Using a Multicore Environment 542 -- 11.2.6 Case Studies 544 -- 11.2.6.1 Case 1: An Illustrative Example 544 -- 11.2.6.2 Case 2: Ferroresonant Behaviour of a Voltage Transformer 545 -- 11.2.6.3 Case 3: Ferroresonance in a Five-Legged Core Transformer 545 -- 11.2.7 Discussion 550 -- 11.3 Lightning Performance Analysis of Transmission Lines 550 -- 11.3.1 Introduction 550 -- 11.3.2 Lightning Stroke Characterization 551 -- 11.3.3 Modelling for Lightning Overvoltage Calculations 552 -- 11.3.4 Implementation of the Monte Carlo Procedure Using Parallel Computing 554 -- 11.3.5 Illustrative Example 555 -- 11.3.5.1 Test Line 555 -- 11.3.5.2 Line and Lightning Stroke Parameters 555 -- 11.3.5.3 Simulation Results 559 -- 11.3.6 Discussion 562 -- 11.4 Optimum Design of a Hybrid HVDC Circuit Breaker 563 -- 11.4.1 Introduction 563 -- 11.4.2 Design and Operation of the Hybrid HVDC Circuit Breaker 563 -- 11.4.3 ATP Implementation of the Hybrid HVDC Circuit Breaker 565 -- 11.4.4 Test System 566 -- 11.4.5 Transient Response of the Hybrid Circuit Breaker 567 -- 11.4.6 Implementation of a Parallel Genetic Algorithm 568 -- 11.4.7 Simulation Results 570 -- 11.4.8 Discussion 574 -- Acknowledgement 575 -- References 575 -- A Characteristics of the Multicore Installation 579.
B Test System Parameters for Ferroresonance Studies 579 -- To Probe Further 580 -- Index 581.
Record Nr. UNINA-9910822142203321
Martinez-Velasco Juan A  
Hoboken, New Jersey : , : Wiley-IEEE Press, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui