Current interruption transients calculation / / by David F. Peelo, Consultant, former Specialist Engineer at BC Hydro, Vancouver, Canada
| Current interruption transients calculation / / by David F. Peelo, Consultant, former Specialist Engineer at BC Hydro, Vancouver, Canada |
| Autore | Peelo David F. |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Chichester, West Sussex, United Kingdom : , : John Wiley & Sons Inc., , 2020 |
| Descrizione fisica | 1 online resource (299 pages) |
| Disciplina | 621.317 |
| Soggetto topico | Transients (Electricity) - Mathematical models |
| ISBN |
1-119-54726-1
1-119-54727-X 1-119-54723-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface to the Second Edition ix -- Preface to First Edition xi -- 1 Introduction 1 -- 1.1 Background 1 -- 1.2 Short-Circuit Rating Basis for High-Voltage Circuit Breakers 2 -- 1.3 Current Interruption Terminology 4 -- Further Reading 7 -- 2 RLC Circuits 9 -- 2.1 General 9 -- 2.2 Series RLC Circuit with Step Voltage Injection 9 -- 2.3 Source-Free Series RLC Circuit with Precharged Capacitor 15 -- 2.4 Source-Free Parallel RLC Circuit with Precharged Capacitor 18 -- 2.5 Parallel RLC Circuit with Ramp Current Injection 21 -- 2.6 Alternative Equations 27 -- 2.7 Traveling Wave Basics 28 -- 2.8 Summary 34 -- References 34 -- Further Reading 34 -- 3 Pole Factor Calculation 35 -- 3.1 General 35 -- 3.2 Pole Factors: Effectively Earthed Systems 44 -- 3.3 Pole Factors: Non-Effectively Earthed Systems 52 -- 3.4 Alternative Pole Factor Calculation Method 56 -- 3.5 Three-Phase Test Circuit Arrangement 59 -- 3.6 Summary 60 -- Further Reading 61 -- 4 Terminal Faults 63 -- 4.1 General Considerations 63 -- 4.2 Standard TRV Derivation 65 -- 4.3 Effect of Added Capacitance 73 -- 4.4 Effect of Added Resistance 85 -- 4.5 Effect of Series Reactors 88 -- 4.6 Out-of-Phase Switching 96 -- 4.7 Asymmetrical Currents 97 -- 4.8 Double Earth Faults 105 -- 4.9 Summary 108 -- Further Reading 109 -- 5 Short Line Faults 111 -- 5.1 General 111 -- 5.2 Line Side Voltage Calculation 111 -- 5.3 Effect of Added Capacitance 119 -- 5.4 Discussion 122 -- Further Reading 123 -- 6 Inductive Load Switching 125 -- 6.1 General 125 -- 6.2 General Shunt Reactor Switching Case 128 -- 6.3 Shunt Reactors with Isolated Neutrals 135 -- 6.4 Shunt Reactors with Neutral Reactor Earthed Neutrals 139 -- 6.5 Shunt Reactors with Earthed Neutrals 140 -- 6.6 Reignitions 141 -- 6.7 Unloaded Transformer Switching 142 -- 6.8 Discussion 143 -- 6.9 Summary 143 -- Further Reading 146 -- 7 Capacitive Load Switching 147 -- 7.1 General 147 -- 7.2 Shunt Capacitor Banks 147 -- 7.2.1 Energization 147 -- 7.2.1.1 Inrush Current 148 -- 7.2.1.2 Limiting Inrush Current 154.
7.2.2 De-Energization 156 -- 7.2.2.1 General Considerations 156 -- 7.2.2.2 Recovery Voltages 156 -- 7.2.2.3 Reignitions and Restrikes 157 -- 7.2.3 Outrush 163 -- 7.3 Transmission Lines 164 -- 7.4 Cables 167 -- 7.5 Special Case: Interrupting Small Capacitance Currents 170 -- 7.6 Summary 173 -- References 174 -- Further Reading 174 -- 8 Circuit Breaker Type Testing 175 -- 8.1 Introduction 175 -- 8.2 Circuit Breaker Interrupting Time 175 -- 8.3 Inherent Transient Recovery Voltages 182 -- 8.4 Inductive Load Switching 182 -- 8.5 Capacitive Current Switching 183 -- Further Reading 183 -- Appendix A: Differential Equations 185 -- Appendix B: Principle of Duality 195 -- Appendix C: Useful Formulae 201 -- Appendix D: EuleŕÖs Formula 205 -- Appendix E: Asymmetrical Current-Calculating Areas Under Curves 209 -- Appendix F: Shunt Reactor Switching ́ô First-Pole-to-Clear Circuit Representation 213 -- Appendix G: Special Case: Generator Circuit Breakers TRVs 219 -- Appendix H: Evolution of Transient Recovery Voltages 239 -- Appendix I: Equation Plotting Using Excel 261 -- Index 277. |
| Record Nr. | UNINA-9910555028203321 |
Peelo David F.
|
||
| Chichester, West Sussex, United Kingdom : , : John Wiley & Sons Inc., , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Current interruption transients calculation / / by David F. Peelo, Consultant, former Specialist Engineer at BC Hydro, Vancouver, Canada
| Current interruption transients calculation / / by David F. Peelo, Consultant, former Specialist Engineer at BC Hydro, Vancouver, Canada |
| Autore | Peelo David F. |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Chichester, West Sussex, United Kingdom : , : John Wiley & Sons Inc., , 2020 |
| Descrizione fisica | 1 online resource (299 pages) |
| Disciplina | 621.317 |
| Soggetto topico | Transients (Electricity) - Mathematical models |
| ISBN |
1-119-54726-1
1-119-54727-X 1-119-54723-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface to the Second Edition ix -- Preface to First Edition xi -- 1 Introduction 1 -- 1.1 Background 1 -- 1.2 Short-Circuit Rating Basis for High-Voltage Circuit Breakers 2 -- 1.3 Current Interruption Terminology 4 -- Further Reading 7 -- 2 RLC Circuits 9 -- 2.1 General 9 -- 2.2 Series RLC Circuit with Step Voltage Injection 9 -- 2.3 Source-Free Series RLC Circuit with Precharged Capacitor 15 -- 2.4 Source-Free Parallel RLC Circuit with Precharged Capacitor 18 -- 2.5 Parallel RLC Circuit with Ramp Current Injection 21 -- 2.6 Alternative Equations 27 -- 2.7 Traveling Wave Basics 28 -- 2.8 Summary 34 -- References 34 -- Further Reading 34 -- 3 Pole Factor Calculation 35 -- 3.1 General 35 -- 3.2 Pole Factors: Effectively Earthed Systems 44 -- 3.3 Pole Factors: Non-Effectively Earthed Systems 52 -- 3.4 Alternative Pole Factor Calculation Method 56 -- 3.5 Three-Phase Test Circuit Arrangement 59 -- 3.6 Summary 60 -- Further Reading 61 -- 4 Terminal Faults 63 -- 4.1 General Considerations 63 -- 4.2 Standard TRV Derivation 65 -- 4.3 Effect of Added Capacitance 73 -- 4.4 Effect of Added Resistance 85 -- 4.5 Effect of Series Reactors 88 -- 4.6 Out-of-Phase Switching 96 -- 4.7 Asymmetrical Currents 97 -- 4.8 Double Earth Faults 105 -- 4.9 Summary 108 -- Further Reading 109 -- 5 Short Line Faults 111 -- 5.1 General 111 -- 5.2 Line Side Voltage Calculation 111 -- 5.3 Effect of Added Capacitance 119 -- 5.4 Discussion 122 -- Further Reading 123 -- 6 Inductive Load Switching 125 -- 6.1 General 125 -- 6.2 General Shunt Reactor Switching Case 128 -- 6.3 Shunt Reactors with Isolated Neutrals 135 -- 6.4 Shunt Reactors with Neutral Reactor Earthed Neutrals 139 -- 6.5 Shunt Reactors with Earthed Neutrals 140 -- 6.6 Reignitions 141 -- 6.7 Unloaded Transformer Switching 142 -- 6.8 Discussion 143 -- 6.9 Summary 143 -- Further Reading 146 -- 7 Capacitive Load Switching 147 -- 7.1 General 147 -- 7.2 Shunt Capacitor Banks 147 -- 7.2.1 Energization 147 -- 7.2.1.1 Inrush Current 148 -- 7.2.1.2 Limiting Inrush Current 154.
7.2.2 De-Energization 156 -- 7.2.2.1 General Considerations 156 -- 7.2.2.2 Recovery Voltages 156 -- 7.2.2.3 Reignitions and Restrikes 157 -- 7.2.3 Outrush 163 -- 7.3 Transmission Lines 164 -- 7.4 Cables 167 -- 7.5 Special Case: Interrupting Small Capacitance Currents 170 -- 7.6 Summary 173 -- References 174 -- Further Reading 174 -- 8 Circuit Breaker Type Testing 175 -- 8.1 Introduction 175 -- 8.2 Circuit Breaker Interrupting Time 175 -- 8.3 Inherent Transient Recovery Voltages 182 -- 8.4 Inductive Load Switching 182 -- 8.5 Capacitive Current Switching 183 -- Further Reading 183 -- Appendix A: Differential Equations 185 -- Appendix B: Principle of Duality 195 -- Appendix C: Useful Formulae 201 -- Appendix D: EuleŕÖs Formula 205 -- Appendix E: Asymmetrical Current-Calculating Areas Under Curves 209 -- Appendix F: Shunt Reactor Switching ́ô First-Pole-to-Clear Circuit Representation 213 -- Appendix G: Special Case: Generator Circuit Breakers TRVs 219 -- Appendix H: Evolution of Transient Recovery Voltages 239 -- Appendix I: Equation Plotting Using Excel 261 -- Index 277. |
| Record Nr. | UNINA-9910830414603321 |
Peelo David F.
|
||
| Chichester, West Sussex, United Kingdom : , : John Wiley & Sons Inc., , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Current interruption transients calculation / / David F. Peelo
| Current interruption transients calculation / / David F. Peelo |
| Autore | Peelo David F |
| Pubbl/distr/stampa | West Sussex, England : , : John Wiley & Sons, , 2014 |
| Descrizione fisica | 1 online resource (248 p.) |
| Disciplina | 621.319/21 |
| Soggetto topico | Transients (Electricity) - Mathematical models |
| ISBN |
1-118-70721-4
1-118-70722-2 1-118-70719-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Current Interruption Transients Calculation; Contents; Preface; 1 Introduction; 1.1 Background; 1.2 Short-Circuit Rating Basis for High-Voltage Circuit Breakers; 1.3 Current Interruption Terminology; Bibliography; 2 RLC Circuits; 2.1 General; 2.2 Series RLC Circuit with Step Voltage Injection; 2.3 Source-Free Series RLC Circuit with Precharged Capacitor; 2.4 Source-Free Parallel RLC Circuit with Precharged Capacitor; 2.5 Parallel RLC Circuit with Ramp Current Injection; 2.6 Alternative Equations; 2.7 Travelling Wave Basics; 2.8 Summary; Bibliography; 3 Pole Factor Calculation; 3.1 General
3.2 Pole Factors: Effectively Earthed Systems3.3 Pole Factors: Non-Effectively Earthed Systems; 3.4 Alternative Pole Factor Calculation Method; 3.5 Three-Phase Test Circuit Arrangement; 3.6 Summary; Bibliography; 4 Terminal Faults; 4.1 General Considerations; 4.2 Standard TRV Derivation; 4.3 Effect of Added Capacitance; 4.4 Effect of Added Resistance; 4.5 Effect of Added Inductance; 4.6 Out-of-Phase Switching; 4.7 Asymmetrical Currents; 4.8 Double Earth Faults; 4.9 Summary; Bibliography; 5 Short-Line Faults; 5.1 General; 5.2 Line-Side Voltage Calculation; 5.3 Effect of Added Capacitance 5.4 DiscussionBibliography; 6 Inductive Load Switching; 6.1 General; 6.2 General Shunt Reactor Switching Case; 6.3 Shunt Reactors with Isolated Neutrals; 6.4 Shunt Reactors with Neutral Reactor Earthed Neutrals; 6.5 Shunt Reactors with Earthed Neutrals; 6.6 Re-Ignitions; 6.7 Unloaded Transformer Switching; 6.8 Discussion; 6.9 Summary; Bibliography; 7 Capacitive Load Switching; 7.1 General; 7.2 Shunt Capacitor Banks; 7.2.1 Energization; 7.2.2 De-Energization; 7.2.3 Outrush; 7.3 Transmission Lines; 7.4 Cables; 7.5 Summary; Bibliography; 8 Circuit Breaker Type Testing; 8.1 Introduction 8.2 Circuit Breaker Interrupting Time8.3 Inherent Transient Recovery Voltages; 8.4 Inductive Load Switching; 8.5 Capacitive Current Switching; Bibliography; Appendix A: Differential Equations; Bibliography; Appendix B: Principle of Duality; Appendix C: Useful Formulae; Appendix D: Euler's Formula; Bibliography; Appendix E: Asymmetrical Current-Calculating Areas Under Curves; Appendix F: Shunt Reactor Switching: First-Pole-to-Clear Circuit Representation; Appendix G: Special Case: Interrupting Small Capacitive Currents; Bibliography; Appendix H: Evolution of Transient Recovery Voltages H.1 IntroductionH.2 TRVs: Terminal Faults; H.3 Terminal Fault TRV Standardization; H.4 Short-Line Fault; H.5 Inductive and Capacitive Load Current Switching; H.6 Terminal Fault TRV Calculation; H.6.1 Pole Factor Calculation; H.6.2 Transient Calculation; Bibliography; Index |
| Record Nr. | UNINA-9910791330103321 |
Peelo David F
|
||
| West Sussex, England : , : John Wiley & Sons, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Current interruption transients calculation / / David F. Peelo
| Current interruption transients calculation / / David F. Peelo |
| Autore | Peelo David F |
| Pubbl/distr/stampa | West Sussex, England : , : John Wiley & Sons, , 2014 |
| Descrizione fisica | 1 online resource (248 p.) |
| Disciplina | 621.319/21 |
| Soggetto topico | Transients (Electricity) - Mathematical models |
| ISBN |
1-118-70721-4
1-118-70722-2 1-118-70719-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Current Interruption Transients Calculation; Contents; Preface; 1 Introduction; 1.1 Background; 1.2 Short-Circuit Rating Basis for High-Voltage Circuit Breakers; 1.3 Current Interruption Terminology; Bibliography; 2 RLC Circuits; 2.1 General; 2.2 Series RLC Circuit with Step Voltage Injection; 2.3 Source-Free Series RLC Circuit with Precharged Capacitor; 2.4 Source-Free Parallel RLC Circuit with Precharged Capacitor; 2.5 Parallel RLC Circuit with Ramp Current Injection; 2.6 Alternative Equations; 2.7 Travelling Wave Basics; 2.8 Summary; Bibliography; 3 Pole Factor Calculation; 3.1 General
3.2 Pole Factors: Effectively Earthed Systems3.3 Pole Factors: Non-Effectively Earthed Systems; 3.4 Alternative Pole Factor Calculation Method; 3.5 Three-Phase Test Circuit Arrangement; 3.6 Summary; Bibliography; 4 Terminal Faults; 4.1 General Considerations; 4.2 Standard TRV Derivation; 4.3 Effect of Added Capacitance; 4.4 Effect of Added Resistance; 4.5 Effect of Added Inductance; 4.6 Out-of-Phase Switching; 4.7 Asymmetrical Currents; 4.8 Double Earth Faults; 4.9 Summary; Bibliography; 5 Short-Line Faults; 5.1 General; 5.2 Line-Side Voltage Calculation; 5.3 Effect of Added Capacitance 5.4 DiscussionBibliography; 6 Inductive Load Switching; 6.1 General; 6.2 General Shunt Reactor Switching Case; 6.3 Shunt Reactors with Isolated Neutrals; 6.4 Shunt Reactors with Neutral Reactor Earthed Neutrals; 6.5 Shunt Reactors with Earthed Neutrals; 6.6 Re-Ignitions; 6.7 Unloaded Transformer Switching; 6.8 Discussion; 6.9 Summary; Bibliography; 7 Capacitive Load Switching; 7.1 General; 7.2 Shunt Capacitor Banks; 7.2.1 Energization; 7.2.2 De-Energization; 7.2.3 Outrush; 7.3 Transmission Lines; 7.4 Cables; 7.5 Summary; Bibliography; 8 Circuit Breaker Type Testing; 8.1 Introduction 8.2 Circuit Breaker Interrupting Time8.3 Inherent Transient Recovery Voltages; 8.4 Inductive Load Switching; 8.5 Capacitive Current Switching; Bibliography; Appendix A: Differential Equations; Bibliography; Appendix B: Principle of Duality; Appendix C: Useful Formulae; Appendix D: Euler's Formula; Bibliography; Appendix E: Asymmetrical Current-Calculating Areas Under Curves; Appendix F: Shunt Reactor Switching: First-Pole-to-Clear Circuit Representation; Appendix G: Special Case: Interrupting Small Capacitive Currents; Bibliography; Appendix H: Evolution of Transient Recovery Voltages H.1 IntroductionH.2 TRVs: Terminal Faults; H.3 Terminal Fault TRV Standardization; H.4 Short-Line Fault; H.5 Inductive and Capacitive Load Current Switching; H.6 Terminal Fault TRV Calculation; H.6.1 Pole Factor Calculation; H.6.2 Transient Calculation; Bibliography; Index |
| Record Nr. | UNINA-9910811342503321 |
Peelo David F
|
||
| West Sussex, England : , : John Wiley & Sons, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Electromagnetic computation methods for lightning surge protection studies / / authored by Yoshihiro Baba and Vladimir A. Rakov
| Electromagnetic computation methods for lightning surge protection studies / / authored by Yoshihiro Baba and Vladimir A. Rakov |
| Autore | Baba Yoshihiro |
| Pubbl/distr/stampa | Hoboken : , : John Wiley & Sons Inc., , 2016 |
| Descrizione fisica | 1 online resource (330 p.) |
| Disciplina | 621.31/7 |
| Soggetto topico |
Transients (Electricity) - Mathematical models
Lightning-arresters - Mathematical models Lightning protection - Mathematical models Electromagnetism - Mathematics Time-domain analysis |
| ISBN |
1-118-27565-9
1-118-27564-0 |
| Classificazione | SCI022000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Machine generated contents note: Preface 1 -- Introduction 2 -- Lightning 3 -- The Finite-Difference Time-Domain Method for Solving Maxwell's Equations 4 -- Applications to Lightning Surge Protection Studies Appendix 3D-FDTD Program in C++ Index . |
| Record Nr. | UNINA-9910136431103321 |
Baba Yoshihiro
|
||
| Hoboken : , : John Wiley & Sons Inc., , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Electromagnetic computation methods for lightning surge protection studies / / authored by Yoshihiro Baba and Vladimir A. Rakov
| Electromagnetic computation methods for lightning surge protection studies / / authored by Yoshihiro Baba and Vladimir A. Rakov |
| Autore | Baba Yoshihiro |
| Pubbl/distr/stampa | Hoboken : , : John Wiley & Sons Inc., , 2016 |
| Descrizione fisica | 1 online resource (330 p.) |
| Disciplina | 621.31/7 |
| Soggetto topico |
Transients (Electricity) - Mathematical models
Lightning-arresters - Mathematical models Lightning protection - Mathematical models Electromagnetism - Mathematics Time-domain analysis |
| ISBN |
1-118-27565-9
1-118-27564-0 |
| Classificazione | SCI022000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Machine generated contents note: Preface 1 -- Introduction 2 -- Lightning 3 -- The Finite-Difference Time-Domain Method for Solving Maxwell's Equations 4 -- Applications to Lightning Surge Protection Studies Appendix 3D-FDTD Program in C++ Index . |
| Record Nr. | UNINA-9910830694703321 |
Baba Yoshihiro
|
||
| Hoboken : , : John Wiley & Sons Inc., , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Transient analysis of power systems : solution techniques, tools, and applications / / Dr. Juan A. Martinez-Velasco
| Transient analysis of power systems : solution techniques, tools, and applications / / Dr. Juan A. Martinez-Velasco |
| Autore | Martinez-Velasco Juan A. |
| Pubbl/distr/stampa | Chichester, West Sussex, United Kingdom : , : John Wiley & Sons, Inc., , 2014 |
| Descrizione fisica | 1 online resource (648 p.) |
| Disciplina | 621.319/21 |
| Collana | Wiley - IEEE |
| Soggetto topico |
Electric power system stability
Transients (Electricity) - Mathematical models |
| ISBN |
1-118-69417-1
1-118-69419-8 1-118-69418-X |
| Classificazione | TEC031000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface xv -- About the Editor xvii -- List of Contributors xix -- 1 Introduction to Electromagnetic Transient Analysis of Power Systems 1 /Juan A. Martinez-Velasco -- 1.1 Overview 1 -- 1.2 Scope of the Book 4 -- References 6 -- 2 Solution Techniques for Electromagnetic Transients in Power Systems 9 /Jean Mahseredjian, Ilhan Kocar and Ulas Karaagac -- 2.1 Introduction 9 -- 2.2 Application Field for the Computation of Electromagnetic Transients 10 -- 2.3 The Main Modules 11 -- 2.4 Graphical User Interface 11 -- 2.5 Formulation of Network Equations for Steady-State and Time-Domain Solutions 12 -- 2.5.1 Nodal Analysis and Modified-Augmented-Nodal-Analysis 13 -- 2.5.2 State-Space Analysis 20 -- 2.5.3 Hybrid Analysis 21 -- 2.5.4 State-Space Groups and MANA 25 -- 2.5.5 Integration Time-Step 27 -- 2.6 Control Systems 28 -- 2.7 Multiphase Load-Flow Solution and Initialization 29 -- 2.7.1 Load-Flow Constraints 31 -- 2.7.2 Initialization of Load-Flow Equations 33 -- 2.7.3 Initialization from Steady-State Solution 33 -- 2.8 Implementation 34 -- 2.9 Conclusions 36 -- References 36 -- 3 Frequency Domain Aspects of Electromagnetic Transient Analysis of Power Systems 39 /Jos'e L. Naredo, Jean Mahseredjian, Ilhan Kocar, Jos'e A. Guti'errez-Robles and Juan A. Martinez-Velasco -- 3.1 Introduction 39 -- 3.2 Frequency Domain Basics 40 -- 3.2.1 Phasors and FD Representation of Signals 40 -- 3.2.2 Fourier Series 43 -- 3.2.3 Fourier Transform 46 -- 3.3 Discrete-Time Frequency Analysis 48 -- 3.3.1 Aliasing Effect 50 -- 3.3.2 Sampling Theorem 51 -- 3.3.3 Conservation of Information and the DFT 53 -- 3.3.4 Fast Fourier Transform 54 -- 3.4 Frequency-Domain Transient Analysis 56 -- 3.4.1 Fourier Transforms and Transients 56 -- 3.4.2 Fourier and Laplace Transforms 62 -- 3.4.3 The Numerical Laplace Transform 63 -- 3.4.4 Application Examples with the NLT 65 -- 3.4.5 Brief History of NLT Development 65 -- 3.5 Multirate Transient Analysis 66 -- 3.6 Conclusions 69 -- Acknowledgement 70 -- References 70.
4 Real-Time Simulation Technologies in Engineering 72 /Christian Dufour and Jean B'elanger -- 4.1 Introduction 72 -- 4.2 Model-Based Design and Real-Time Simulation 73 -- 4.3 General Considerations about Real-Time Simulation 74 -- 4.3.1 The Constraint of Real-Time 74 -- 4.3.2 Stiffness Issues 75 -- 4.3.3 Simulator Bandwidth Considerations 75 -- 4.3.4 Simulation Bandwidth vs. Applications 75 -- 4.3.5 Achieving Very Low Latency for HIL Application 76 -- 4.3.6 Effective Parallel Processing for Fast EMT Simulation 77 -- 4.3.7 FPGA-Based Multirate Simulators 79 -- 4.3.8 Advanced Parallel Solvers without Artificial Delays or Stublines: Application to Active Distribution Networks 79 -- 4.3.9 The Need for Iterations in Real-Time 80 -- 4.4 Phasor-Mode Real-Time Simulation 82 -- 4.5 Modern Real-Time Simulator Requirements 82 -- 4.5.1 Simulator I/O Requirements 83 -- 4.6 Rapid Control Prototyping and Hardware-in-the-Loop Testing 85 -- 4.7 Power Grid Real-Time Simulation Applications 85 -- 4.7.1 Statistical Protection System Study 85 -- 4.7.2 Monte Carlo Tests for Power Grid Switching Surge System Studies 87 -- 4.7.3 Modular Multilevel Converter in HVDC Applications 88 -- 4.7.4 High-End Super-Large Power Grid Simulations 89 -- 4.8 Motor Drive and FPGA-Based Real-Time Simulation Applications 90 -- 4.8.1 Industrial Motor Drive Design and Testing Using CPU Models 90 -- 4.8.2 FPGA Modelling of SRM and PMSM Motor Drives 91 -- 4.9 Educational System: RPC-Based Study of DFIM Wind Turbine 94 -- 4.10 Mechatronic Real-Time Simulation Applications 95 -- 4.10.1 Aircraft Flight Training Simulator 95 -- 4.10.2 Aircraft Flight Parameter Identification 95 -- 4.10.3 International Space Station Robotic Arm Testing 95 -- 4.11 Conclusion 97 -- References 97 -- 5 Calculation of Power System Overvoltages 100 /Juan A. Martinez-Velasco and Francisco Gonz'alez-Molina -- 5.1 Introduction 100 -- 5.2 Power System Overvoltages 101 -- 5.2.1 Temporary Overvoltages 101 -- 5.2.2 Slow-Front Overvoltages 102 -- 5.2.3 Fast-Front Overvoltages 102. 5.2.4 Very-Fast-Front Overvoltages 103 -- 5.3 Temporary Overvoltages 103 -- 5.3.1 Introduction 103 -- 5.3.2 Modelling Guidelines for Temporary Overvoltages 103 -- 5.3.3 Faults to Grounds 104 -- 5.3.4 Load Rejection 110 -- 5.3.5 Harmonic Resonance 115 -- 5.3.6 Energization of Unloaded Transformers 120 -- 5.3.7 Ferroresonance 125 -- 5.3.8 Conclusions 133 -- 5.4 Switching Overvoltages 135 -- 5.4.1 Introduction 135 -- 5.4.2 Modelling Guidelines 135 -- 5.4.3 Switching Overvoltages 139 -- 5.4.4 Case Studies 149 -- 5.4.5 Validation 154 -- 5.5 Lightning Overvoltages 154 -- 5.5.1 Introduction 154 -- 5.5.2 Modelling Guidelines 155 -- 5.5.3 Case Studies 163 -- 5.5.4 Validation 172 -- 5.6 Very Fast Transient Overvoltages in Gas Insulated Substations 174 -- 5.6.1 Introduction 174 -- 5.6.2 Origin of VFTO in GIS 174 -- 5.6.3 Propagation of VFTs in GISs 176 -- 5.6.4 Modelling Guidelines 180 -- 5.6.5 Case Study 9: VFT in a 765 kV GIS 182 -- 5.6.6 Statistical Calculation 183 -- 5.6.7 Validation 185 -- 5.7 Conclusions 187 -- Acknowledgement 187 -- References 187 -- 6 Analysis of FACTS Controllers and their Transient Modelling Techniques 195 /Kalyan K. Sen -- 6.1 Introduction 195 -- 6.3 Modelling Guidelines 206 -- 6.3.1 Representation of a Power System 206 -- 6.3.2 Representation of System Control 206 -- 6.3.3 Representation of a Controlled Switch 209 -- 6.3.4 Simulation Errors and Control 210 -- 6.4 Modelling of FACTS Controllers 210 -- 6.4.1 Simulation of an Independent PFC in a Single Line Application 212 -- 6.4.2 Simulation of a Voltage Regulating Transformer 212 -- 6.4.3 Simulation of a Phase Angle Regulator 214 -- 6.4.4 Simulation of a Unified Power Flow Controller 215 -- 6.5 Simulation Results of a UPFC 230 -- 6.6 Simulation Results of an ST 238 -- 6.7 Conclusion 245 -- Acknowledgement 245 -- References 245 -- 7 Applications of Power Electronic Devices in Distribution Systems 248 /Arindam Ghosh and Farhad Shahnia -- 7.1 Introduction 248 -- 7.2 Modelling of Converter and Filter Structures for CPDs 250. 7.2.1 Three-Phase Converter Structures 250 -- 7.2.2 Filter Structures 251 -- 7.2.3 Dynamic Simulation of CPDs 252 -- 7.3 Distribution Static Compensator (DSTATCOM) 253 -- 7.3.1 Current Control Using DSTATCOM 253 -- 7.3.2 Voltage Control Using DSTATCOM 256 -- 7.4 Dynamic Voltage Restorer (DVR) 258 -- 7.5 Unified Power Quality Conditioner (UPQC) 263 -- 7.6 Voltage Balancing Using DSTATCOM and DVR 267 -- 7.7 Excess Power Circulation Using CPDs 271 -- 7.7.1 Current-Controlled DSTATCOM Application 271 -- 7.7.2 Voltage-Controlled DSTATCOM Application 272 -- 7.7.3 UPQC Application 276 -- 7.8 Conclusions 278 -- References 278 -- 8 Modelling of Electronically Interfaced DER Systems for Transient Analysis 280 /Amirnaser Yazdani and Omid Alizadeh -- 8.1 Introduction 280 -- 8.2 Generic Electronically Interfaced DER System 281 -- 8.3 Realization of Different DER Systems 283 -- 8.3.1 PV Energy Systems 283 -- 8.3.2 Fuel-Cell Systems 284 -- 8.3.3 Battery Energy Storage Systems 284 -- 8.3.4 Supercapacitor Energy Storage System 285 -- 8.3.5 Superconducting Magnetic Energy Storage System 285 -- 8.3.6 Wind Energy Systems 286 -- 8.3.7 Flywheel Energy Storage Systems 287 -- 8.4 Transient Analysis of Electronically Interfaced DER Systems 287 -- 8.5 Examples 288 -- 8.5.1 Example 1: Single-Stage PV Energy System 288 -- 8.5.2 Example 2: Direct-Drive Variable-Speed Wind Energy System 298 -- 8.6 Conclusion 315 -- References 315 -- 9 Simulation of Transients for VSC-HVDC Transmission Systems Based on Modular Multilevel Converters 317 /Hani Saad, S'ebastien Denneti`ere, Jean Mahseredjian, Tarek Ould-Bachir and Jean-Pierre David -- 9.1 Introduction 317 -- 9.2 MMC Topology 318 -- 9.3 MMC Models 320 -- 9.3.1 Model 1 - Full Detailed 320 -- 9.3.2 Model 2 - Detailed Equivalent 321 -- 9.3.3 Model 3 - Switching Function of MMC Arm 322 -- 9.3.4 Model 4 - AVM Based on Power Frequency 325 -- 9.4 Control System 327 -- 9.4.1 Operation Principle 327 -- 9.4.2 Upper-Level Control 328 -- 9.4.3 Lower-Level Control 333. 9.4.4 Control Structure Requirement Depending on MMC Model Type 336 -- 9.5 Model Comparisons 336 -- 9.5.1 Step Change on Active Power Reference 337 -- 9.5.2 Three-Phase AC Fault 337 -- 9.5.3 Influence of MMC Levels 338 -- 9.5.4 Pole-to-Pole DC Fault 338 -- 9.5.5 Startup Sequence 340 -- 9.5.6 Computational Performance 340 -- 9.6 Real-Time Simulation of MMC Using CPU and FPGA 342 -- 9.6.1 Relation between Sampling Time and N 344 -- 9.6.2 Optimization of Model 2 for Real-Time Simulation 345 -- 9.6.3 Real-Time Simulation Setup 346 -- 9.6.4 CPU-Based Model 347 -- 9.6.5 FPGA-Based Model 350 -- 9.7 Conclusions 356 -- References 357 -- 10 Dynamic Average Modelling of Rectifier Loads and AC-DC Converters for Power System Applications 360 /Sina Chiniforoosh, Juri Jatskevich, Hamid Atighechi and Juan A. Martinez-Velasco -- 10.1 Introduction 360 -- 10.2 Front-End Diode Rectifier System Configurations 361 -- 10.3 Detailed Analysis and Modes of Operation 365 -- 10.4 Dynamic Average Modelling 368 -- 10.4.1 Selected Dynamic AVMs 370 -- 10.4.2 Computer Implementation 372 -- 10.5 Verification and Comparison of the AVMs 372 -- 10.5.1 Steady-State Characteristics 372 -- 10.5.2 Model Dynamic Order and Eigenvalue Analysis 376 -- 10.5.3 Dynamic Performance Under Balanced and Unbalanced Conditions 377 -- 10.5.4 Input Sequence Impedances under Unbalanced Conditions 382 -- 10.5.5 Small-Signal Input/Output Impedances 383 -- 10.6 Generalization to High-Pulse-Count Converters 386 -- 10.6.1 Detailed Analysis 387 -- 10.6.2 Dynamic Average Modelling 388 -- 10.7 Generalization to PWM AC-DC Converters 391 -- 10.7.1 PWM Voltage-Source Converters 391 -- 10.7.2 Dynamic Average-Value Modelling of PWM Voltage-Source Converters 392 -- 10.8 Conclusions 394 -- Appendix 394 -- References 395 -- 11 Protection Systems 398 /Juan A. Martinez-Velasco -- 11.1 Introduction 398 -- 11.2 Modelling Guidelines for Power System Components 400 -- 11.2.1 Line Models 400 -- 11.2.2 Insulated Cables 401 -- 11.2.3 Source Models 401. 11.2.4 Transformer Models 401 -- 11.2.5 Circuit Breaker Models 403 -- 11.3 Models of Instrument Transformers 403 -- 11.3.1 Introduction 403 -- 11.3.2 Current Transformers 404 -- 11.3.3 Rogowski Coils 408 -- 11.3.4 Coupling Capacitor Voltage Transformers 410 -- 11.3.5 Voltage Transformers 412 -- 11.4 Relay Modelling 412 -- 11.4.1 Introduction 412 -- 11.4.2 Classification of Relay Models 412 -- 11.4.3 Relay Models 413 -- 11.5 Implementation of Relay Models 418 -- 11.5.1 Introduction 418 -- 11.5.2 Sources of Information for Building Relay Models 419 -- 11.5.3 Software Tools 420 -- 11.5.4 Implementation of Relay Models 421 -- 11.5.5 Interfacing Relay Models to Recorded Data 422 -- 11.5.6 Applications of Relay Models 423 -- 11.5.7 Limitations of Relay Models 424 -- 11.6 Validation of Relay Models 424 -- 11.6.1 Validation Procedures 424 -- 11.6.2 Relay Model Testing Procedures 425 -- 11.6.3 Accuracy Assessment 426 -- 11.6.4 Relay Testing Facilities 426 -- 11.7 Case Studies 427 -- 11.7.1 Introduction 427 -- 11.7.2 Case Study 1: Simulation of an Electromechanical Distance Relay 428 -- 11.7.3 Case Study 2: Simulation of a Numerical Distance Relay 430 -- 11.8 Protection of Distribution Systems 450 -- 11.8.1 Introduction 450 -- 11.8.2 Protection of Distribution Systems with Distributed Generation 451 -- 11.8.3 Modelling of Distribution Feeder Protective Devices 451 -- 11.8.4 Protection of the Interconnection of Distributed Generators 460 -- 11.8.5 Case Study 3 460 -- 11.8.6 Case Study 4 465 -- 11.9 Conclusions 471 -- Acknowledgement 475 -- References 476 -- 12 Time-Domain Analysis of the Smart Grid Technologies: Possibilities and Challenges 481 /Francisco de Le'on, Reynaldo Salcedo, Xuanchang Ran and Juan A. Martinez-Velasco -- 12.1 Introduction 481 -- 12.2 Distribution Systems 482 -- 12.2.1 Radial Distribution Systems 483 -- 12.2.2 Networked Distribution Systems 484 -- 12.3 Restoration and Reconfiguration of the Smart Grid 487 -- 12.3.1 Introduction 487 -- 12.3.2 Heavily Meshed Networked Distribution Systems 487. 12.4 Integration of Distributed Generation 498 -- 12.4.1 Scope 498 -- 12.4.2 Radial Distribution Systems 499 -- 12.4.3 Heavily Meshed Networked Distribution Systems 503 -- 12.5 Overvoltages in Distribution Networks 515 -- 12.5.1 Introduction 515 -- 12.5.2 Ferroresonant Overvoltages 516 -- 12.5.3 Long-Duration Overvoltages due to Backfeeding 519 -- 12.6 Development of Data Translators for Interfacing Power-Flow Programs with EMTP-Type Programs 529 -- 12.6.1 Introduction 529 -- 12.6.2 Power-Flow to EMTP-RV Translator 530 -- 12.6.3 Example of the Translation of a Transmission Line 533 -- 12.6.4 Challenges of Development 533 -- 12.6.5 Model Validation 535 -- 12.6.6 Recommendations 542 -- Acknowledgement 546 -- References 546 -- 13 Interfacing Methods for Electromagnetic Transient Simulation: New Possibilities for Analysis and Design 552 /Shaahin Filizadeh -- 13.1 Introduction 552 -- 13.2 Need for Interfacing 553 -- 13.3 Interfacing Templates 554 -- 13.3.1 Static Interfacing 554 -- 13.3.2 Dynamic Interfacing and Memory Management 555 -- 13.3.3 Wrapper Interfaces 555 -- 13.4 Interfacing Implementation Options: External vs Internal Interfaces 555 -- 13.4.1 External Interfaces 556 -- 13.4.2 Internal Interfaces 556 -- 13.5 Multiple Interfacing 556 -- 13.5.1 Core-Type Interfacing 557 -- 13.5.2 Chain-Type Interfacing 557 -- 13.5.3 Loop Interfacing 558 -- 13.6 Examples of Interfacing 558 -- 13.6.1 Interfacing to Matlab/Simulink 558 -- 13.6.2 Wrapper Interfacing: Run-Controllers and Multiple-Runs 560 -- 13.7 Design Process Using EMT Simulation Tools 560 -- 13.7.1 Parameter Selection Techniques 561 -- 13.7.2 Uncertainty Analysis 563 -- 13.8 Conclusions 566 -- References 566 -- AnnexA: Techniques and Computer Codes for Rational Modelling of Frequency-Dependent Components and Subnetworks 568 /Bjorn Gustavsen -- A.1 Introduction 568 -- A.2 Rational Functions 569 -- A.3 Time-Domain Simulation 569 -- A.4 Fitting Techniques 569 -- A.4.1 Polynomial Fitting 569 -- A.4.2 Bode's Asymptotic Fitting 570. A.4.3 Vector Fitting 570 -- A.5 Passivity 571 -- A.6 Matrix Fitting Toolbox 572 -- A.6.1 General 572 -- A.6.2 Overview 572 -- A.7 Example A.1: Electrical Circuit 573 -- A.8 Example 6.2: High-Frequency Transformer Modelling 575 -- A.8.1 Measurement 575 -- A.8.2 Rational Approximation 575 -- A.8.3 Passivity Enforcement 575 -- A.8.4 Time-Domain Simulation 576 -- A.8.5 Comparison with Time-Domain Measurement 577 -- References 579 -- AnnexB: Dynamic System Equivalents 581 /Udaya D. Annakkage -- B.1 Introduction 581 -- B.2 High-Frequency Equivalents 582 -- B.2.1 Introduction 582 -- B.2.2 Frequency-Dependent Network Equivalent (FDNE) 582 -- B.2.3 Examples of High-Frequency FDNE 583 -- B.2.4 Two-Layer Network Equivalent (TLNE) 586 -- B.2.5 Modified Two-Layer Network Equivalent 592 -- B.2.6 Other Methods 594 -- B.2.7 Numerical Issues 594 -- B.3 Low-Frequency Equivalents 595 -- B.3.1 Introduction 595 -- B.3.2 Modal Methods 596 -- B.3.3 Coherency Methods 596 -- B.3.4 Measurement or Simulation-Based Methods 597 -- B.4 Wideband Equivalents 597 -- B.5 Conclusions 597 -- References 598 -- Index 601. |
| Record Nr. | UNINA-9910140495203321 |
Martinez-Velasco Juan A.
|
||
| Chichester, West Sussex, United Kingdom : , : John Wiley & Sons, Inc., , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Transient analysis of power systems : solution techniques, tools, and applications / / Dr. Juan A. Martinez-Velasco
| Transient analysis of power systems : solution techniques, tools, and applications / / Dr. Juan A. Martinez-Velasco |
| Autore | Martinez-Velasco Juan A. |
| Pubbl/distr/stampa | Chichester, West Sussex, United Kingdom : , : John Wiley & Sons, Inc., , 2014 |
| Descrizione fisica | 1 online resource (648 p.) |
| Disciplina | 621.319/21 |
| Collana | Wiley - IEEE |
| Soggetto topico |
Electric power system stability
Transients (Electricity) - Mathematical models |
| ISBN |
1-118-69417-1
1-118-69419-8 1-118-69418-X |
| Classificazione | TEC031000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface xv -- About the Editor xvii -- List of Contributors xix -- 1 Introduction to Electromagnetic Transient Analysis of Power Systems 1 /Juan A. Martinez-Velasco -- 1.1 Overview 1 -- 1.2 Scope of the Book 4 -- References 6 -- 2 Solution Techniques for Electromagnetic Transients in Power Systems 9 /Jean Mahseredjian, Ilhan Kocar and Ulas Karaagac -- 2.1 Introduction 9 -- 2.2 Application Field for the Computation of Electromagnetic Transients 10 -- 2.3 The Main Modules 11 -- 2.4 Graphical User Interface 11 -- 2.5 Formulation of Network Equations for Steady-State and Time-Domain Solutions 12 -- 2.5.1 Nodal Analysis and Modified-Augmented-Nodal-Analysis 13 -- 2.5.2 State-Space Analysis 20 -- 2.5.3 Hybrid Analysis 21 -- 2.5.4 State-Space Groups and MANA 25 -- 2.5.5 Integration Time-Step 27 -- 2.6 Control Systems 28 -- 2.7 Multiphase Load-Flow Solution and Initialization 29 -- 2.7.1 Load-Flow Constraints 31 -- 2.7.2 Initialization of Load-Flow Equations 33 -- 2.7.3 Initialization from Steady-State Solution 33 -- 2.8 Implementation 34 -- 2.9 Conclusions 36 -- References 36 -- 3 Frequency Domain Aspects of Electromagnetic Transient Analysis of Power Systems 39 /Jos'e L. Naredo, Jean Mahseredjian, Ilhan Kocar, Jos'e A. Guti'errez-Robles and Juan A. Martinez-Velasco -- 3.1 Introduction 39 -- 3.2 Frequency Domain Basics 40 -- 3.2.1 Phasors and FD Representation of Signals 40 -- 3.2.2 Fourier Series 43 -- 3.2.3 Fourier Transform 46 -- 3.3 Discrete-Time Frequency Analysis 48 -- 3.3.1 Aliasing Effect 50 -- 3.3.2 Sampling Theorem 51 -- 3.3.3 Conservation of Information and the DFT 53 -- 3.3.4 Fast Fourier Transform 54 -- 3.4 Frequency-Domain Transient Analysis 56 -- 3.4.1 Fourier Transforms and Transients 56 -- 3.4.2 Fourier and Laplace Transforms 62 -- 3.4.3 The Numerical Laplace Transform 63 -- 3.4.4 Application Examples with the NLT 65 -- 3.4.5 Brief History of NLT Development 65 -- 3.5 Multirate Transient Analysis 66 -- 3.6 Conclusions 69 -- Acknowledgement 70 -- References 70.
4 Real-Time Simulation Technologies in Engineering 72 /Christian Dufour and Jean B'elanger -- 4.1 Introduction 72 -- 4.2 Model-Based Design and Real-Time Simulation 73 -- 4.3 General Considerations about Real-Time Simulation 74 -- 4.3.1 The Constraint of Real-Time 74 -- 4.3.2 Stiffness Issues 75 -- 4.3.3 Simulator Bandwidth Considerations 75 -- 4.3.4 Simulation Bandwidth vs. Applications 75 -- 4.3.5 Achieving Very Low Latency for HIL Application 76 -- 4.3.6 Effective Parallel Processing for Fast EMT Simulation 77 -- 4.3.7 FPGA-Based Multirate Simulators 79 -- 4.3.8 Advanced Parallel Solvers without Artificial Delays or Stublines: Application to Active Distribution Networks 79 -- 4.3.9 The Need for Iterations in Real-Time 80 -- 4.4 Phasor-Mode Real-Time Simulation 82 -- 4.5 Modern Real-Time Simulator Requirements 82 -- 4.5.1 Simulator I/O Requirements 83 -- 4.6 Rapid Control Prototyping and Hardware-in-the-Loop Testing 85 -- 4.7 Power Grid Real-Time Simulation Applications 85 -- 4.7.1 Statistical Protection System Study 85 -- 4.7.2 Monte Carlo Tests for Power Grid Switching Surge System Studies 87 -- 4.7.3 Modular Multilevel Converter in HVDC Applications 88 -- 4.7.4 High-End Super-Large Power Grid Simulations 89 -- 4.8 Motor Drive and FPGA-Based Real-Time Simulation Applications 90 -- 4.8.1 Industrial Motor Drive Design and Testing Using CPU Models 90 -- 4.8.2 FPGA Modelling of SRM and PMSM Motor Drives 91 -- 4.9 Educational System: RPC-Based Study of DFIM Wind Turbine 94 -- 4.10 Mechatronic Real-Time Simulation Applications 95 -- 4.10.1 Aircraft Flight Training Simulator 95 -- 4.10.2 Aircraft Flight Parameter Identification 95 -- 4.10.3 International Space Station Robotic Arm Testing 95 -- 4.11 Conclusion 97 -- References 97 -- 5 Calculation of Power System Overvoltages 100 /Juan A. Martinez-Velasco and Francisco Gonz'alez-Molina -- 5.1 Introduction 100 -- 5.2 Power System Overvoltages 101 -- 5.2.1 Temporary Overvoltages 101 -- 5.2.2 Slow-Front Overvoltages 102 -- 5.2.3 Fast-Front Overvoltages 102. 5.2.4 Very-Fast-Front Overvoltages 103 -- 5.3 Temporary Overvoltages 103 -- 5.3.1 Introduction 103 -- 5.3.2 Modelling Guidelines for Temporary Overvoltages 103 -- 5.3.3 Faults to Grounds 104 -- 5.3.4 Load Rejection 110 -- 5.3.5 Harmonic Resonance 115 -- 5.3.6 Energization of Unloaded Transformers 120 -- 5.3.7 Ferroresonance 125 -- 5.3.8 Conclusions 133 -- 5.4 Switching Overvoltages 135 -- 5.4.1 Introduction 135 -- 5.4.2 Modelling Guidelines 135 -- 5.4.3 Switching Overvoltages 139 -- 5.4.4 Case Studies 149 -- 5.4.5 Validation 154 -- 5.5 Lightning Overvoltages 154 -- 5.5.1 Introduction 154 -- 5.5.2 Modelling Guidelines 155 -- 5.5.3 Case Studies 163 -- 5.5.4 Validation 172 -- 5.6 Very Fast Transient Overvoltages in Gas Insulated Substations 174 -- 5.6.1 Introduction 174 -- 5.6.2 Origin of VFTO in GIS 174 -- 5.6.3 Propagation of VFTs in GISs 176 -- 5.6.4 Modelling Guidelines 180 -- 5.6.5 Case Study 9: VFT in a 765 kV GIS 182 -- 5.6.6 Statistical Calculation 183 -- 5.6.7 Validation 185 -- 5.7 Conclusions 187 -- Acknowledgement 187 -- References 187 -- 6 Analysis of FACTS Controllers and their Transient Modelling Techniques 195 /Kalyan K. Sen -- 6.1 Introduction 195 -- 6.3 Modelling Guidelines 206 -- 6.3.1 Representation of a Power System 206 -- 6.3.2 Representation of System Control 206 -- 6.3.3 Representation of a Controlled Switch 209 -- 6.3.4 Simulation Errors and Control 210 -- 6.4 Modelling of FACTS Controllers 210 -- 6.4.1 Simulation of an Independent PFC in a Single Line Application 212 -- 6.4.2 Simulation of a Voltage Regulating Transformer 212 -- 6.4.3 Simulation of a Phase Angle Regulator 214 -- 6.4.4 Simulation of a Unified Power Flow Controller 215 -- 6.5 Simulation Results of a UPFC 230 -- 6.6 Simulation Results of an ST 238 -- 6.7 Conclusion 245 -- Acknowledgement 245 -- References 245 -- 7 Applications of Power Electronic Devices in Distribution Systems 248 /Arindam Ghosh and Farhad Shahnia -- 7.1 Introduction 248 -- 7.2 Modelling of Converter and Filter Structures for CPDs 250. 7.2.1 Three-Phase Converter Structures 250 -- 7.2.2 Filter Structures 251 -- 7.2.3 Dynamic Simulation of CPDs 252 -- 7.3 Distribution Static Compensator (DSTATCOM) 253 -- 7.3.1 Current Control Using DSTATCOM 253 -- 7.3.2 Voltage Control Using DSTATCOM 256 -- 7.4 Dynamic Voltage Restorer (DVR) 258 -- 7.5 Unified Power Quality Conditioner (UPQC) 263 -- 7.6 Voltage Balancing Using DSTATCOM and DVR 267 -- 7.7 Excess Power Circulation Using CPDs 271 -- 7.7.1 Current-Controlled DSTATCOM Application 271 -- 7.7.2 Voltage-Controlled DSTATCOM Application 272 -- 7.7.3 UPQC Application 276 -- 7.8 Conclusions 278 -- References 278 -- 8 Modelling of Electronically Interfaced DER Systems for Transient Analysis 280 /Amirnaser Yazdani and Omid Alizadeh -- 8.1 Introduction 280 -- 8.2 Generic Electronically Interfaced DER System 281 -- 8.3 Realization of Different DER Systems 283 -- 8.3.1 PV Energy Systems 283 -- 8.3.2 Fuel-Cell Systems 284 -- 8.3.3 Battery Energy Storage Systems 284 -- 8.3.4 Supercapacitor Energy Storage System 285 -- 8.3.5 Superconducting Magnetic Energy Storage System 285 -- 8.3.6 Wind Energy Systems 286 -- 8.3.7 Flywheel Energy Storage Systems 287 -- 8.4 Transient Analysis of Electronically Interfaced DER Systems 287 -- 8.5 Examples 288 -- 8.5.1 Example 1: Single-Stage PV Energy System 288 -- 8.5.2 Example 2: Direct-Drive Variable-Speed Wind Energy System 298 -- 8.6 Conclusion 315 -- References 315 -- 9 Simulation of Transients for VSC-HVDC Transmission Systems Based on Modular Multilevel Converters 317 /Hani Saad, S'ebastien Denneti`ere, Jean Mahseredjian, Tarek Ould-Bachir and Jean-Pierre David -- 9.1 Introduction 317 -- 9.2 MMC Topology 318 -- 9.3 MMC Models 320 -- 9.3.1 Model 1 - Full Detailed 320 -- 9.3.2 Model 2 - Detailed Equivalent 321 -- 9.3.3 Model 3 - Switching Function of MMC Arm 322 -- 9.3.4 Model 4 - AVM Based on Power Frequency 325 -- 9.4 Control System 327 -- 9.4.1 Operation Principle 327 -- 9.4.2 Upper-Level Control 328 -- 9.4.3 Lower-Level Control 333. 9.4.4 Control Structure Requirement Depending on MMC Model Type 336 -- 9.5 Model Comparisons 336 -- 9.5.1 Step Change on Active Power Reference 337 -- 9.5.2 Three-Phase AC Fault 337 -- 9.5.3 Influence of MMC Levels 338 -- 9.5.4 Pole-to-Pole DC Fault 338 -- 9.5.5 Startup Sequence 340 -- 9.5.6 Computational Performance 340 -- 9.6 Real-Time Simulation of MMC Using CPU and FPGA 342 -- 9.6.1 Relation between Sampling Time and N 344 -- 9.6.2 Optimization of Model 2 for Real-Time Simulation 345 -- 9.6.3 Real-Time Simulation Setup 346 -- 9.6.4 CPU-Based Model 347 -- 9.6.5 FPGA-Based Model 350 -- 9.7 Conclusions 356 -- References 357 -- 10 Dynamic Average Modelling of Rectifier Loads and AC-DC Converters for Power System Applications 360 /Sina Chiniforoosh, Juri Jatskevich, Hamid Atighechi and Juan A. Martinez-Velasco -- 10.1 Introduction 360 -- 10.2 Front-End Diode Rectifier System Configurations 361 -- 10.3 Detailed Analysis and Modes of Operation 365 -- 10.4 Dynamic Average Modelling 368 -- 10.4.1 Selected Dynamic AVMs 370 -- 10.4.2 Computer Implementation 372 -- 10.5 Verification and Comparison of the AVMs 372 -- 10.5.1 Steady-State Characteristics 372 -- 10.5.2 Model Dynamic Order and Eigenvalue Analysis 376 -- 10.5.3 Dynamic Performance Under Balanced and Unbalanced Conditions 377 -- 10.5.4 Input Sequence Impedances under Unbalanced Conditions 382 -- 10.5.5 Small-Signal Input/Output Impedances 383 -- 10.6 Generalization to High-Pulse-Count Converters 386 -- 10.6.1 Detailed Analysis 387 -- 10.6.2 Dynamic Average Modelling 388 -- 10.7 Generalization to PWM AC-DC Converters 391 -- 10.7.1 PWM Voltage-Source Converters 391 -- 10.7.2 Dynamic Average-Value Modelling of PWM Voltage-Source Converters 392 -- 10.8 Conclusions 394 -- Appendix 394 -- References 395 -- 11 Protection Systems 398 /Juan A. Martinez-Velasco -- 11.1 Introduction 398 -- 11.2 Modelling Guidelines for Power System Components 400 -- 11.2.1 Line Models 400 -- 11.2.2 Insulated Cables 401 -- 11.2.3 Source Models 401. 11.2.4 Transformer Models 401 -- 11.2.5 Circuit Breaker Models 403 -- 11.3 Models of Instrument Transformers 403 -- 11.3.1 Introduction 403 -- 11.3.2 Current Transformers 404 -- 11.3.3 Rogowski Coils 408 -- 11.3.4 Coupling Capacitor Voltage Transformers 410 -- 11.3.5 Voltage Transformers 412 -- 11.4 Relay Modelling 412 -- 11.4.1 Introduction 412 -- 11.4.2 Classification of Relay Models 412 -- 11.4.3 Relay Models 413 -- 11.5 Implementation of Relay Models 418 -- 11.5.1 Introduction 418 -- 11.5.2 Sources of Information for Building Relay Models 419 -- 11.5.3 Software Tools 420 -- 11.5.4 Implementation of Relay Models 421 -- 11.5.5 Interfacing Relay Models to Recorded Data 422 -- 11.5.6 Applications of Relay Models 423 -- 11.5.7 Limitations of Relay Models 424 -- 11.6 Validation of Relay Models 424 -- 11.6.1 Validation Procedures 424 -- 11.6.2 Relay Model Testing Procedures 425 -- 11.6.3 Accuracy Assessment 426 -- 11.6.4 Relay Testing Facilities 426 -- 11.7 Case Studies 427 -- 11.7.1 Introduction 427 -- 11.7.2 Case Study 1: Simulation of an Electromechanical Distance Relay 428 -- 11.7.3 Case Study 2: Simulation of a Numerical Distance Relay 430 -- 11.8 Protection of Distribution Systems 450 -- 11.8.1 Introduction 450 -- 11.8.2 Protection of Distribution Systems with Distributed Generation 451 -- 11.8.3 Modelling of Distribution Feeder Protective Devices 451 -- 11.8.4 Protection of the Interconnection of Distributed Generators 460 -- 11.8.5 Case Study 3 460 -- 11.8.6 Case Study 4 465 -- 11.9 Conclusions 471 -- Acknowledgement 475 -- References 476 -- 12 Time-Domain Analysis of the Smart Grid Technologies: Possibilities and Challenges 481 /Francisco de Le'on, Reynaldo Salcedo, Xuanchang Ran and Juan A. Martinez-Velasco -- 12.1 Introduction 481 -- 12.2 Distribution Systems 482 -- 12.2.1 Radial Distribution Systems 483 -- 12.2.2 Networked Distribution Systems 484 -- 12.3 Restoration and Reconfiguration of the Smart Grid 487 -- 12.3.1 Introduction 487 -- 12.3.2 Heavily Meshed Networked Distribution Systems 487. 12.4 Integration of Distributed Generation 498 -- 12.4.1 Scope 498 -- 12.4.2 Radial Distribution Systems 499 -- 12.4.3 Heavily Meshed Networked Distribution Systems 503 -- 12.5 Overvoltages in Distribution Networks 515 -- 12.5.1 Introduction 515 -- 12.5.2 Ferroresonant Overvoltages 516 -- 12.5.3 Long-Duration Overvoltages due to Backfeeding 519 -- 12.6 Development of Data Translators for Interfacing Power-Flow Programs with EMTP-Type Programs 529 -- 12.6.1 Introduction 529 -- 12.6.2 Power-Flow to EMTP-RV Translator 530 -- 12.6.3 Example of the Translation of a Transmission Line 533 -- 12.6.4 Challenges of Development 533 -- 12.6.5 Model Validation 535 -- 12.6.6 Recommendations 542 -- Acknowledgement 546 -- References 546 -- 13 Interfacing Methods for Electromagnetic Transient Simulation: New Possibilities for Analysis and Design 552 /Shaahin Filizadeh -- 13.1 Introduction 552 -- 13.2 Need for Interfacing 553 -- 13.3 Interfacing Templates 554 -- 13.3.1 Static Interfacing 554 -- 13.3.2 Dynamic Interfacing and Memory Management 555 -- 13.3.3 Wrapper Interfaces 555 -- 13.4 Interfacing Implementation Options: External vs Internal Interfaces 555 -- 13.4.1 External Interfaces 556 -- 13.4.2 Internal Interfaces 556 -- 13.5 Multiple Interfacing 556 -- 13.5.1 Core-Type Interfacing 557 -- 13.5.2 Chain-Type Interfacing 557 -- 13.5.3 Loop Interfacing 558 -- 13.6 Examples of Interfacing 558 -- 13.6.1 Interfacing to Matlab/Simulink 558 -- 13.6.2 Wrapper Interfacing: Run-Controllers and Multiple-Runs 560 -- 13.7 Design Process Using EMT Simulation Tools 560 -- 13.7.1 Parameter Selection Techniques 561 -- 13.7.2 Uncertainty Analysis 563 -- 13.8 Conclusions 566 -- References 566 -- AnnexA: Techniques and Computer Codes for Rational Modelling of Frequency-Dependent Components and Subnetworks 568 /Bjorn Gustavsen -- A.1 Introduction 568 -- A.2 Rational Functions 569 -- A.3 Time-Domain Simulation 569 -- A.4 Fitting Techniques 569 -- A.4.1 Polynomial Fitting 569 -- A.4.2 Bode's Asymptotic Fitting 570. A.4.3 Vector Fitting 570 -- A.5 Passivity 571 -- A.6 Matrix Fitting Toolbox 572 -- A.6.1 General 572 -- A.6.2 Overview 572 -- A.7 Example A.1: Electrical Circuit 573 -- A.8 Example 6.2: High-Frequency Transformer Modelling 575 -- A.8.1 Measurement 575 -- A.8.2 Rational Approximation 575 -- A.8.3 Passivity Enforcement 575 -- A.8.4 Time-Domain Simulation 576 -- A.8.5 Comparison with Time-Domain Measurement 577 -- References 579 -- AnnexB: Dynamic System Equivalents 581 /Udaya D. Annakkage -- B.1 Introduction 581 -- B.2 High-Frequency Equivalents 582 -- B.2.1 Introduction 582 -- B.2.2 Frequency-Dependent Network Equivalent (FDNE) 582 -- B.2.3 Examples of High-Frequency FDNE 583 -- B.2.4 Two-Layer Network Equivalent (TLNE) 586 -- B.2.5 Modified Two-Layer Network Equivalent 592 -- B.2.6 Other Methods 594 -- B.2.7 Numerical Issues 594 -- B.3 Low-Frequency Equivalents 595 -- B.3.1 Introduction 595 -- B.3.2 Modal Methods 596 -- B.3.3 Coherency Methods 596 -- B.3.4 Measurement or Simulation-Based Methods 597 -- B.4 Wideband Equivalents 597 -- B.5 Conclusions 597 -- References 598 -- Index 601. |
| Record Nr. | UNINA-9910808241903321 |
Martinez-Velasco Juan A.
|
||
| Chichester, West Sussex, United Kingdom : , : John Wiley & Sons, Inc., , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||