Magnetohydrodynamic stability of tokamaks / / Hartmut Zohm |
Autore | Zohm Hartmut |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Company KGaA, , [2015] |
Descrizione fisica | 1 online resource (256 p.) |
Disciplina | 538.6 |
Soggetto topico |
Tokamaks - lemac
Magnetohydrodynamic generators |
ISBN |
3-527-67734-8
3-527-67737-2 3-527-67736-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Magnetohydrodynamic Stability of Tokamaks; Contents; Preface; Chapter 1 The MHD Equations; 1.1 Derivation of the MHD Equations; 1.1.1 Multispecies MHD Equations; 1.1.2 One-Fluid Model of Magnetohydrodynamics; 1.1.3 Validity of the One-Fluid Model of Magnetohydrodynamics; 1.2 Consequences of the MHD Equations; 1.2.1 Magnetic Flux Conservation; 1.2.2 MHD Equilibrium; 1.2.3 Magnetohydrodynamic Waves; 1.2.3.1 Compressional Alfvén Waves; 1.2.3.2 Shear Alfvén Waves; Chapter 2 MHD Equilibria in Fusion Plasmas; 2.1 Linear Configurations; 2.1.1 The z-Pinch; 2.1.2 The Screw Pinch
2.2 Toroidal Configurations2.2.1 The Tokamak; 2.2.1.1 The Grad-Shafranov Equation; 2.2.1.2 Circular Cross Section; 2.2.1.3 Arbitrary Cross Section; 2.2.1.4 The Straight Field Line Angle; 2.2.2 The Stellarator; Chapter 3 Linear Ideal MHD Stability Analysis; 3.1 Linear MHD Stability as an Initial Value Problem; 3.2 The Energy Principle of Ideal MHD; 3.3 Forms of δW; 3.4 The Ideal MHD Energy Principle for the Tokamak; Chapter 4 Current Driven Ideal MHD Modes in a Tokamak; 4.1 Expression for δW in Tokamak Ordering; 4.2 External Kinks in a Tokamak with β = 0; 4.2.1 Modes with m=1 6.4.1 Small ELM Regimes6.4.2 Active ELM Control; Chapter 7 Combined Pressure and Current Driven Modes: The Ideal β-Limit; 7.1 Tokamak Operational Scenarios; 7.2 External Kink Modes in a Tokamak with Finite β; 7.3 The Effect of a Conducting Wall on External Kink Modes; 7.3.1 Ideally Conducting Wall; 7.3.2 Resistive Wall; 7.4 The Resistive Wall Mode (RWM); 7.5 The Troyon Limit; Chapter 8 Resistive MHD Stability; 8.1 Stability of Current Sheets; 8.2 Reconnection in the Presence of a Guide Field; 8.3 Magnetic Islands in Tokamaks; 8.4 The Rutherford Equation Chapter 9 Current Driven (`classical') Tearing Modes in Tokamaks9.1 Effect of Tearing Modes on Kinetic Profiles; 9.2 Nonlinear Saturation; 9.3 Tearing Mode Rotation and Locking; 9.3.1 Rotation of Tearing Modes in Tokamaks; 9.3.2 Locking of Pre-existing Magnetic Islands; 9.3.3 Ab-initio Locked Modes; Chapter 10 Disruptions; 10.1 Phenomenology of Disruptions; 10.1.1 The Density Limit; 10.2 Consequences of Disruptions; 10.2.1 Thermal Loads; 10.2.2 Mechanical Loads; 10.2.3 Runaway Generation; 10.3 Disruption Avoidance and Mitigation; Chapter 11 M=1 Modes beyond Ideal MHD: Sawteeth and Fishbones 11.1 The Sawtooth Instability |
Record Nr. | UNINA-9910132316003321 |
Zohm Hartmut | ||
Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Company KGaA, , [2015] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Magnetohydrodynamic stability of tokamaks / / Hartmut Zohm |
Autore | Zohm Hartmut |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Company KGaA, , [2015] |
Descrizione fisica | 1 online resource (256 p.) |
Disciplina | 538.6 |
Soggetto topico |
Tokamaks - lemac
Magnetohydrodynamic generators |
ISBN |
3-527-67734-8
3-527-67737-2 3-527-67736-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Magnetohydrodynamic Stability of Tokamaks; Contents; Preface; Chapter 1 The MHD Equations; 1.1 Derivation of the MHD Equations; 1.1.1 Multispecies MHD Equations; 1.1.2 One-Fluid Model of Magnetohydrodynamics; 1.1.3 Validity of the One-Fluid Model of Magnetohydrodynamics; 1.2 Consequences of the MHD Equations; 1.2.1 Magnetic Flux Conservation; 1.2.2 MHD Equilibrium; 1.2.3 Magnetohydrodynamic Waves; 1.2.3.1 Compressional Alfvén Waves; 1.2.3.2 Shear Alfvén Waves; Chapter 2 MHD Equilibria in Fusion Plasmas; 2.1 Linear Configurations; 2.1.1 The z-Pinch; 2.1.2 The Screw Pinch
2.2 Toroidal Configurations2.2.1 The Tokamak; 2.2.1.1 The Grad-Shafranov Equation; 2.2.1.2 Circular Cross Section; 2.2.1.3 Arbitrary Cross Section; 2.2.1.4 The Straight Field Line Angle; 2.2.2 The Stellarator; Chapter 3 Linear Ideal MHD Stability Analysis; 3.1 Linear MHD Stability as an Initial Value Problem; 3.2 The Energy Principle of Ideal MHD; 3.3 Forms of δW; 3.4 The Ideal MHD Energy Principle for the Tokamak; Chapter 4 Current Driven Ideal MHD Modes in a Tokamak; 4.1 Expression for δW in Tokamak Ordering; 4.2 External Kinks in a Tokamak with β = 0; 4.2.1 Modes with m=1 6.4.1 Small ELM Regimes6.4.2 Active ELM Control; Chapter 7 Combined Pressure and Current Driven Modes: The Ideal β-Limit; 7.1 Tokamak Operational Scenarios; 7.2 External Kink Modes in a Tokamak with Finite β; 7.3 The Effect of a Conducting Wall on External Kink Modes; 7.3.1 Ideally Conducting Wall; 7.3.2 Resistive Wall; 7.4 The Resistive Wall Mode (RWM); 7.5 The Troyon Limit; Chapter 8 Resistive MHD Stability; 8.1 Stability of Current Sheets; 8.2 Reconnection in the Presence of a Guide Field; 8.3 Magnetic Islands in Tokamaks; 8.4 The Rutherford Equation Chapter 9 Current Driven (`classical') Tearing Modes in Tokamaks9.1 Effect of Tearing Modes on Kinetic Profiles; 9.2 Nonlinear Saturation; 9.3 Tearing Mode Rotation and Locking; 9.3.1 Rotation of Tearing Modes in Tokamaks; 9.3.2 Locking of Pre-existing Magnetic Islands; 9.3.3 Ab-initio Locked Modes; Chapter 10 Disruptions; 10.1 Phenomenology of Disruptions; 10.1.1 The Density Limit; 10.2 Consequences of Disruptions; 10.2.1 Thermal Loads; 10.2.2 Mechanical Loads; 10.2.3 Runaway Generation; 10.3 Disruption Avoidance and Mitigation; Chapter 11 M=1 Modes beyond Ideal MHD: Sawteeth and Fishbones 11.1 The Sawtooth Instability |
Record Nr. | UNINA-9910807824803321 |
Zohm Hartmut | ||
Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Company KGaA, , [2015] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Theory of tokamak transport [[electronic resource] ] : new aspects for nuclear fusion reactor design / / Leslie C. Woods |
Autore | Woods L. C (Leslie Colin), <1922-2007.> |
Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2006 |
Descrizione fisica | 1 online resource (242 p.) |
Disciplina | 538.7 |
Soggetto topico |
Tokamaks - lemac
Transport theory |
ISBN |
1-280-85432-4
9786610854325 3-527-60797-8 3-527-60726-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Theory of Tokamak Transport; Contents; Preface; Lists of physical constants, plasma parameters and frequently used symbols; 1 The quest for fusion power; 1.1 Tokamak machines; 1.1.1 Topology and ignition; 1.1.2 Some early tokamaks; 1.1.3 Toroidal current; 1.2 Basic tokamak variables; 1.2.1 Aspect ratio; 1.2.2 Beta; 1.2.3 Safety factor; 1.2.4 Z-effective; 1.3 Global confinement times; 1.3.1 Energy confinement time; 1.3.2 Electron-energy confinement time; 1.3.3 Particle confinement time; 1.3.4 Momentum confinement time; 1.4 Heating; 1.4.1 Ohmic heating; 1.4.2 Neutral beam heating
1.4.3 Radio-frequency heating1.5 Electron energy confinement time; 1.5.1 Ohmically-heated tokamaks; 1.5.2 Auxiliary heated plasmas; 1.5.3 Profile shapes and energy losses; 1.5.4 Disruptive instabilities; References; 2 Tokamak magnetic fields; 2.1 Axisymmetric toroidal equilibrium; 2.1.1 Grad-Shafranov equation; 2.1.2 First integral constraint; 2.1.3 Second integral constraint; 2.1.4 Diffusion velocity; 2.2 Equilibrium in a circular torus; 2.2.1 Shafranov geometry; 2.2.2 Solution of the Grad-Shafranov equation; 2.2.3 Magnetic fields and electric currents 2.3 Particle trapping in magnetic fields2.3.1 Magnetic bottles; 2.3.2 Fraction of trapped particles; 2.4 Trapping in tokamak magnetic fields; 2.4.1 Tokamak mirrors; 2.4.2 Trapped particles; 2.4.3 Bounce time in a tokamak field; 2.4.4 Trapped particle resistivity; 2.5 Diffusivity of trapped particles; 2.5.1 Energy sinks at magnetic mirrors; 2.5.2 Physics of diffusivity; 2.5.3 Parallel diffusivity due to trapped particles; 2.5.4 Thermal pumping; References; 3 Energy transport in Tokamaks; 3.1 Banana orbits; 3.1.1 Drifts due to variations in the magnetic field; 3.1.2 Gyro-averages 3.1.3 Banana width3.1.4 Neoclassical diffusivity; 3.2 Thermal conductivity; 3.2.1 Neutral gas; 3.2.2 Magnetoplasma; 3.2.3 Fluid shear and transport; 3.2.4 Heat flux, second-order in Knudsen number; 3.3 Classical treatment of particle transport; 3.3.1 Equilibrium currents; 3.3.2 Pfirsch-Schlüter current; 3.3.3 Mass diffusivity; 3.4 Neoclassical theory and its validity; 3.4.1 Banana and plateau regimes; 3.4.2 Testing neoclassical theory; 3.4.3 Bootstrap current; 3.5 Second-order transport; 3.5.1 Electron thermal diffusivity; 3.5.2 Cylindrical coordinates; 3.5.3 Physical mechanism for heat flux 3.5.4 Role of turbulence3.5.5 Knudsen number constraint; References; 4 Energy losses from tokamaks; 4.1 Low poloidal beta; 4.1.1 Empirical profiles; 4.1.2 Radial distribution of thermal diffusivity; 4.1.3 Electron energy confinement time; 4.1.4 Comparison of theory with observation; 4.2 High poloidal beta; 4.2.1 Oscillatory temperature profiles; 4.2.2 Thermal diffusivity; 4.2.3 Electron energy confinement time; 4.3 The L- and H-modes; 4.3.1 Role of boundary conditions; 4.3.2 Energy confinement in the L- and H-modes; 4.4 Thermal transport in the ion fluid; 4.4.1 Thermal diffusivity 4.4.2 Ambipolar constraint |
Record Nr. | UNINA-9910144706303321 |
Woods L. C (Leslie Colin), <1922-2007.> | ||
Weinheim, : Wiley-VCH, c2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Theory of tokamak transport [[electronic resource] ] : new aspects for nuclear fusion reactor design / / Leslie C. Woods |
Autore | Woods L. C (Leslie Colin), <1922-2007.> |
Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2006 |
Descrizione fisica | 1 online resource (242 p.) |
Disciplina | 538.7 |
Soggetto topico |
Tokamaks - lemac
Transport theory |
ISBN |
1-280-85432-4
9786610854325 3-527-60797-8 3-527-60726-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Theory of Tokamak Transport; Contents; Preface; Lists of physical constants, plasma parameters and frequently used symbols; 1 The quest for fusion power; 1.1 Tokamak machines; 1.1.1 Topology and ignition; 1.1.2 Some early tokamaks; 1.1.3 Toroidal current; 1.2 Basic tokamak variables; 1.2.1 Aspect ratio; 1.2.2 Beta; 1.2.3 Safety factor; 1.2.4 Z-effective; 1.3 Global confinement times; 1.3.1 Energy confinement time; 1.3.2 Electron-energy confinement time; 1.3.3 Particle confinement time; 1.3.4 Momentum confinement time; 1.4 Heating; 1.4.1 Ohmic heating; 1.4.2 Neutral beam heating
1.4.3 Radio-frequency heating1.5 Electron energy confinement time; 1.5.1 Ohmically-heated tokamaks; 1.5.2 Auxiliary heated plasmas; 1.5.3 Profile shapes and energy losses; 1.5.4 Disruptive instabilities; References; 2 Tokamak magnetic fields; 2.1 Axisymmetric toroidal equilibrium; 2.1.1 Grad-Shafranov equation; 2.1.2 First integral constraint; 2.1.3 Second integral constraint; 2.1.4 Diffusion velocity; 2.2 Equilibrium in a circular torus; 2.2.1 Shafranov geometry; 2.2.2 Solution of the Grad-Shafranov equation; 2.2.3 Magnetic fields and electric currents 2.3 Particle trapping in magnetic fields2.3.1 Magnetic bottles; 2.3.2 Fraction of trapped particles; 2.4 Trapping in tokamak magnetic fields; 2.4.1 Tokamak mirrors; 2.4.2 Trapped particles; 2.4.3 Bounce time in a tokamak field; 2.4.4 Trapped particle resistivity; 2.5 Diffusivity of trapped particles; 2.5.1 Energy sinks at magnetic mirrors; 2.5.2 Physics of diffusivity; 2.5.3 Parallel diffusivity due to trapped particles; 2.5.4 Thermal pumping; References; 3 Energy transport in Tokamaks; 3.1 Banana orbits; 3.1.1 Drifts due to variations in the magnetic field; 3.1.2 Gyro-averages 3.1.3 Banana width3.1.4 Neoclassical diffusivity; 3.2 Thermal conductivity; 3.2.1 Neutral gas; 3.2.2 Magnetoplasma; 3.2.3 Fluid shear and transport; 3.2.4 Heat flux, second-order in Knudsen number; 3.3 Classical treatment of particle transport; 3.3.1 Equilibrium currents; 3.3.2 Pfirsch-Schlüter current; 3.3.3 Mass diffusivity; 3.4 Neoclassical theory and its validity; 3.4.1 Banana and plateau regimes; 3.4.2 Testing neoclassical theory; 3.4.3 Bootstrap current; 3.5 Second-order transport; 3.5.1 Electron thermal diffusivity; 3.5.2 Cylindrical coordinates; 3.5.3 Physical mechanism for heat flux 3.5.4 Role of turbulence3.5.5 Knudsen number constraint; References; 4 Energy losses from tokamaks; 4.1 Low poloidal beta; 4.1.1 Empirical profiles; 4.1.2 Radial distribution of thermal diffusivity; 4.1.3 Electron energy confinement time; 4.1.4 Comparison of theory with observation; 4.2 High poloidal beta; 4.2.1 Oscillatory temperature profiles; 4.2.2 Thermal diffusivity; 4.2.3 Electron energy confinement time; 4.3 The L- and H-modes; 4.3.1 Role of boundary conditions; 4.3.2 Energy confinement in the L- and H-modes; 4.4 Thermal transport in the ion fluid; 4.4.1 Thermal diffusivity 4.4.2 Ambipolar constraint |
Record Nr. | UNINA-9910829950503321 |
Woods L. C (Leslie Colin), <1922-2007.> | ||
Weinheim, : Wiley-VCH, c2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|