3D Bioprinting : Modeling In Vitro Tissues and Organs Using Tissue-Specific Bioinks / / by Dong-Woo Cho, Byoung Soo Kim, Jinah Jang, Ge Gao, Wonil Han, Narendra K. Singh |
Autore | Cho Dong-Woo |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (124 pages) : illustrations |
Disciplina | 610.28 |
Soggetto topico |
Biomedical engineering
Regenerative medicine Tissue engineering Mechanical engineering Impressió 3D Enginyeria biomèdica Biomedical Engineering/Biotechnology Biomedical Engineering and Bioengineering Regenerative Medicine/Tissue Engineering Mechanical Engineering |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-32222-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- Definition, necessity, and prerequisites for modeling 3D tissues and organs -- Prevalent technologies for in vitro tissue/organ biofabrication -- 3D cell printing techniques -- Decellularized extracellular matrix-based bioinks -- Skin -- Blood vessels -- Liver -- Kidney -- Cardiac -- Airway -- Brain -- Muscle -- Conclusion and future perspective. |
Record Nr. | UNINA-9910373906703321 |
Cho Dong-Woo
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
3D bioprinting for reconstructive surgery : techniques and applications / / edited by Daniel J. Thomas, Zita M. Jessop, Iain S. Whitaker |
Pubbl/distr/stampa | Duxford, Kidlington, England ; ; Cambridge, Massachusetts : , : Woodhead Publishing, , 2018 |
Descrizione fisica | 1 online resource (452 pages) : illustrations |
Disciplina | 610.28 |
Soggetto topico |
Tissue engineering
Biomedical materials |
ISBN | 0-08-101216-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910583460903321 |
Duxford, Kidlington, England ; ; Cambridge, Massachusetts : , : Woodhead Publishing, , 2018 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
3D Bioprinting from Lab to Industry |
Autore | Saha Prosenjit |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (531 pages) |
Altri autori (Persone) |
ThomasSabu
KimJinku GhoshManojit |
Soggetto topico |
Tissue engineering
Regenerative medicine |
ISBN |
9781119894407
1119894409 9781119894384 1119894387 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Foreword -- Chapter 1 Introduction of 3D Printing and Different Bioprinting Methods -- 1.1 Introduction of 3D Printing: Principles and Utility -- 1.2 Ink Preparation and Printability -- 1.3 Methods of Bioprinting in Fabrication and Tissue Engineering -- 1.3.1 Laser-Based Printing -- 1.3.1.1 Types of Laser Printing -- 1.3.2 Extrusion-Based Printing -- 1.3.3 Droplet Printing -- 1.3.4 Inkjet-Based Printing -- 1.3.5 Stereolithography 3D Printing -- 1.4 Scaffold Modeling and G Coding -- 1.4.1 Scanning Technology -- 1.4.2 CT Imaging -- 1.4.3 MRI Scanning -- 1.4.4 Preferred Accuracy Parameters for Scanning -- 1.4.5 Biomodeling Process for RP -- 1.5 Applications and Utility in Large-Scale Manufacturing -- 1.5.1 Bone -- 1.5.2 Cartilage -- 1.5.3 Skin -- 1.5.4 Vascular Grafts -- 1.5.5 Heart -- 1.5.6 Lungs -- 1.5.7 Liver -- 1.5.8 Kidney and Urethra -- 1.5.9 Brain and Spinal Cord -- 1.5.10 Cornea -- 1.5.11 Therapeutics -- 1.6 Complications and Troubleshooting -- 1.6.1 Laser-Based Printing -- 1.6.2 Inkjet-Based Printing -- 1.6.3 Extrusion-Based Printing -- 1.6.4 Droplet Printing -- 1.6.5 Stereolithography 3D Printing -- References -- Chapter 2 Cellular Requirements and Preparation for Bioprinting -- 2.1 Introduction -- 2.2 Types of Bioprinting -- 2.2.1 Inkjet-Assisted Printing -- 2.2.2 Extruder-Assisted Printing -- 2.2.3 Laser-Assisted Bioprinting -- 2.3 Features Required for Bioprinting with Cells -- 2.3.1 Sterility Parameters -- 2.3.2 Printing Speed and Pressure -- 2.3.3 pH and Osmotic Condition -- 2.3.4 Hydrogel Generation -- 2.3.4.1 Natural Polymers -- 2.3.4.2 Synthetic Polymers -- 2.3.5 Culture Duration and Conditions -- 2.3.6 Rheological Properties -- 2.4 Bioprinting Methodologies for Cell Expansion and Proliferation.
2.5 The Impact of Bioprinting Process Conditions on Phenotype Alterations -- 2.5.1 Bioprinting Techniques for Stem Cell Differentiation -- 2.5.1.1 Bioprinting Strategies for Cellular Environment Alterations -- 2.5.1.2 Bioprinting Strategies for Cell Behavior Modulation -- 2.5.1.3 Bioprinting Strategies for Genetic Modulationand Transcriptomics Variation -- 2.5.2 Bioprinting Techniques for Tumorigenic Differentiation -- 2.5.2.1 Bioprinting Strategies for Oncogenic Cell Growth -- 2.5.2.2 Bioprinting Strategies for the Development of Tumor Models -- 2.6 Discussion -- 2.7 Conclusion -- 2.8 Future Prospects -- References -- Chapter 3 3D Bioprinting: Materials for Bioprinting Bioinks Selection -- 3.1 Introduction -- 3.2 Bioprinting Materials -- 3.2.1 Biomaterials -- 3.2.2 Cells -- 3.2.3 Biomolecules or Additive Molecules -- 3.2.4 Hydrogels -- 3.3 Bioinks Selectivity Guide -- 3.3.1 Printability of Materials -- 3.3.2 Material Biocompatibility -- 3.3.3 Structural Properties -- 3.3.4 Materials Degradation -- 3.3.5 Biomimicry -- 3.4 Classification of Bioprinting Materials -- 3.4.1 According to Material Type -- 3.4.1.1 Polymers -- 3.4.1.2 Nanocomposites -- 3.4.1.3 Nanoparticles -- 3.4.2 According to Cell Dependence -- 3.4.2.1 Cell-basedBioinks -- 3.4.2.2 Cell-FreeBioinks (Biomaterial Inks) -- 3.5 3D Bioprinting Methods According to the Type of the Bioinks -- 3.5.1 Extrusion-Based 3D Bioprinting -- 3.5.2 Inkjet 3D Bioprinting -- 3.5.3 Stereolithography 3D Bioprinting -- 3.5.4 Laser-Based 3D Bioprinting -- 3.5.5 Bioplotting -- 3.6 Bioinks Selection According to Biomedical Application -- 3.7 Multicomponent Bioinks -- 3.8 Future Prospects -- References -- Chapter 4 Printed Scaffolds in Tissue Engineering -- 4.1 Introduction -- 4.2 Biomedical Application of 3D Printing -- 4.2.1 Implants and Scaffolds -- 4.2.2 Drug Delivery/Drug Modeling Application. 4.2.3 Applications of 3D Printed Scaffolds During COVID-19 -- 4.3 Tissue Engineering: Emerging Applications by 3D Printing -- 4.3.1 Cartilage Tissue Engineering by Printed Scaffolds -- 4.3.2 Liver Tissue Engineering by Printed Scaffolds -- 4.3.3 Nerve Tissue Engineering by Printed Scaffolds -- 4.3.4 Cardiac Tissue Engineering by Printed Scaffolds -- 4.4 Conclusions -- References -- Chapter 5 Printability and Shape Fidelity in Different Bioprinting Processes -- 5.1 Introduction -- 5.2 Fundamentals of Printability -- 5.3 Bioprinting Techniques and Printability -- 5.3.1 Extrusion-Based Bioprinting -- 5.3.2 Inkjet-Based Bioprinting -- 5.3.3 Stereolithography-Based Bioprinting (SL) -- 5.4 Shape Fidelity -- 5.4.1 Shape Fidelity in Planar Structures -- 5.4.2 Shape Fidelity in Multilayered Structures -- 5.4.3 Characterization Approaches -- 5.4.3.1 Rheological Characterization -- 5.4.3.2 Mechanical Characterization -- 5.4.3.3 Swelling Test -- 5.4.3.4 Viability Characterization -- 5.4.3.5 Bioprinting Procedure -- 5.5 Case Studies and Applications -- 5.6 Conclusion -- References -- Chapter 6 Advancements in Bioprinting for Medical Applications -- 6.1 Introduction -- 6.2 Bioprinting for Drug Development and Testing -- 6.2.1 Overview -- 6.2.2 3D Bioprinted Organoids -- 6.2.3 Organ-on-a-Chip/Microfluidic Systems -- 6.2.4 Bioprinted Models for Cancer Research -- 6.2.5 3D Bioprinting for Immunotherapy and Cell Therapy -- 6.3 Bioprinting in Tissue Engineering, Regenerative Medicine, and Organ Transplantation -- 6.3.1 Ocular Tissue Engineering -- 6.3.1.1 Retina -- 6.3.1.2 Cornea -- 6.3.2 Neural Tissue -- 6.3.3 Skin -- 6.3.3.1 Disease and Pharmaceutical Studies -- 6.3.3.2 Wound Healing -- 6.3.3.3 Reconstructive Surgery -- 6.3.4 Cartilage and Bone -- 6.3.4.1 Cartilage Printing Modalities -- 6.3.4.2 Cartilage Regeneration -- 6.3.5 Vascular Tissue. 6.3.6 Cardiac Tissue Engineering -- 6.3.7 Pancreas -- 6.3.7.1 Modulating Bioink Formulation to Enhance Tissue Viability -- 6.3.7.2 Controlling Other Printing Parameters to Enhance Tissue Viability -- 6.3.7.3 Using Printed Models to Study Pancreatic Cancer -- 6.3.8 Liver -- 6.3.8.1 Developing Suitable In Vitro Models -- 6.3.9 Lungs -- 6.3.9.1 Developing Suitable In Vitro Models -- 6.3.9.2 Application of 3D Construct -- 6.3.10 Renal/Kidney -- 6.3.10.1 Printing Parameters Affecting the Viability of Printed Model -- 6.3.10.2 Applications of 3D-PrintedModel -- 6.3.11 Composite Tissues -- 6.3.12 Other Tissues -- 6.4 Bioprinting in Tissue: Challenges, Barriers to Clinical Translation, and Future Directions -- 6.4.1 Introduction -- 6.4.1.1 Current Challenges in Organ Transplantation -- 6.4.1.2 Potential of Bioprinted Organs for Transplantation -- 6.4.1.3 Challenges and Limitations in Bioprinting Tissues and Organs -- 6.4.2 Insight on Barriers to Clinical Translation of Bioprinting Technology -- 6.4.3 Future Directions -- 6.5 Conclusions -- Acknowledgments -- References -- Chapter 7 4D-Printed, Smart, Multiresponsive Structures and Their Applications -- 7.1 Introduction -- 7.2 4D-Printing Technologies -- 7.3 Biomaterials for 4D Bioprinting -- 7.3.1 Water-Responsive Polymers -- 7.3.2 Temperature-Responsive Polymers (Hydrogels) -- 7.3.3 Electrical/Magnetic-Responsive Polymers -- 7.4 Biomedical Applications for 4D Bioprinting -- 7.4.1 Limitations of 3D Bioprinting -- 7.4.2 Biomedical Applications of 4D Printing -- 7.4.3 Scaffold Preparation -- 7.4.4 Drug Delivery -- 7.4.5 Sensors -- 7.4.6 Medical Devices -- 7.4.7 Tissue Engineering and Organ Regeneration -- 7.5 Future Perspectives -- References -- Chapter 8 Toxicity Aspects and Ethical Issues of Bioprinting -- 8.1 Introduction -- 8.2 Toxicity Issues in Bioprinting -- 8.2.1 Cell Harvesting and Culture. 8.2.2 Aseptic Techniques in Bioprinting -- 8.3 Ethical Issues in Bioprinting -- 8.3.1 Purpose -- 8.3.2 Cell Source -- 8.3.3 Data and Consent -- 8.3.4 Safety -- 8.3.5 Cost and Equity -- 8.3.6 Reproductive Organs -- 8.4 Issues in Clinical Trials -- 8.4.1 Personalized Treatment -- 8.4.2 Inability to Withdraw or Access Alternate Treatments -- 8.5 Legal Issues in Bioprinting -- 8.5.1 Intellectual Property Rights and Product Classification -- 8.5.2 Lack of Regulatory Guidelines -- 8.6 Conclusion -- References -- Chapter 9 Planning Bioprinting Project -- 9.1 Introduction -- 9.2 Background: Image Capturing and Solid Model Preparation of Virtual Anatomical Model for 3D Printing -- 9.2.1 Other Imaging Techniques -- 9.2.2 Digital Process for STL Generation -- 9.2.3 Blueprint Modeling -- 9.2.4 CAD-Based Systems Characteristics -- 9.2.5 Image-Based Systems -- 9.2.6 Freeform Systems -- 9.2.7 Designs Using Implicit Surfaces -- 9.2.8 Space-Filling Curves -- 9.2.9 Planning of Toolpath for Bioprinting -- 9.2.10 Cartesian Form Toolpath Planning -- 9.2.11 Parametric Form in Toolpath Planning -- 9.2.12 Bioprinting Methods -- 9.2.12.1 Extrusion Bioprinting -- 9.2.12.2 Inkjet Printing -- 9.2.12.3 Laser-AssistedPrinting -- 9.3 Conclusion -- References -- Chapter 10 Computational Engineering for 3D Bioprinting: Models, Methods, and Emerging Technologies -- 10.1 Introduction -- 10.2 Fundamentals of Numerical Methods in Bioprinting -- 10.2.1 Finite Element Analysis -- 10.2.2 Computational Fluid Dynamics -- 10.2.3 Agent-Based Modeling -- 10.2.4 Lattice Boltzmann Method -- 10.2.5 Molecular Dynamics -- 10.3 Application of Machine Learning for 3D Bioprinting -- 10.4 Summary -- References -- Chapter 11 Controlling Factors of Bioprinting -- 11.1 Introduction -- 11.2 Factors Influencing the Printability of Hydrogel Bioink -- 11.2.1 Extrudability -- 11.2.2 Filament Type. 11.2.3 Shape Fidelity. |
Record Nr. | UNINA-9910877612803321 |
Saha Prosenjit
![]() |
||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
3D printable gel-inks for tissue engineering : chemistry, processing, and applications / / Anuj Kumar, Stefan Ioan Voicu, Vijay Kumar Thakur, editors |
Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (400 pages) |
Disciplina | 610.28 |
Collana | Gels Horizons: From Science to Smart Materials |
Soggetto topico |
Biomedical materials
Three-dimensional printing Tissue engineering |
ISBN | 981-16-4667-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- About This Book -- Contents -- About the Editors -- 1 Introduction to 3D Printing Technology for Biomedical Applications -- 1 Introduction -- 2 Printing Mechanism: Classification of 3D Printing Techniques -- 2.1 Selective Laser Sintering -- 2.2 Stereolithography -- 2.3 Fused Deposition Modeling -- 2.4 Ink-Jet Printing -- 3 Evolution of 3D-Printed Medical Objects-Then and Now -- 4 3D Printable Materials for Medical Applications -- 5 Significance of 3D-Printed Objects in the Medical Field -- 6 Applications of 3D Printing -- 6.1 3D Printing of Surgical Preparation -- 6.2 Custom-Made Prosthetics -- 6.3 Dental -- 6.4 3D Printing of Tissues, Organoids, and Tissue Regeneration -- 6.5 Medication Dosage and Pharmacology -- 6.6 Manufacturing of Surgical Tools and Medical Metal Materials -- 7 Potential and Major Limitations -- References -- 2 Characterization of Bioinks for 3D Bioprinting -- 1 Bioink Definition, Related Terms -- 2 Properties of Bioinks -- 2.1 Bioink for Extrusion-Based Bioprinting -- 2.2 Bioink for Laser-Based Bioprinting -- 2.3 Bioink for Droplet-Based Bioink -- 3 Characterization of Bioinks -- 3.1 Rheology -- 3.2 Printability -- 3.3 Biofabrication Window -- 3.4 Cell Density -- 3.5 Cytocompatibility and Functionality -- 3.6 Bioink Purity -- 3.7 Bioink Degradation -- 3.8 Viscosity and Molecular Weight -- 3.9 Bioink Homogeneity -- 3.10 Solubility -- 3.11 Spheroid Characterization -- 4 Conclusion and Future Prospects -- References -- 3 3D Printing of Hydrogel Constructs Toward Targeted Development in Tissue Engineering -- 1 Introduction -- 2 3D Printing Technologies for Hydrogel Inks -- 2.1 Light-Assisted Direct-Printing -- 2.2 Inkjet Printing -- 2.3 Direct Dispensing -- 3 Trends and Strategies in Designing Hydrogel-Based Inks -- 3.1 Single-Component Hydrogel Inks -- 3.2 Bi-Component Hydrogel Inks.
3.3 Nanocomposite Hydrogel Inks -- 3.4 Multicomponent Hydrogel Inks -- 3.5 Cell-Embedding and the Bio-Printability Window -- 4 Key Parameters in Designing Printable Hydrogel Formulation -- 4.1 Material Parameters -- 4.2 Crosslinking Strategies -- 4.3 Fabrication Parameters -- 4.4 Investigation of Printability -- 5 Evolution to 4D Printing -- References -- 4 Three-Dimensional Self-healing Scaffolds for Tissue Engineering Applications -- 1 Introduction -- 2 Understanding Nature's Method of Self-healing -- 3 Self-healing Supramolecular Hydrogels -- 4 Self-assembled Hydrogels for Tissue Engineering and Drug Delivery Applications -- 5 Supramolecular Chemistry -- 5.1 Hydrogen Bonding -- 5.2 Metal-Ligand Coordination Complexation -- 5.3 Electrostatic Interaction -- 5.4 Host-Guest Interactions -- 6 π-π Interactions -- 7 Bioinspired Systems Chemistry -- 8 Conclusion -- References -- 5 Gel-Inks for 3D Printing in Corneal Tissue Engineering -- 1 Introduction -- 1.1 Structure of the Cornea -- 1.2 Desired Qualities for Cornea Replacement -- 2 Corneal Regeneration in Tissue Engineering -- 2.1 Scaffold-Based Tissue Engineering for Corneal Regeneration -- 2.2 Synthetic Biomaterials for Corneal Regeneration -- 2.3 Corneal Regeneration Using Naturally Derived Biomaterials -- 3 Corneal Regeneration Using Gel-Based Scaffolds -- 3.1 Desired Properties of Gel-Inks for 3D Printing in Corneal Tissue Engineering -- 3.2 Biocompatible 3D-Printing Techniques for Bioinks Design -- 4 Combination and Characterization of Gel-Inks for in Corneal Regeneration -- 4.1 Rheological and Printability Examinations -- 4.2 Light Transmission Examination -- 4.3 Mechanical Characterizations -- 4.4 Biocompatibility Assessment -- 4.5 Oxygen Permeability -- 5 Conclusion and Future Perspectives -- References -- 6 Three Dimensional (3D) Printable Gel-Inks for Skin Tissue Regeneration. 1 Introduction -- 2 Skin: A Histological Overview -- 2.1 Epidermis -- 2.2 Basement Membrane -- 3 Skin Wound Healing: What We Know and Need to Know -- 4 Bioengineered Skin Substitutes -- 4.1 Epidermal Substitutes -- 4.2 Dermal Substitutes -- 4.3 Dermo-Epidermal Substitutes -- 5 Advanced Strategies for Skin Repair and Regeneration -- 5.1 Top-Down Approaches for Skin Regeneration -- 5.2 Bottom-Up Approaches for Skin Regeneration -- 5.3 Laser-Assisted 3D Bioprinting -- 5.4 Drop-Based Bioprinting -- 5.5 Extrusion-Based Bioprinting -- 5.6 Stereolithography-Based Bioprinting -- 5.7 Electrohydrodynamic-Based Bioprinting -- 5.8 Microfluidic-Based Bioprinting -- 6 Natural 3D Printable Gel-Inks for Skin Regeneration -- 6.1 Alginate -- 6.2 Collagen -- 6.3 Gelatin -- 6.4 Chitosan -- 6.5 Silk Fibroin -- 6.6 Decellularized Extracellular Matrix (dECM) -- 7 Synthetic 3D Printable Gel-Inks for Skin Regeneration -- 7.1 Poly(ε-caprolactone) (PCL) -- 7.2 Poly(Lactic Acid) (PLA) -- 7.3 Polyurethane (PU) -- 8 Conclusion -- References -- 7 Biofunctional Inks for 3D Printing in Skin Tissue Engineering -- 1 Introduction -- 2 The Structure and Function of Skin -- 3 Wound Types and Wound Healing Process -- 4 Skin Tissue Engineering -- 5 Overview of 3D Bioprinting -- 5.1 3D Bioprinting Technologies -- 6 3D Skin Bioprinting -- 6.1 Design Considerations for Skin Bioprinting -- 7 Biofunctional Inks for Bioprinting in Skin Tissue Engineering -- 7.1 Natural Bioinks -- 7.2 Bioinks Based on Synthetic Polymers -- 8 Current Challenges and Advances in Developing of Biofunctional Inks in Skin Tissue Engineering -- 9 Conclusion -- References -- 8 Bioceramic-Starch Paste Design for Additive Manufacturing and Alternative Fabrication Methods Applied for Developing Biomedical Scaffolds -- 1 Introduction -- 2 Starch -- 3 Bioceramics-Starch Pastes -- 3.1 Oxide Ceramics and Starch. 3.2 Glasses and Glass-Ceramics and Starch -- 3.3 Calcium Phosphates and Starch -- 4 Conventional Methods for Bioceramic Scaffold Fabrication -- 5 Additive Manufacturing for Bioceramic Scaffold Fabrication -- 6 Bone Scaffold Prototype with Hydroxyapatite and Starch -- 6.1 Technology Description -- 6.2 Raw Ceramic Preparation -- 6.3 Powder Preparation and Processing -- 6.4 Scaffold Design -- 6.5 Forming, Processing, and Sintering -- 6.6 Prototype Morphology -- 7 Conclusions -- References -- 9 Additive Manufacturing of Bioceramic Scaffolds for Bone Tissue Regeneration with Emphasis on Stereolithographic Processing -- 1 Scaffolds for Bone Repair: An Overview -- 2 Scaffold Requirements -- 2.1 Biocompatibility -- 2.2 Porosity -- 2.3 Mechanical Properties -- 2.4 Biodegradability -- 2.5 Surface Properties and Interaction with Cells -- 3 Conventional Methods for Ceramic Scaffold Fabrication -- 3.1 Foaming Methods -- 3.2 Phase Separation Methods -- 3.3 Spinning Methods -- 3.4 Thermal Consolidation of Particles -- 3.5 Sponge Replica Method -- 4 Additive Manufacturing Technologies for Ceramic Scaffold Fabrication -- 5 Stereolithographic Methods -- 5.1 Processing -- 5.2 The Slurry: Composition and Characteristics -- 5.3 The Photopolymerization Process: Chemical Basis -- 5.4 Key Parameters for the Photopolymerization Process -- 5.5 Post-processing -- 5.6 SLA: Advantages and Disadvantages -- 6 The Latest Frontier: Digital Light Processing (DLP)-Based Stereolithography -- 6.1 System Setup -- 6.2 Digital Micro-mirror Device (DMD) -- 7 Current Applications of SLA- and DLP-Derived Ceramic Scaffolds -- 8 Conclusions -- References -- 10 3D Printable Gel-Inks for Microbes and Microbial Structures -- 1 Introduction -- 2 Bioprinting -- 3 Bioprinting Techniques -- 4 Bioprinting Materials -- 5 Bioprinting and Microbes -- 5.1 Viruses -- 5.2 Bacteria and Bacterial Structures. 6 Summary and Concluding Remarks -- References -- 11 Methods of Polysaccharides Crosslinking: Future-Promising Crosslinking Techniques of Alginate Hydrogels for 3D Printing in Biomedical Applications -- 1 Introduction -- 2 Types of Polysaccharides -- 2.1 Sulfated Polysaccharides -- 2.2 Non-sulfated Polysaccharides -- 3 Methods for Crosslinking the Polysaccharides -- 3.1 Physical Crosslinking -- 3.2 Chemical Crosslinking -- 4 Some Applications of 3D-Based Cosslinking Alginate Hydrogels in Biomedicine -- 4.1 Tissue Engineering -- 4.2 Wound Dressing -- 4.3 Drug Delivery -- 5 Summary -- References -- 12 Future Perspectives for Gel-Inks for 3D Printing in Tissue Engineering -- 1 Introduction -- 2 From Biomaterials to Tissue Engineering -- 3 Future Perspectives for 3D Bioprinting -- 4 Conclusions -- References. |
Record Nr. | UNINA-9910502972703321 |
Singapore : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
3D Printing and Biofabrication / / edited by Aleksandr Ovsianikov, James Yoo, Vladimir Mironov |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Disciplina |
612.028
571.538 |
Collana | Tissue Engineering and Regeneration |
Soggetto topico |
Regenerative medicine
Tissue engineering Biomedical materials Biomedical engineering Biomathematics Regenerative Medicine/Tissue Engineering Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Physiological, Cellular and Medical Topics |
ISBN | 3-319-40498-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part I: 3D Printing: Introduction -- Medical Imaging, Data Retrieval for 3D CAD Models -- Additive Manufacturing Technologies for Fabrication of Scaffolds -- Materials, Methods and Current Progress of 3D Printing for TE Applications -- Characterization of 3D Printed Structures -- Vascularization of 3D Printed and Engineered Tissues -- Computational Methods for the Predictive Design of Tissue Engineering Materials -- Use of Ceramics in Musculoskeletal Regenerative Medicine -- Mathematical Modelling of 3D Tissue Engineering Constructs -- Trends in Additive Manufacturing for TE Applications. Part II: Biofabrication: Introduction -- Extrusion-based Biofabrication in Tissue Engineering and Regenerative Medicine -- Laser-based Cell Printing -- Inkjet etc. (Piezo, Thermo, Surface Wave) -- Scaffold-free Biofabrication -- Commercially Available Bioprinters -- Development of Nanocellulose Bioinks for 3D Bioprinting of Soft Tissue -- Fabrication and Printing of Multi-Material Hydrogels -- Photopolymerizable Materials for Cell Encapsulation -- Bioprinting - The Intellectual Property Landscape -- Translation and Applications of Biofabrication -- Challenges and Perspectives of Biofabrication -- . |
Record Nr. | UNINA-9910349265303321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
3D Printing and Biofabrication / / edited by Aleksandr Ovsianikov, James Yoo, Vladimir Mironov |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (164 illus., 107 illus. in color. eReference.) |
Disciplina | 621.988 |
Collana | Tissue Engineering and Regeneration |
Soggetto topico |
Regenerative medicine
Tissue engineering Biomaterials Biomedical engineering Biomathematics Regenerative Medicine/Tissue Engineering Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Physiological, Cellular and Medical Topics |
ISBN | 3-319-45444-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part I (3D Printing) -- 3D Printing: Introduction -- Additive Manufacturing Technologies for Fabrication of Scaffolds -- Characterization of Additive Manufactured Scaffolds -- Computational Methods for the Predictive Design of Tissue Engineering Materials -- Materials, Methods and Current Progress of 3D Printing for TE Applications -- Mathematical Modelling of 3D Tissue Engineering Constructs -- Medical Imaging for 3D CAD Models -- Trends in Additive Manufacturing for TE Applications -- Use of Ceramics in Musculoskeletal Regenerative Medicine -- Vascularization of 3D Printed and Engineered Tissues. Part II (Biofabrication) -- Biofabrication: Introduction -- Bioprinting - The Intellectual Property Landscape -- Challenges and Perspectives of Biofabrication -- Commercially Available Bioprinters -- Development of Nanocellulose Bioinks for 3D Bioprinting of Soft Tissue -- Fabrication and Printing of Multi-Material Hydrogels -- Extrusion-based Biofabrication in Tissue Engineering and Regenerative Medicine -- Laser-based Cell Printing -- Inkjet etc. (Piezo, Thermo, Surface Wave) -- Photopolymerizable Materials for Cell Encapsulation -- Scaffold-free Biofabrication -- Translation and Applications of Biofabrication. |
Record Nr. | UNINA-9910299930503321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
3D Printing in Biomedical Engineering / / edited by Sunpreet Singh, Chander Prakash, Rupinder Singh |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (XIV, 336 p. 158 illus., 123 illus. in color.) |
Disciplina | 610.28 |
Collana | Materials Horizons: From Nature to Nanomaterials |
Soggetto topico |
Manufactures
Biomedical engineering Biomedical materials Regenerative medicine Tissue engineering Manufacturing, Machines, Tools, Processes Biomedical Engineering and Bioengineering Biomaterials Regenerative Medicine/Tissue Engineering |
ISBN | 981-15-5424-2 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Poly-Lactic-Acid : A Potential Material for Bio-Printing Applications -- Current challenges and blooms in 3D printing of biomedical devices -- Development of porous scaffold for Bone Tissue Engineering Applications -- Current Advances and Future Pathways of 3D Printing in Bone Tissue Engineering -- Novel applications of FDM 3D printing in science -- Experimental investigations of partial dentures prepared by hybridization of additive manufacturing and chemical vapor smoothing assisted induction casting -- Recent Advances in Additive Manufacturing of Bio-inspired Materials -- 3D Metal Printing a game changer for future manufacturing realm -- 3D Printing in Tissue Engineering: A State of the Art Review of Technologies and Bio-materials -- Designing and additive manufacturing of metallic porous scaffolds for orthopedic implants -- Additive Manufacturing : Current Concepts, Methods And Applications In Oral Health Care -- Computer-aided-design of subject-specific dental instruments for preoperative virtual planning in orthognathic surgery -- Customization of Electrospinning for Tissue Engineering -- Additive Manufacturing of Bio-materials -- 3D Printing: Blooms, Challenges and Advantages of additive manufacturing over traditional manufacturing -- Thermal inkjet 3D printing of metals and alloys: current status and challenges. |
Record Nr. | UNINA-9910412151903321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
3rd International Conference on Nanotechnologies and Biomedical Engineering : ICNBME-2015, September 23-26, 2015, Chisinau, Republic of Moldova / / edited by Victor Sontea, Ion Tiginyanu |
Edizione | [1st ed. 2016.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2016 |
Descrizione fisica | 1 online resource (573 p.) |
Disciplina | 620.5 |
Collana | IFMBE Proceedings |
Soggetto topico |
Biomedical engineering
Biomaterials Biophysics Biological physics Regenerative medicine Tissue engineering Health informatics Biomedical Engineering and Bioengineering Biological and Medical Physics, Biophysics Regenerative Medicine/Tissue Engineering Health Informatics |
ISBN | 981-287-736-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910254191603321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2016 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Acute Kidney Injury and Regenerative Medicine / / edited by Yoshio Terada, Takashi Wada, Kent Doi |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (IX, 396 p. 39 illus., 33 illus. in color.) |
Disciplina | 780 |
Soggetto topico |
Nephrology
Regenerative medicine Tissue engineering Regenerative Medicine/Tissue Engineering |
ISBN | 981-15-1108-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part 1 Diagnosis and risk factors of AKI -- Definition and epidemiology of AKI -- Cause of AKI (prerenal, renal, postrenal) -- Pathophysiology of AKI -- Diagnosis of AKI (clinical assessment, novel biomarkers) -- Risk factors for AKI development in surgery -- Risk factors for AKI development in heart failure -- 7. Contrast-induced AKI -- 8. Antibiotics- and immunosuppression-related AKI -- 9. AKI in setting of cancer -- Community-acquired AKI and hospital-acquired AKI -- Part 2 Complication of AKI -- 11. Complication of homeostasis (mineral and acid-base) -- 12. Volume overload and cardiac and pulmonary complication -- Part 3 Prevention and management of AKI -- Prerenal and renal AKI -- Postrenal AKI -- AKI in intensive care medicine -- Nondialytic supportive management of AKI -- Renal replacement therapy in AKI -- Outcomes and long-term follow-up of AKI patients -- Prevention and management of pediatric AKI -- Part 4 Experimental novel findings -- AKI-to-CKD transition -- AKI and nerve system -- AKI and immune system -- AKI and cytokines -- Part 5 AKI and regenerative medicine -- iPS cell and renal regenerative medicine -- Embryonic genes and renal regenerative medicine -- Xenotransplanted embryonic kidney. |
Record Nr. | UNINA-9910399873803321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Adult and Pluripotent Stem Cells : Potential for Regenerative Medicine of the Cardiovascular System / / edited by Jürgen Hescheler, Erhard Hofer |
Edizione | [1st ed. 2014.] |
Pubbl/distr/stampa | Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2014 |
Descrizione fisica | 1 online resource (174 p.) |
Disciplina | 610.28 |
Soggetto topico |
Medicine
Biotechnology Cytology Stem cells Regenerative medicine Tissue engineering Cardiology Biomedicine, general Cell Biology Stem Cells Regenerative Medicine/Tissue Engineering |
ISBN | 94-017-8657-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | General Introduction -- The Infarct Cell Therapy (INELPY) consortium -- Mesenchymal stem cells for cardiac repair: preclinical models of disease -- Resident cardiac progenitor cells -- Endothelial progenitor cells derived from cord or peripheral blood and their potential for regenerative therapies -- Adipose-derived stromal/stem cells and their differentiation potential into the endothelial lineage -- Cardiac cell replacement therapy with pluripotent stem cell-derived cardiomyocytes -- Biomaterials for cardiac tissue engineering and regeneration -- Cell therapy of acute myocardial infarction and ischemic cardiomyopathy: from experimental findings to clinical trials -- Clinical gene and stem cell therapy in patients with acute and chronic myocardial ischemia -- Index. |
Record Nr. | UNINA-9910298316203321 |
Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2014 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|