Hodge theory and the local Torelli problem / / Loring W. Tu |
Autore | Tu Loring W. |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1983] |
Descrizione fisica | 1 online resource (72 p.) |
Disciplina |
510 s
516.3/52 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Curves, Algebraic
Surfaces, Algebraic Hodge theory Torelli theorem |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0689-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Table of Contents""; ""Introduction""; ""I. Variation of Hodge structure""; ""Â1. The period map""; ""Â2. The Hodge bundles in the smooth case""; ""Â3. The Hodge bundles when there are singular fibers""; ""The log complex""; ""Relative dualizing sheaf""; ""The canonical extension""; ""Â4. A multiplicative formula for the holomorphic Euler characteristic""; ""Â5. Monodromy""; ""Â6. Mixed Hodge structures and the numerical invariants of a degeneration""; ""6.1. Varieties with normal crossings""; ""6.2. The limiting mixed Hodge structure""; ""6.3. The Clemensâ€?Schmid exact sequence""
""6.4. Genus of a singular curve""""II. Local Torelli for curves""; ""Â7. The case of no singular fibers""; ""Â8. With singular fibers""; ""8.1. First proof: mixed Hodge structure and the topology of the singular fiber""; ""8.2. Second proof: using the relative dualizing sheaf to map X into a projective space""; ""8.3. Third proof: the ample cone on the moduli space M""; ""III. Local Torelli in higher dimensions""; ""Â9. Surfaces with large irregularity""; ""Â10. Threefolds and fourfolds with large irregularity""; ""Bibliography""; ""List of Notations""; ""Index""; ""A""; ""B""; ""C"" ""D""""E""; ""F""; ""G""; ""H""; ""I""; ""K""; ""L""; ""M""; ""N""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W""; ""Y"" |
Altri titoli varianti | Torelli problem |
Record Nr. | UNINA-9910480779503321 |
Tu Loring W.
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , [1983] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Hodge theory and the local Torelli problem / / Loring W. Tu |
Autore | Tu Loring W. |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1983] |
Descrizione fisica | 1 online resource (72 p.) |
Disciplina |
510 s
516.3/52 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Curves, Algebraic
Surfaces, Algebraic Hodge theory Torelli theorem |
ISBN | 1-4704-0689-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Table of Contents""; ""Introduction""; ""I. Variation of Hodge structure""; ""Â1. The period map""; ""Â2. The Hodge bundles in the smooth case""; ""Â3. The Hodge bundles when there are singular fibers""; ""The log complex""; ""Relative dualizing sheaf""; ""The canonical extension""; ""Â4. A multiplicative formula for the holomorphic Euler characteristic""; ""Â5. Monodromy""; ""Â6. Mixed Hodge structures and the numerical invariants of a degeneration""; ""6.1. Varieties with normal crossings""; ""6.2. The limiting mixed Hodge structure""; ""6.3. The Clemensâ€?Schmid exact sequence""
""6.4. Genus of a singular curve""""II. Local Torelli for curves""; ""Â7. The case of no singular fibers""; ""Â8. With singular fibers""; ""8.1. First proof: mixed Hodge structure and the topology of the singular fiber""; ""8.2. Second proof: using the relative dualizing sheaf to map X into a projective space""; ""8.3. Third proof: the ample cone on the moduli space M""; ""III. Local Torelli in higher dimensions""; ""Â9. Surfaces with large irregularity""; ""Â10. Threefolds and fourfolds with large irregularity""; ""Bibliography""; ""List of Notations""; ""Index""; ""A""; ""B""; ""C"" ""D""""E""; ""F""; ""G""; ""H""; ""I""; ""K""; ""L""; ""M""; ""N""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W""; ""Y"" |
Altri titoli varianti | Torelli problem |
Record Nr. | UNINA-9910788898703321 |
Tu Loring W.
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , [1983] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Hodge theory and the local Torelli problem / / Loring W. Tu |
Autore | Tu Loring W. |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1983] |
Descrizione fisica | 1 online resource (72 p.) |
Disciplina |
510 s
516.3/52 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Curves, Algebraic
Surfaces, Algebraic Hodge theory Torelli theorem |
ISBN | 1-4704-0689-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Table of Contents""; ""Introduction""; ""I. Variation of Hodge structure""; ""Â1. The period map""; ""Â2. The Hodge bundles in the smooth case""; ""Â3. The Hodge bundles when there are singular fibers""; ""The log complex""; ""Relative dualizing sheaf""; ""The canonical extension""; ""Â4. A multiplicative formula for the holomorphic Euler characteristic""; ""Â5. Monodromy""; ""Â6. Mixed Hodge structures and the numerical invariants of a degeneration""; ""6.1. Varieties with normal crossings""; ""6.2. The limiting mixed Hodge structure""; ""6.3. The Clemensâ€?Schmid exact sequence""
""6.4. Genus of a singular curve""""II. Local Torelli for curves""; ""Â7. The case of no singular fibers""; ""Â8. With singular fibers""; ""8.1. First proof: mixed Hodge structure and the topology of the singular fiber""; ""8.2. Second proof: using the relative dualizing sheaf to map X into a projective space""; ""8.3. Third proof: the ample cone on the moduli space M""; ""III. Local Torelli in higher dimensions""; ""Â9. Surfaces with large irregularity""; ""Â10. Threefolds and fourfolds with large irregularity""; ""Bibliography""; ""List of Notations""; ""Index""; ""A""; ""B""; ""C"" ""D""""E""; ""F""; ""G""; ""H""; ""I""; ""K""; ""L""; ""M""; ""N""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W""; ""Y"" |
Altri titoli varianti | Torelli problem |
Record Nr. | UNINA-9910828918603321 |
Tu Loring W.
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , [1983] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Topics in transcendental algebraic geometry / ed. Phillip Griffiths |
Autore | Griffith, Phillip A. |
Pubbl/distr/stampa | Princeton, N.J. : Princeton Univ. Press, 1984 |
Descrizione fisica | viii, 316 p. : ill. ; 25 cm. |
Disciplina | 512.33 |
Collana | Annals of mathematics studies ; 106 |
Soggetto topico |
Algebraic geometry
Hodge theory Torelli theorem |
ISBN | 0691083355 |
Classificazione |
AMS 14C30
AMS 32J25 QA564 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991001447619707536 |
Griffith, Phillip A.
![]() |
||
Princeton, N.J. : Princeton Univ. Press, 1984 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Topics in Transcendental Algebraic Geometry. (AM-106), Volume 106 / / Phillip A. Griffiths |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (328 pages) : illustrations |
Disciplina | 512/.33 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Geometry, Algebraic
Hodge theory Torelli theorem |
Soggetto non controllato |
Abelian integral
Algebraic curve Algebraic cycle Algebraic equation Algebraic geometry Algebraic integer Algebraic structure Algebraic surface Arithmetic genus Arithmetic group Asymptotic analysis Automorphism Base change Bilinear form Bilinear map Cohomology Combinatorics Commutative diagram Compactification (mathematics) Complete intersection Complex manifold Complex number Computation Deformation theory Degeneracy (mathematics) Differentiable manifold Dimension (vector space) Divisor (algebraic geometry) Divisor Elliptic curve Elliptic surface Equation Exact sequence Fiber bundle Function (mathematics) Fundamental class Geometric genus Geometry Hermitian symmetric space Hodge structure Hodge theory Homology (mathematics) Homomorphism Homotopy Hypersurface Intersection form (4-manifold) Intersection number Irreducibility (mathematics) Isomorphism class Jacobian variety K3 surface Kodaira dimension Kronecker's theorem Kummer surface Kähler manifold Lie algebra bundle Lie algebra Linear algebra Linear algebraic group Line–line intersection Mathematical induction Mathematical proof Mathematics Modular arithmetic Module (mathematics) Moduli space Monodromy matrix Monodromy theorem Monodromy Nilpotent orbit Normal function Open set Period mapping Permutation group Phillip Griffiths Point at infinity Pole (complex analysis) Polynomial Projective space Pullback (category theory) Quadric Regular singular point Resolution of singularities Riemann–Roch theorem for surfaces Scientific notation Set (mathematics) Special case Spectral sequence Subgroup Submanifold Surface of general type Surjective function Tangent bundle Theorem Topology Torelli theorem Transcendental number Vector space Zariski topology Zariski's main theorem |
ISBN | 1-4008-8165-X |
Classificazione | SK 240 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Table of Contents -- INTRODUCTION / Griffiths, Phillip -- Chapter I. VARIATION OF HODGE STRUCTURE / Griffiths, Phillip / Tu, Loring -- Chapter II. CURVATURE PROPERTIES OF THE HODGE BUNDLES / Griffiths, Phillip / Tu, Loring -- Chapter III. INFINITESIMAL VARIATION OF HODGE STRUCTURE / Griffiths, Phillip / Tu, Loring -- Chapter IV. ASYMPTOTIC BEHAVIOR OF A VARIATION OF HODGE STRUCTURE / Griffiths, Phillip / Tu, Loring -- Chapter V. MIXED HODGE STRUCTURES, COMPACTIFICATIONS AND MONODROMY WEIGHT FILTRATION / Cattani, Eduardo H. -- Chapter VI. THE CLEMENS-SCHMID EXACT SEQUENCE AND APPLICATIONS / Morrison, David R. -- Chapter VII DEGENERATION OF HODGE BUNDLES (AFTER STEENBRINK) / Zucker, Steven -- Chapter VIII. INFINITESIMAL TORELLI THEOREMS AND COUNTEREXAMPLES TO TORELLI PROBLEMS / Catanese, Fabrizio M.E. -- Chapter IX. THE TORELLI PROBLEM FOR ELLIPTIC PENCILS / Chakiris, Ken -- Chapter X. THE PERIOD MAP AT THE BOUNDARY OF MODULI / Friedman, Robert -- Chapter XI. THE GENERIC TORELLI PROBLEM FOR PRYM VARIETIES AND INTERSECTIONS OF THREE QUADRICS / Smith, Roy -- Chapter XII. INFINITESIMAL VARIATION OF HODGE STRUCTURE AND THE GENERIC GLOBAL TORELLI THEOREM / Griffiths, Phillip / Tu, Loring -- Chapter XIII. GENERIC TORELLI AND VARIATIONAL SCHOTTKY / Donagi, Ron -- Chapter XIV. INTERMEDIATE JACOBIANS AND NORMAL FUNCTIONS / Zucker, Steven -- Chapter XV. EXTENDABILITY OF NORMAL FUNCTIONS ASSOCIATED TO ALGEBRAIC CYCLES / Zein, Fouad El / Zucker, Steven -- Chapter XVI. SOME RESULTS ABOUT ABEL-JACOBI MAPPINGS / Clemens, Herbert -- Chapter XVII. INFINITESIMAL INVARIANT OF NORMAL FUNCTIONS / Griffiths, Phillip -- Backmatter |
Record Nr. | UNINA-9910154742603321 |
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|