top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
3D digital geological models : from terrestrial outcrops to planetary surfaces / / edited by Andrea Bistacchi, Matteo Massironi, Sophie Viseur
3D digital geological models : from terrestrial outcrops to planetary surfaces / / edited by Andrea Bistacchi, Matteo Massironi, Sophie Viseur
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2022]
Descrizione fisica 1 online resource (243 pages)
Disciplina 550.284
Soggetto topico Three-dimensional imaging in geology
Soggetto genere / forma Electronic books.
ISBN 1-119-31391-0
1-119-31392-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Chapter 1 Abstract -- 1.1 Introduction -- 1.2 DOM/SM Reconstruction and Interpretation Workflows -- 1.3 Morphometric Analysis Across Different Scales and Planets -- 1.4 3D Modelling of the Subsurface from Surface Data -- 1.5 Summary and Perspectives -- Acknowledgments -- References -- Part I DOM and SM Reconstruction and Interpretation Workflows -- Chapter 2 Abstract -- 2.1 Introduction -- 2.2 Photogrammetric Surveys and Processing for DOMs -- 2.2.1 Calculating Ground Resolution for Photogrammetric Surveys -- 2.2.2 Terrestrial Surveys for SFM -- 2.2.3 Drone Surveys for SFM -- 2.2.4 Image Quality and Pre‐processing -- 2.2.5 Photogrammetric Processing with SFM Software Packages -- 2.2.5.1 Graphical User Interface (GUI) -- 2.2.5.2 Usage of Georeferencing Data -- 2.2.5.3 Lens Distortion Models -- 2.2.5.4 GPU (Graphical Processing Unit) Computation -- 2.2.5.5 Control on Accuracy and Noise -- 2.3 Point‐Cloud vs. Textured‐Surface DOMs -- 2.3.1 Point‐Cloud DOMs -- 2.3.2 Textured‐Surface DOMs -- 2.4 Geological Interpretation of DOMs -- 2.4.1 Interpretation on Point‐Cloud DOMs -- 2.4.2 Interpretation on Textured‐Surface DOMs -- 2.5 Discussion and Conclusion -- 2.5.1 Data Acquisition: Platform -- 2.5.2 Data Acquisition: Laser Scanning vs. Photogrammetry -- 2.5.3 Pointcloud vs. Textured Surface DOMs -- 2.6 Summary and Perspectives -- Acknowledgments -- References -- Chapter 3 Abstract -- 3.1 Introduction -- 3.2 Components and Methods -- 3.2.1 Overview -- 3.2.2 PRoDB-A Geospatial Data Base for Planetary Data -- 3.2.3 PRoViP-A Computer Vision Processing Chain to Create 3D Reconstructions -- 3.2.3.1 Image‐Based 3D Reconstruction -- 3.2.3.2 Ordered Point Clouds (OPC) -- 3.2.4 Super‐Resolution Restoration (SRR) Processing.
3.2.5 PRoGIS-Geographic Information System for Planetary Scientists -- 3.2.6 PRo3D-Virtual Exploration and Visual Analysis of 3D Products -- 3.2.6.1 Virtual Exploration -- 3.2.6.2 Tools for Measurements and Geological Annotations -- 3.2.6.3 Implementation Decisions and Technological Choices -- 3.2.7 Typical Workflow -- 3.3 Geological Interpretations of DOMs -- 3.3.1 Victoria Crater -- 3.3.1.1 Analysis at Cape Desire -- 3.3.1.2 Discussion -- 3.3.2 Yellowknife Bay -- 3.3.2.1 Analysis at Yellowknife Bay -- 3.3.2.2 Discussion -- 3.4 Conclusions -- Acknowledgments -- References -- Chapter 4 Abstract -- 4.1 Introduction -- 4.2 Vombat -- 4.2.1 Example of Workflow -- 4.2.2 Estimation of the Average Bedding Attitude -- 4.2.3 Stratigraphic Reference Frames -- 4.2.4 Vombat Objects and Their Stratigraphic Positions -- 4.2.5 Stratigraphic Constraints to Build Composite Reference Frames -- 4.2.6 Creation of Continuous Stratigraphic Logs -- 4.2.7 Regions of Interest -- 4.2.8 Input/Output and Log Plotting -- 4.3 Examples -- 4.3.1 Locating Samples on a TLS Intensity Log -- 4.3.2 Using Stratigraphic Constraints to Match Field Data -- 4.4 Discussion -- 4.5 Conclusions -- Acknowledgment -- References -- Chapter 5 Abstract -- 5.1 Introduction -- 5.2 The Geological Setting: The Saltwick Formation -- 5.3 From Geological Surface Interpretation to Statistical Subsurface 3D Models -- 5.3.1 Digital Geological Interpretation Mapping -- 5.3.2 The MPS Facies Modelling and Simulation for Subsurface Reservoirs -- 5.4 Mobile Interpretation Using Image‐to‐Geometry Techniques -- 5.4.1 Image Acquisition -- 5.4.2 Image‐to‐Geometry Registration -- 5.4.3 Image Interpretation -- 5.4.4 Office‐Based Quality Control -- 5.5 Model Construction -- 5.6 Multiple Point Statistics Simulation of the Saltwick Formation -- 5.7 Discussion -- Acknowledgments -- References -- Chapter 6 Abstract.
6.1 Introduction -- 6.2 The DOMStudioImage Toolbox -- 6.3 Lineament Detection Workflow -- 6.3.1 Image Preprocessing: Conversion to Grayscale and Adaptive Histogram Equalization -- 6.3.2 Lineament Detection Algorithms -- 6.3.3 MRF‐ICM: Markov Random Field ICM Segmentation -- 6.3.4 DoG: Difference of Gaussian Filter -- 6.3.5 PhSym: Phase Symmetry Line Detection -- 6.3.6 CSPhCon: Complex Shearlet Phase Congruency Ridge Detector -- 6.3.7 Lineament Thinning and Skeletonization -- 6.4 Results on Geological Images -- 6.5 Discussion -- 6.6 Conclusions -- References -- Part II Morphometric Analysis Across Different Scales and Planets -- Chapter 7 Abstract -- 7.1 Introduction -- 7.2 Test Site and Study Setting -- 7.3 Datasets -- 7.3.1 Description of a Mobile Mapping System -- 7.3.2 Point Clouds and Registration -- 7.3.3 Orthophotography -- 7.4 Point Cloud: Quality Assessment -- 7.4.1 Validation Metrics and Procedure -- 7.4.2 Point Precision for a Single Survey (Pp) -- 7.4.3 Repeatability (R) -- 7.4.4 Threshold Distance to Detect Erosion (Td) -- 7.4.5 Inter‐point Spacing Estimation -- 7.5 LiDAR Data Processing -- 7.5.1 3D to 2.5D Projection Method -- 7.5.2 Point Clouds Comparison Method -- 7.5.3 Point Clouds Segmentation and Visibility Solution -- 7.5.3.1 Classification Method -- 7.5.3.2 Visibility Solving Method (Shadow Effects) -- 7.5.4 Threshold Volume and Erosion Estimation -- 7.6 Results -- 7.6.1 Quality Assessment -- 7.6.2 Erosion Estimation Between Epochs 1 and 3 -- 7.7 Discussion -- 7.8 Conclusion -- Acknowledgments -- Appendix. Script for Unfolding Point Clouds (R) -- References -- Chapter 8 Abstract -- 8.1 Introduction -- 8.1.1 Measuring the Recession Rates of Carbonate Rocks -- 8.1.2 Lava Tubes on Earth and Mars -- 8.2 Micro‐elevation Maps and DEMs Production -- 8.2.1 Carbonate Samples Preparation and Confocal Microscopy Scan.
8.2.2 Stereo DEM Extraction for Mars -- 8.3 Volumes Extraction -- 8.3.1 Carbonate Rock Slabs -- 8.3.2 Mars and Earth -- 8.3.3 Validation of Volume Extraction -- 8.4 Results and Discussion -- 8.5 Conclusions -- References -- Chapter 9 Abstract -- 9.1 Introduction -- 9.2 Related Work -- 9.3 Basic Notions -- 9.3.1 Triangle Mesh -- 9.3.2 Mesh Smoothing -- 9.3.3 Curvatures over a Surface -- 9.3.4 Levels of Detail -- 9.4 Approach Based on Ring Propagation -- 9.4.1 Overview -- 9.4.2 Seeds Search -- 9.4.3 Ring Construction -- 9.4.4 Results and Validation -- 9.5 Approach Based on Circle Fitting -- 9.5.1 Description of the Approach -- 9.5.1.1 Area of Interest and Skeletonization -- 9.5.1.2 Circle Fitting -- 9.5.1.3 Circularity Criterion -- 9.5.2 Results and Validation -- 9.6 Conclusion -- Acknowledgments -- References -- Part III 3D Modelling of the Subsurface from Surface Data -- Chapter 10 Abstract -- 10.1 Introduction -- 10.2 Geological Setting -- 10.3 Methodology -- 10.3.1 Data Section -- 10.3.1.1 Definition of Terms -- 10.3.1.2 Input Data -- 10.3.2 Identification and Assessment of Uncertainties of Input Data Types -- 10.3.3 Data Interpretation: From Remote Sensing to 2D Vector Data -- 10.3.4 Data Projection onto to DEM: From 2D to 3D Data -- 10.3.5 3D Plane Construction: From 3D Intersection Lines to 3D Planes -- 10.3.5.1 3D Best‐Fit Plane from 2D Lineaments -- 10.3.5.2 Dip Calculation for Surface Points Along the Lineament -- 10.3.6 Extrapolation of Surface Data to Depth -- 10.3.7 Assessment of 3D Plane Constructions -- 10.4 Results and Discussion -- 10.4.1 Remote Sensing and 2D Lineament Data -- 10.4.1.1 Uncertainties in 2D Lineament Data -- 10.4.1.2 Discussion of Uncertainties Related to 2D Lineaments -- 10.4.2 Dip Extraction for Remote Sensing 2D Lineament Data -- 10.4.2.1 Uncertainties in Calculated Dip Values.
10.4.2.2 Discussion of Uncertainties Related to 2D Dip Extraction -- 10.4.3 3D Extrapolation to Depth -- 10.4.3.1 Results -- 10.4.3.2 Discussion of Uncertainties Related to Depth Projection -- 10.4.4 Validation of Proposed Extrapolation Approach -- 10.4.5 Structural 3D Model and Shear Zone Map -- 10.5 Summary Discussion and Conclusions -- Acknowledgments -- Appendix A: Topography Effect -- Appendix B: Lineament Map from Remote Sensing Data Acquisition -- Appendix C : Intersection Analysis at Tunnel Level -- References -- Chapter 11 Abstract -- 11.1 Introduction -- 11.1.1 From Terraces to Geological Cross‐sections -- 11.2 A Modelling Strategy for Onion‐Like Layers -- 11.3 Model Fitting -- 11.3.1 Errors Determination -- 11.4 Visualization and Validation of the Models -- 11.5 Conclusions -- Acknowledgments -- References -- Index -- EULA.
Record Nr. UNINA-9910566695703321
Hoboken, New Jersey : , : Wiley, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
3D digital geological models : from terrestrial outcrops to planetary surfaces / / edited by Andrea Bistacchi, Matteo Massironi, Sophie Viseur
3D digital geological models : from terrestrial outcrops to planetary surfaces / / edited by Andrea Bistacchi, Matteo Massironi, Sophie Viseur
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2022]
Descrizione fisica 1 online resource (243 pages)
Disciplina 550.284
Soggetto topico Three-dimensional imaging in geology
ISBN 1-119-31391-0
1-119-31392-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Chapter 1 Abstract -- 1.1 Introduction -- 1.2 DOM/SM Reconstruction and Interpretation Workflows -- 1.3 Morphometric Analysis Across Different Scales and Planets -- 1.4 3D Modelling of the Subsurface from Surface Data -- 1.5 Summary and Perspectives -- Acknowledgments -- References -- Part I DOM and SM Reconstruction and Interpretation Workflows -- Chapter 2 Abstract -- 2.1 Introduction -- 2.2 Photogrammetric Surveys and Processing for DOMs -- 2.2.1 Calculating Ground Resolution for Photogrammetric Surveys -- 2.2.2 Terrestrial Surveys for SFM -- 2.2.3 Drone Surveys for SFM -- 2.2.4 Image Quality and Pre‐processing -- 2.2.5 Photogrammetric Processing with SFM Software Packages -- 2.2.5.1 Graphical User Interface (GUI) -- 2.2.5.2 Usage of Georeferencing Data -- 2.2.5.3 Lens Distortion Models -- 2.2.5.4 GPU (Graphical Processing Unit) Computation -- 2.2.5.5 Control on Accuracy and Noise -- 2.3 Point‐Cloud vs. Textured‐Surface DOMs -- 2.3.1 Point‐Cloud DOMs -- 2.3.2 Textured‐Surface DOMs -- 2.4 Geological Interpretation of DOMs -- 2.4.1 Interpretation on Point‐Cloud DOMs -- 2.4.2 Interpretation on Textured‐Surface DOMs -- 2.5 Discussion and Conclusion -- 2.5.1 Data Acquisition: Platform -- 2.5.2 Data Acquisition: Laser Scanning vs. Photogrammetry -- 2.5.3 Pointcloud vs. Textured Surface DOMs -- 2.6 Summary and Perspectives -- Acknowledgments -- References -- Chapter 3 Abstract -- 3.1 Introduction -- 3.2 Components and Methods -- 3.2.1 Overview -- 3.2.2 PRoDB-A Geospatial Data Base for Planetary Data -- 3.2.3 PRoViP-A Computer Vision Processing Chain to Create 3D Reconstructions -- 3.2.3.1 Image‐Based 3D Reconstruction -- 3.2.3.2 Ordered Point Clouds (OPC) -- 3.2.4 Super‐Resolution Restoration (SRR) Processing.
3.2.5 PRoGIS-Geographic Information System for Planetary Scientists -- 3.2.6 PRo3D-Virtual Exploration and Visual Analysis of 3D Products -- 3.2.6.1 Virtual Exploration -- 3.2.6.2 Tools for Measurements and Geological Annotations -- 3.2.6.3 Implementation Decisions and Technological Choices -- 3.2.7 Typical Workflow -- 3.3 Geological Interpretations of DOMs -- 3.3.1 Victoria Crater -- 3.3.1.1 Analysis at Cape Desire -- 3.3.1.2 Discussion -- 3.3.2 Yellowknife Bay -- 3.3.2.1 Analysis at Yellowknife Bay -- 3.3.2.2 Discussion -- 3.4 Conclusions -- Acknowledgments -- References -- Chapter 4 Abstract -- 4.1 Introduction -- 4.2 Vombat -- 4.2.1 Example of Workflow -- 4.2.2 Estimation of the Average Bedding Attitude -- 4.2.3 Stratigraphic Reference Frames -- 4.2.4 Vombat Objects and Their Stratigraphic Positions -- 4.2.5 Stratigraphic Constraints to Build Composite Reference Frames -- 4.2.6 Creation of Continuous Stratigraphic Logs -- 4.2.7 Regions of Interest -- 4.2.8 Input/Output and Log Plotting -- 4.3 Examples -- 4.3.1 Locating Samples on a TLS Intensity Log -- 4.3.2 Using Stratigraphic Constraints to Match Field Data -- 4.4 Discussion -- 4.5 Conclusions -- Acknowledgment -- References -- Chapter 5 Abstract -- 5.1 Introduction -- 5.2 The Geological Setting: The Saltwick Formation -- 5.3 From Geological Surface Interpretation to Statistical Subsurface 3D Models -- 5.3.1 Digital Geological Interpretation Mapping -- 5.3.2 The MPS Facies Modelling and Simulation for Subsurface Reservoirs -- 5.4 Mobile Interpretation Using Image‐to‐Geometry Techniques -- 5.4.1 Image Acquisition -- 5.4.2 Image‐to‐Geometry Registration -- 5.4.3 Image Interpretation -- 5.4.4 Office‐Based Quality Control -- 5.5 Model Construction -- 5.6 Multiple Point Statistics Simulation of the Saltwick Formation -- 5.7 Discussion -- Acknowledgments -- References -- Chapter 6 Abstract.
6.1 Introduction -- 6.2 The DOMStudioImage Toolbox -- 6.3 Lineament Detection Workflow -- 6.3.1 Image Preprocessing: Conversion to Grayscale and Adaptive Histogram Equalization -- 6.3.2 Lineament Detection Algorithms -- 6.3.3 MRF‐ICM: Markov Random Field ICM Segmentation -- 6.3.4 DoG: Difference of Gaussian Filter -- 6.3.5 PhSym: Phase Symmetry Line Detection -- 6.3.6 CSPhCon: Complex Shearlet Phase Congruency Ridge Detector -- 6.3.7 Lineament Thinning and Skeletonization -- 6.4 Results on Geological Images -- 6.5 Discussion -- 6.6 Conclusions -- References -- Part II Morphometric Analysis Across Different Scales and Planets -- Chapter 7 Abstract -- 7.1 Introduction -- 7.2 Test Site and Study Setting -- 7.3 Datasets -- 7.3.1 Description of a Mobile Mapping System -- 7.3.2 Point Clouds and Registration -- 7.3.3 Orthophotography -- 7.4 Point Cloud: Quality Assessment -- 7.4.1 Validation Metrics and Procedure -- 7.4.2 Point Precision for a Single Survey (Pp) -- 7.4.3 Repeatability (R) -- 7.4.4 Threshold Distance to Detect Erosion (Td) -- 7.4.5 Inter‐point Spacing Estimation -- 7.5 LiDAR Data Processing -- 7.5.1 3D to 2.5D Projection Method -- 7.5.2 Point Clouds Comparison Method -- 7.5.3 Point Clouds Segmentation and Visibility Solution -- 7.5.3.1 Classification Method -- 7.5.3.2 Visibility Solving Method (Shadow Effects) -- 7.5.4 Threshold Volume and Erosion Estimation -- 7.6 Results -- 7.6.1 Quality Assessment -- 7.6.2 Erosion Estimation Between Epochs 1 and 3 -- 7.7 Discussion -- 7.8 Conclusion -- Acknowledgments -- Appendix. Script for Unfolding Point Clouds (R) -- References -- Chapter 8 Abstract -- 8.1 Introduction -- 8.1.1 Measuring the Recession Rates of Carbonate Rocks -- 8.1.2 Lava Tubes on Earth and Mars -- 8.2 Micro‐elevation Maps and DEMs Production -- 8.2.1 Carbonate Samples Preparation and Confocal Microscopy Scan.
8.2.2 Stereo DEM Extraction for Mars -- 8.3 Volumes Extraction -- 8.3.1 Carbonate Rock Slabs -- 8.3.2 Mars and Earth -- 8.3.3 Validation of Volume Extraction -- 8.4 Results and Discussion -- 8.5 Conclusions -- References -- Chapter 9 Abstract -- 9.1 Introduction -- 9.2 Related Work -- 9.3 Basic Notions -- 9.3.1 Triangle Mesh -- 9.3.2 Mesh Smoothing -- 9.3.3 Curvatures over a Surface -- 9.3.4 Levels of Detail -- 9.4 Approach Based on Ring Propagation -- 9.4.1 Overview -- 9.4.2 Seeds Search -- 9.4.3 Ring Construction -- 9.4.4 Results and Validation -- 9.5 Approach Based on Circle Fitting -- 9.5.1 Description of the Approach -- 9.5.1.1 Area of Interest and Skeletonization -- 9.5.1.2 Circle Fitting -- 9.5.1.3 Circularity Criterion -- 9.5.2 Results and Validation -- 9.6 Conclusion -- Acknowledgments -- References -- Part III 3D Modelling of the Subsurface from Surface Data -- Chapter 10 Abstract -- 10.1 Introduction -- 10.2 Geological Setting -- 10.3 Methodology -- 10.3.1 Data Section -- 10.3.1.1 Definition of Terms -- 10.3.1.2 Input Data -- 10.3.2 Identification and Assessment of Uncertainties of Input Data Types -- 10.3.3 Data Interpretation: From Remote Sensing to 2D Vector Data -- 10.3.4 Data Projection onto to DEM: From 2D to 3D Data -- 10.3.5 3D Plane Construction: From 3D Intersection Lines to 3D Planes -- 10.3.5.1 3D Best‐Fit Plane from 2D Lineaments -- 10.3.5.2 Dip Calculation for Surface Points Along the Lineament -- 10.3.6 Extrapolation of Surface Data to Depth -- 10.3.7 Assessment of 3D Plane Constructions -- 10.4 Results and Discussion -- 10.4.1 Remote Sensing and 2D Lineament Data -- 10.4.1.1 Uncertainties in 2D Lineament Data -- 10.4.1.2 Discussion of Uncertainties Related to 2D Lineaments -- 10.4.2 Dip Extraction for Remote Sensing 2D Lineament Data -- 10.4.2.1 Uncertainties in Calculated Dip Values.
10.4.2.2 Discussion of Uncertainties Related to 2D Dip Extraction -- 10.4.3 3D Extrapolation to Depth -- 10.4.3.1 Results -- 10.4.3.2 Discussion of Uncertainties Related to Depth Projection -- 10.4.4 Validation of Proposed Extrapolation Approach -- 10.4.5 Structural 3D Model and Shear Zone Map -- 10.5 Summary Discussion and Conclusions -- Acknowledgments -- Appendix A: Topography Effect -- Appendix B: Lineament Map from Remote Sensing Data Acquisition -- Appendix C : Intersection Analysis at Tunnel Level -- References -- Chapter 11 Abstract -- 11.1 Introduction -- 11.1.1 From Terraces to Geological Cross‐sections -- 11.2 A Modelling Strategy for Onion‐Like Layers -- 11.3 Model Fitting -- 11.3.1 Errors Determination -- 11.4 Visualization and Validation of the Models -- 11.5 Conclusions -- Acknowledgments -- References -- Index -- EULA.
Record Nr. UNINA-9910678006903321
Hoboken, New Jersey : , : Wiley, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in computed tomography for geomaterials [[electronic resource] ] : GeoX 2010 / / edited by Khalid A. Alshibli, Allen H. Reed ; associate editors, Les Butler ... [et al.]
Advances in computed tomography for geomaterials [[electronic resource] ] : GeoX 2010 / / edited by Khalid A. Alshibli, Allen H. Reed ; associate editors, Les Butler ... [et al.]
Autore Alshibli Khalid
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2010
Descrizione fisica 1 online resource (443 p.)
Disciplina 624.151
625.122
Altri autori (Persone) AlshibliKhalid
ReedAllen H
Collana ISTE
Soggetto topico Soil mechanics - Research
Rock mechanics - Research
Tomography
Three-dimensional imaging in geology
Materials - Testing
Concrete - Analysis
Radiography - Industrial
Soggetto genere / forma Electronic books.
ISBN 1-118-55772-7
1-118-58761-8
1-118-58781-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Advances in Computed Tomography for Geomaterials; Title Page; Copyright Page; Table of Contents; Foreword; Keynote Paper: Sand Deformation at the Grain Scale Quantified Through X-ray Imaging; Quantitative Description of Grain Contacts in a Locked Sand; 3D Characterization of Particle Interaction Using Synchrotron Microtomography; Characterization of the Evolving Grain-Scale Structure in a Sand Deforming under Triaxial Compression; Visualization of Strain Localization and Microstructures in Soils during Deformation Using Microfocus X-ray CT
Determination of 3D Displacement Fields between X-ray Computed Tomography Images Using 3D Cross-CorrelationCharacterization of Shear and Compaction Bands in Sandstone Using X-ray Tomography and 3D Digital Image Correlation; Deformation Characteristics of Tire Chips-Sand Mixture in Triaxial Compression Test by Using X-ray CT Scanning; Strain Field Measurements in Sand under Triaxial Compression Using X-ray CT Data and Digital Image Correlation; Latest Developments in 3D Analysis of Geomaterials by Morpho+; Quantifying Particle Shape in 3D; 3D Aggregate Evaluation Using Laser and X-ray Scanning
Computation of Aggregate Contact Points, Orientation and Segregation in Asphalt Specimens Using their X-ray CT ImagesIntegration of 3D Imaging and Discrete Element Modeling for Concrete Fracture Problems; Application of Microfocus X-ray CT to Investigate the Frost-induced Damage Process in Cement-based Materials; Evaluation of the Efficiency of Self-healing in Concrete by Means of μ-CT; Quantification of Material Constitution in Concrete by X-ray CT Method; Sealing Behavior of Fracture in Cementitious Material with Micro-Focus X-ray CT
Extraction of Effective Cement Paste Diffusivities from X-ray Microtomography ScansContributions of X-ray CT to the Characterization of Natural Building Stones and their Disintegration; Characterization of Porous Media in Agent Transport Simulation; Two Less-Used Applications of Petrophysical CT-Scanning; Trends in CT-Scanning of Reservoir Rocks; 3D Microanalysis of Geological Samples with High-Resolution Computed Tomography; Combination of Laboratory Micro-CT and Micro-XRF on Geological Objects
Quantification of Physical Properties of theTransitional Phenomena in Rock from X-ray CT Image DataDeformation in Fractured Argillaceous Rock under Seepage Flow Using X-ray CT and Digital Image Correlation; Experimental Investigation of Rate Effects on Two-Phase Flow through Fractured Rocks Using X-ray Computed Tomography; Keynote Paper: Micro-Petrophysical Experiments Via Tomography and Simulation; Segmentation of Low-contrast Three-phase X-ray Computed Tomography Images of Porous Media; X-ray Imaging of Fluid Flow in Capillary Imbibition Experiments
Evaluating the Influence of Wall-Roughness on Fracture Transmissivity with CT Scanning and Flow Simulations
Record Nr. UNINA-9910133864403321
Alshibli Khalid  
Hoboken, New Jersey : , : John Wiley & Sons, , 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in computed tomography for geomaterials [[electronic resource] ] : GeoX 2010 / / edited by Khalid A. Alshibli, Allen H. Reed ; associate editors, Les Butler ... [et al.]
Advances in computed tomography for geomaterials [[electronic resource] ] : GeoX 2010 / / edited by Khalid A. Alshibli, Allen H. Reed ; associate editors, Les Butler ... [et al.]
Autore Alshibli Khalid
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2010
Descrizione fisica 1 online resource (443 p.)
Disciplina 624.151
625.122
Altri autori (Persone) AlshibliKhalid
ReedAllen H
Collana ISTE
Soggetto topico Soil mechanics - Research
Rock mechanics - Research
Tomography
Three-dimensional imaging in geology
Materials - Testing
Concrete - Analysis
Radiography - Industrial
ISBN 1-118-55772-7
1-118-58761-8
1-118-58781-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Advances in Computed Tomography for Geomaterials; Title Page; Copyright Page; Table of Contents; Foreword; Keynote Paper: Sand Deformation at the Grain Scale Quantified Through X-ray Imaging; Quantitative Description of Grain Contacts in a Locked Sand; 3D Characterization of Particle Interaction Using Synchrotron Microtomography; Characterization of the Evolving Grain-Scale Structure in a Sand Deforming under Triaxial Compression; Visualization of Strain Localization and Microstructures in Soils during Deformation Using Microfocus X-ray CT
Determination of 3D Displacement Fields between X-ray Computed Tomography Images Using 3D Cross-CorrelationCharacterization of Shear and Compaction Bands in Sandstone Using X-ray Tomography and 3D Digital Image Correlation; Deformation Characteristics of Tire Chips-Sand Mixture in Triaxial Compression Test by Using X-ray CT Scanning; Strain Field Measurements in Sand under Triaxial Compression Using X-ray CT Data and Digital Image Correlation; Latest Developments in 3D Analysis of Geomaterials by Morpho+; Quantifying Particle Shape in 3D; 3D Aggregate Evaluation Using Laser and X-ray Scanning
Computation of Aggregate Contact Points, Orientation and Segregation in Asphalt Specimens Using their X-ray CT ImagesIntegration of 3D Imaging and Discrete Element Modeling for Concrete Fracture Problems; Application of Microfocus X-ray CT to Investigate the Frost-induced Damage Process in Cement-based Materials; Evaluation of the Efficiency of Self-healing in Concrete by Means of μ-CT; Quantification of Material Constitution in Concrete by X-ray CT Method; Sealing Behavior of Fracture in Cementitious Material with Micro-Focus X-ray CT
Extraction of Effective Cement Paste Diffusivities from X-ray Microtomography ScansContributions of X-ray CT to the Characterization of Natural Building Stones and their Disintegration; Characterization of Porous Media in Agent Transport Simulation; Two Less-Used Applications of Petrophysical CT-Scanning; Trends in CT-Scanning of Reservoir Rocks; 3D Microanalysis of Geological Samples with High-Resolution Computed Tomography; Combination of Laboratory Micro-CT and Micro-XRF on Geological Objects
Quantification of Physical Properties of theTransitional Phenomena in Rock from X-ray CT Image DataDeformation in Fractured Argillaceous Rock under Seepage Flow Using X-ray CT and Digital Image Correlation; Experimental Investigation of Rate Effects on Two-Phase Flow through Fractured Rocks Using X-ray Computed Tomography; Keynote Paper: Micro-Petrophysical Experiments Via Tomography and Simulation; Segmentation of Low-contrast Three-phase X-ray Computed Tomography Images of Porous Media; X-ray Imaging of Fluid Flow in Capillary Imbibition Experiments
Evaluating the Influence of Wall-Roughness on Fracture Transmissivity with CT Scanning and Flow Simulations
Record Nr. UNINA-9910830453403321
Alshibli Khalid  
Hoboken, New Jersey : , : John Wiley & Sons, , 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in computed tomography for geomaterials : GeoX 2010 / / edited by Khalid A. Alshibli, Allen H. Reed ; associate editors, Les Butler ... [et al.]
Advances in computed tomography for geomaterials : GeoX 2010 / / edited by Khalid A. Alshibli, Allen H. Reed ; associate editors, Les Butler ... [et al.]
Edizione [1st edition]
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (443 p.)
Disciplina 625.1/22
Altri autori (Persone) AlshibliKhalid
ReedAllen H
Collana ISTE
Soggetto topico Soil mechanics - Research
Rock mechanics - Research
Tomography
Three-dimensional imaging in geology
Materials - Testing
Concrete - Analysis
Radiography - Industrial
ISBN 1-118-55772-7
1-118-58761-8
1-118-58781-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Advances in Computed Tomography for Geomaterials; Title Page; Copyright Page; Table of Contents; Foreword; Keynote Paper: Sand Deformation at the Grain Scale Quantified Through X-ray Imaging; Quantitative Description of Grain Contacts in a Locked Sand; 3D Characterization of Particle Interaction Using Synchrotron Microtomography; Characterization of the Evolving Grain-Scale Structure in a Sand Deforming under Triaxial Compression; Visualization of Strain Localization and Microstructures in Soils during Deformation Using Microfocus X-ray CT
Determination of 3D Displacement Fields between X-ray Computed Tomography Images Using 3D Cross-CorrelationCharacterization of Shear and Compaction Bands in Sandstone Using X-ray Tomography and 3D Digital Image Correlation; Deformation Characteristics of Tire Chips-Sand Mixture in Triaxial Compression Test by Using X-ray CT Scanning; Strain Field Measurements in Sand under Triaxial Compression Using X-ray CT Data and Digital Image Correlation; Latest Developments in 3D Analysis of Geomaterials by Morpho+; Quantifying Particle Shape in 3D; 3D Aggregate Evaluation Using Laser and X-ray Scanning
Computation of Aggregate Contact Points, Orientation and Segregation in Asphalt Specimens Using their X-ray CT ImagesIntegration of 3D Imaging and Discrete Element Modeling for Concrete Fracture Problems; Application of Microfocus X-ray CT to Investigate the Frost-induced Damage Process in Cement-based Materials; Evaluation of the Efficiency of Self-healing in Concrete by Means of μ-CT; Quantification of Material Constitution in Concrete by X-ray CT Method; Sealing Behavior of Fracture in Cementitious Material with Micro-Focus X-ray CT
Extraction of Effective Cement Paste Diffusivities from X-ray Microtomography ScansContributions of X-ray CT to the Characterization of Natural Building Stones and their Disintegration; Characterization of Porous Media in Agent Transport Simulation; Two Less-Used Applications of Petrophysical CT-Scanning; Trends in CT-Scanning of Reservoir Rocks; 3D Microanalysis of Geological Samples with High-Resolution Computed Tomography; Combination of Laboratory Micro-CT and Micro-XRF on Geological Objects
Quantification of Physical Properties of theTransitional Phenomena in Rock from X-ray CT Image DataDeformation in Fractured Argillaceous Rock under Seepage Flow Using X-ray CT and Digital Image Correlation; Experimental Investigation of Rate Effects on Two-Phase Flow through Fractured Rocks Using X-ray Computed Tomography; Keynote Paper: Micro-Petrophysical Experiments Via Tomography and Simulation; Segmentation of Low-contrast Three-phase X-ray Computed Tomography Images of Porous Media; X-ray Imaging of Fluid Flow in Capillary Imbibition Experiments
Evaluating the Influence of Wall-Roughness on Fracture Transmissivity with CT Scanning and Flow Simulations
Record Nr. UNINA-9910877066903321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Airborne and Terrestrial Laser Scanning [[electronic resource]]
Airborne and Terrestrial Laser Scanning [[electronic resource]]
Autore Vosselman G
Pubbl/distr/stampa Dunbeath, : Whittles Publishing, 2010
Descrizione fisica 1 online resource (337 p.)
Disciplina 910.285
Altri autori (Persone) MaasH.G
Soggetto topico Imaging systems in geology
Laser recording
Optical scanners
Remote sensing
Three-dimensional imaging in geology
Geography
Earth & Environmental Sciences
Geography-General
Soggetto genere / forma Electronic books.
ISBN 1-62870-092-0
1-84995-013-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Preface""; ""The Authors""; ""List of Abbreviations""; ""Chapter 1 Laser Scanning Technology""; ""1.1 Basic measurement principles of laser scanners""; ""1.1.1 Time-of-flight measurement""; ""1.1.2 Phase measurement techniques""; ""1.1.3 Triangulation-based measurements""; ""1.2 Components of laser scanners""; ""1.2.1 Light sources""; ""1.2.2 Laser beam propagation""; ""1.2.3 Photodetection""; ""1.2.4 Propagation medium and scene effects""; ""1.2.5 Scanning/projection mechanisms""; ""1.3 Basics of airborne laser scanning""; ""1.3.1 Principle of airborne laser scanning""
""1.3.2 Integration of on-board systems""""1.3.3 Global Positioning System/Inertial Measurements Unit combination""; ""1.3.4 Laser scanner properties""; ""1.3.5 Pulse repetition frequency and point density""; ""1.3.6 Multiple echoes and full-waveform digitisation""; ""1.3.7 Airborne laser scanner error budget""; ""1.4 Operational aspects of airborne laser scanning""; ""1.4.1 Flight planning""; ""1.4.2 Survey flight""; ""1.4.3 Data processing""; ""1.4.4 Airborne laser scanning and cameras""; ""1.4.5 Advantages and limitations of airborne laser scanning""; ""1.5 Airborne lidar bathymetry""
""1.6 Terrestrial laser scanners""""Acknowledgements""; ""References""; ""Chapter 2 Visualisation and Structuring""; ""2.1 Visualisation""; ""2.1.1 Conversion of point clouds to images""; ""2.1.2 Point-based rendering""; ""2.2 Data structures""; ""2.2.1 Delaunay triangulation""; ""2.2.2 Octrees""; ""2.2.3 k-D tree""; ""2.3 Point cloud segmentation""; ""2.3.1 3D Hough transform""; ""2.3.2 The random sample consensus algorithm""; ""2.3.3 Surface growing""; ""2.3.4 Scan line segmentation""; ""2.4 Data compression""; ""References""; ""Chapter 3 Registration and Calibration""
""3.1 Geometric models""""3.1.1 Rotations""; ""3.1.2 The geometry of terrestrial laser scanning""; ""3.1.3 The geometry of airborne laser scanning""; ""3.2 Systematic error sources and models""; ""3.2.1 Systematic errors and models of terrestrial laser scanning""; ""3.2.2 Errors and models for airborne laser scanning""; ""3.3 Registration""; ""3.3.1 Registration of terrestrial laser scanning data""; ""3.3.2 Registration of airborne laser scanning data""; ""3.4 System calibration""; ""3.4.1 Calibration of terrestrial laser scanners""; ""3.4.2 Calibration of airborne laser scanners""
""Summary""""References""; ""Chapter 4 Extraction of Digital Terrain Models""; ""4.1 Filtering of point clouds""; ""4.1.1 Morphological filtering""; ""4.1.2 Progressive densification""; ""4.1.3 Surface-based filtering""; ""4.1.4 Segment-based filtering""; ""4.1.5 Filter comparison""; ""4.1.6 Potential of full-waveform information for advanced filtering""; ""4.2 Structure line determination""; ""4.3 Digital terrain model generation""; ""4.3.1 Digital terrain model determination from terrestrial laser scanning data""; ""4.3.2 Digital terrain model quality""
""4.3.3 Digital terrain model data reduction""
Record Nr. UNINA-9910456367603321
Vosselman G  
Dunbeath, : Whittles Publishing, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Airborne and Terrestrial Laser Scanning [[electronic resource]]
Airborne and Terrestrial Laser Scanning [[electronic resource]]
Autore Vosselman G
Pubbl/distr/stampa Dunbeath, : Whittles Publishing, 2010
Descrizione fisica 1 online resource (337 p.)
Disciplina 910.285
Altri autori (Persone) MaasH.G
Soggetto topico Imaging systems in geology
Laser recording
Optical scanners
Remote sensing
Three-dimensional imaging in geology
Geography
Earth & Environmental Sciences
Geography-General
ISBN 1-62870-092-0
1-84995-013-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Preface""; ""The Authors""; ""List of Abbreviations""; ""Chapter 1 Laser Scanning Technology""; ""1.1 Basic measurement principles of laser scanners""; ""1.1.1 Time-of-flight measurement""; ""1.1.2 Phase measurement techniques""; ""1.1.3 Triangulation-based measurements""; ""1.2 Components of laser scanners""; ""1.2.1 Light sources""; ""1.2.2 Laser beam propagation""; ""1.2.3 Photodetection""; ""1.2.4 Propagation medium and scene effects""; ""1.2.5 Scanning/projection mechanisms""; ""1.3 Basics of airborne laser scanning""; ""1.3.1 Principle of airborne laser scanning""
""1.3.2 Integration of on-board systems""""1.3.3 Global Positioning System/Inertial Measurements Unit combination""; ""1.3.4 Laser scanner properties""; ""1.3.5 Pulse repetition frequency and point density""; ""1.3.6 Multiple echoes and full-waveform digitisation""; ""1.3.7 Airborne laser scanner error budget""; ""1.4 Operational aspects of airborne laser scanning""; ""1.4.1 Flight planning""; ""1.4.2 Survey flight""; ""1.4.3 Data processing""; ""1.4.4 Airborne laser scanning and cameras""; ""1.4.5 Advantages and limitations of airborne laser scanning""; ""1.5 Airborne lidar bathymetry""
""1.6 Terrestrial laser scanners""""Acknowledgements""; ""References""; ""Chapter 2 Visualisation and Structuring""; ""2.1 Visualisation""; ""2.1.1 Conversion of point clouds to images""; ""2.1.2 Point-based rendering""; ""2.2 Data structures""; ""2.2.1 Delaunay triangulation""; ""2.2.2 Octrees""; ""2.2.3 k-D tree""; ""2.3 Point cloud segmentation""; ""2.3.1 3D Hough transform""; ""2.3.2 The random sample consensus algorithm""; ""2.3.3 Surface growing""; ""2.3.4 Scan line segmentation""; ""2.4 Data compression""; ""References""; ""Chapter 3 Registration and Calibration""
""3.1 Geometric models""""3.1.1 Rotations""; ""3.1.2 The geometry of terrestrial laser scanning""; ""3.1.3 The geometry of airborne laser scanning""; ""3.2 Systematic error sources and models""; ""3.2.1 Systematic errors and models of terrestrial laser scanning""; ""3.2.2 Errors and models for airborne laser scanning""; ""3.3 Registration""; ""3.3.1 Registration of terrestrial laser scanning data""; ""3.3.2 Registration of airborne laser scanning data""; ""3.4 System calibration""; ""3.4.1 Calibration of terrestrial laser scanners""; ""3.4.2 Calibration of airborne laser scanners""
""Summary""""References""; ""Chapter 4 Extraction of Digital Terrain Models""; ""4.1 Filtering of point clouds""; ""4.1.1 Morphological filtering""; ""4.1.2 Progressive densification""; ""4.1.3 Surface-based filtering""; ""4.1.4 Segment-based filtering""; ""4.1.5 Filter comparison""; ""4.1.6 Potential of full-waveform information for advanced filtering""; ""4.2 Structure line determination""; ""4.3 Digital terrain model generation""; ""4.3.1 Digital terrain model determination from terrestrial laser scanning data""; ""4.3.2 Digital terrain model quality""
""4.3.3 Digital terrain model data reduction""
Record Nr. UNINA-9910781162503321
Vosselman G  
Dunbeath, : Whittles Publishing, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Airborne and Terrestrial Laser Scanning
Airborne and Terrestrial Laser Scanning
Autore Vosselman G
Edizione [1st ed.]
Pubbl/distr/stampa Dunbeath, : Whittles Publishing, 2010
Descrizione fisica 1 online resource (337 p.)
Disciplina 910.285
Altri autori (Persone) MaasH.G
Soggetto topico Imaging systems in geology
Laser recording
Optical scanners
Remote sensing
Three-dimensional imaging in geology
Geography
Earth & Environmental Sciences
Geography-General
ISBN 1-62870-092-0
1-84995-013-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Preface""; ""The Authors""; ""List of Abbreviations""; ""Chapter 1 Laser Scanning Technology""; ""1.1 Basic measurement principles of laser scanners""; ""1.1.1 Time-of-flight measurement""; ""1.1.2 Phase measurement techniques""; ""1.1.3 Triangulation-based measurements""; ""1.2 Components of laser scanners""; ""1.2.1 Light sources""; ""1.2.2 Laser beam propagation""; ""1.2.3 Photodetection""; ""1.2.4 Propagation medium and scene effects""; ""1.2.5 Scanning/projection mechanisms""; ""1.3 Basics of airborne laser scanning""; ""1.3.1 Principle of airborne laser scanning""
""1.3.2 Integration of on-board systems""""1.3.3 Global Positioning System/Inertial Measurements Unit combination""; ""1.3.4 Laser scanner properties""; ""1.3.5 Pulse repetition frequency and point density""; ""1.3.6 Multiple echoes and full-waveform digitisation""; ""1.3.7 Airborne laser scanner error budget""; ""1.4 Operational aspects of airborne laser scanning""; ""1.4.1 Flight planning""; ""1.4.2 Survey flight""; ""1.4.3 Data processing""; ""1.4.4 Airborne laser scanning and cameras""; ""1.4.5 Advantages and limitations of airborne laser scanning""; ""1.5 Airborne lidar bathymetry""
""1.6 Terrestrial laser scanners""""Acknowledgements""; ""References""; ""Chapter 2 Visualisation and Structuring""; ""2.1 Visualisation""; ""2.1.1 Conversion of point clouds to images""; ""2.1.2 Point-based rendering""; ""2.2 Data structures""; ""2.2.1 Delaunay triangulation""; ""2.2.2 Octrees""; ""2.2.3 k-D tree""; ""2.3 Point cloud segmentation""; ""2.3.1 3D Hough transform""; ""2.3.2 The random sample consensus algorithm""; ""2.3.3 Surface growing""; ""2.3.4 Scan line segmentation""; ""2.4 Data compression""; ""References""; ""Chapter 3 Registration and Calibration""
""3.1 Geometric models""""3.1.1 Rotations""; ""3.1.2 The geometry of terrestrial laser scanning""; ""3.1.3 The geometry of airborne laser scanning""; ""3.2 Systematic error sources and models""; ""3.2.1 Systematic errors and models of terrestrial laser scanning""; ""3.2.2 Errors and models for airborne laser scanning""; ""3.3 Registration""; ""3.3.1 Registration of terrestrial laser scanning data""; ""3.3.2 Registration of airborne laser scanning data""; ""3.4 System calibration""; ""3.4.1 Calibration of terrestrial laser scanners""; ""3.4.2 Calibration of airborne laser scanners""
""Summary""""References""; ""Chapter 4 Extraction of Digital Terrain Models""; ""4.1 Filtering of point clouds""; ""4.1.1 Morphological filtering""; ""4.1.2 Progressive densification""; ""4.1.3 Surface-based filtering""; ""4.1.4 Segment-based filtering""; ""4.1.5 Filter comparison""; ""4.1.6 Potential of full-waveform information for advanced filtering""; ""4.2 Structure line determination""; ""4.3 Digital terrain model generation""; ""4.3.1 Digital terrain model determination from terrestrial laser scanning data""; ""4.3.2 Digital terrain model quality""
""4.3.3 Digital terrain model data reduction""
Record Nr. UNINA-9910808192303321
Vosselman G  
Dunbeath, : Whittles Publishing, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling uncertainty in the earth sciences [[electronic resource] /] / Jef Caers
Modeling uncertainty in the earth sciences [[electronic resource] /] / Jef Caers
Autore Caers Jef
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2011
Descrizione fisica 1 online resource (240 p.)
Disciplina 550.15118
Soggetto topico Geology - Mathematical models
Earth sciences - Statistical methods
Three-dimensional imaging in geology
Uncertainty
ISBN 1-283-17797-8
1-119-99871-9
1-119-99593-0
1-119-99592-2
9786613177971
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Modeling Uncertainty in the Earth Sciences -- Contents -- Preface -- Acknowledgements -- 1 Introduction -- 1.1 Example Application -- 1.1.1 Description -- 1.1.2 3D Modeling -- 1.2 Modeling Uncertainty -- Further Reading -- 2 Review on Statistical Analysis and Probability Theory -- 2.1 Introduction -- 2.2 Displaying Data with Graphs -- 2.2.1 Histograms -- 2.3 Describing Data with Numbers -- 2.3.1 Measuring the Center -- 2.3.2 Measuring the Spread -- 2.3.3 Standard Deviation and Variance -- 2.3.4 Properties of the Standard Deviation -- 2.3.5 Quantiles and the QQ Plot -- 2.4 Probability -- 2.4.1 Introduction -- 2.4.2 Sample Space, Event, Outcomes -- 2.4.3 Conditional Probability -- 2.4.4 Bayes' Rule -- 2.5 Random Variables -- 2.5.1 Discrete Random Variables -- 2.5.2 Continuous Random Variables -- 2.5.2.1 Probability Density Function (pdf) -- 2.5.2.2 Cumulative Distribution Function -- 2.5.3 Expectation and Variance -- 2.5.3.1 Expectation -- 2.5.3.2 Population Variance -- 2.5.4 Examples of Distribution Functions -- 2.5.4.1 The Gaussian (Normal) Random Variable and Distribution -- 2.5.4.2 Bernoulli Random Variable -- 2.5.4.3 Uniform Random Variable -- 2.5.4.4 A Poisson Random Variable -- 2.5.4.5 The Lognormal Distribution -- 2.5.5 The Empirical Distribution Function versus the Distribution Model -- 2.5.6 Constructing a Distribution Function from Data -- 2.5.7 Monte Carlo Simulation -- 2.5.8 Data Transformations -- 2.6 Bivariate Data Analysis -- 2.6.1 Introduction -- 2.6.2 Graphical Methods: Scatter plots -- 2.6.3 Data Summary: Correlation (Coefficient) -- 2.6.3.1 Definition -- 2.6.3.2 Properties of r -- Further Reading -- 3 Modeling Uncertainty: Concepts and Philosophies -- 3.1 What is Uncertainty? -- 3.2 Sources of Uncertainty -- 3.3 Deterministic Modeling -- 3.4 Models of Uncertainty -- 3.5 Model and Data Relationship.
3.6 Bayesian View on Uncertainty -- 3.7 Model Verification and Falsification -- 3.8 Model Complexity -- 3.9 Talking about Uncertainty -- 3.10 Examples -- 3.10.1 Climate Modeling -- 3.10.1.1 Description -- 3.10.1.2 Creating Data Sets Using Models -- 3.10.1.3 Parameterization of Subgrid Variability -- 3.10.1.4 Model Complexity -- 3.10.2 Reservoir Modeling -- 3.10.2.1 Description -- 3.10.2.2 Creating Data Sets Using Models -- 3.10.2.3 Parameterization of Subgrid Variability -- 3.10.2.4 Model Complexity -- Further Reading -- 4 Engineering the Earth: Making Decisions Under Uncertainty -- 4.1 Introduction -- 4.2 Making Decisions -- 4.2.1 Example Problem -- 4.2.2 The Language of Decision Making -- 4.2.3 Structuring the Decision -- 4.2.4 Modeling the Decision -- 4.2.4.1 Payoffs and Value Functions -- 4.2.4.2 Weighting -- 4.2.4.3 Trade-Offs -- 4.2.4.4 Sensitivity Analysis -- 4.3 Tools for Structuring Decision Problems -- 4.3.1 Decision Trees -- 4.3.2 Building Decision Trees -- 4.3.3 Solving Decision Trees -- 4.3.4 Sensitivity Analysis -- Further Reading -- 5 Modeling Spatial Continuity -- 5.1 Introduction -- 5.2 The Variogram -- 5.2.1 Autocorrelation in 1D -- 5.2.2 Autocorrelation in 2D and 3D -- 5.2.3 The Variogram and Covariance Function -- 5.2.4 Variogram Analysis -- 5.2.4.1 Anisotropy -- 5.2.4.2 What is the Practical Meaning of a Variogram? -- 5.2.5 A Word on Variogram Modeling -- 5.3 The Boolean or Object Model -- 5.3.1 Motivation -- 5.3.2 Object Models -- 5.4 3D Training Image Models -- Further Reading -- 6 Modeling Spatial Uncertainty -- 6.1 Introduction -- 6.2 Object-Based Simulation -- 6.3 Training Image Methods -- 6.3.1 Principle of Sequential Simulation -- 6.3.2 Sequential Simulation Based on Training Images -- 6.3.3 Example of a 3D Earth Model -- 6.4 Variogram-Based Methods -- 6.4.1 Introduction -- 6.4.2 Linear Estimation.
6.4.3 Inverse Square Distance -- 6.4.4 Ordinary Kriging -- 6.4.5 The Kriging Variance -- 6.4.6 Sequential Gaussian Simulation -- 6.4.6.1 Kriging to Create a Model of Uncertainty -- 6.4.6.2 Using Kriging to Perform (Sequential) Gaussian Simulation -- Further Reading -- 7 Constraining Spatial Models of Uncertainty with Data -- 7.1 Data Integration -- 7.2 Probability-Based Approaches -- 7.2.1 Introduction -- 7.2.2 Calibration of Information Content -- 7.2.3 Integrating Information Content -- 7.2.4 Application to Modeling Spatial Uncertainty -- 7.3 Variogram-Based Approaches -- 7.4 Inverse Modeling Approaches -- 7.4.1 Introduction -- 7.4.2 The Role of Bayes' Rule in Inverse Model Solutions -- 7.4.3 Sampling Methods -- 7.4.3.1 Rejection Sampling -- 7.4.3.2 Metropolis Sampler -- 7.4.4 Optimization Methods -- Further Reading -- 8 Modeling Structural Uncertainty -- 8.1 Introduction -- 8.2 Data for Structural Modeling in the Subsurface -- 8.3 Modeling a Geological Surface -- 8.4 Constructing a Structural Model -- 8.4.1 Geological Constraints and Consistency -- 8.4.2 Building the Structural Model -- 8.5 Gridding the Structural Model -- 8.5.1 Stratigraphic Grids -- 8.5.2 Grid Resolution -- 8.6 Modeling Surfaces through Thicknesses -- 8.7 Modeling Structural Uncertainty -- 8.7.1 Sources of Uncertainty -- 8.7.2 Models of Structural Uncertainty -- Further Reading -- 9 Visualizing Uncertainty -- 9.1 Introduction -- 9.2 The Concept of Distance -- 9.3 Visualizing Uncertainty -- 9.3.1 Distances, Metric Space and Multidimensional Scaling -- 9.3.2 Determining the Dimension of Projection -- 9.3.3 Kernels and Feature Space -- 9.3.4 Visualizing the Data-Model Relationship -- Further Reading -- 10 Modeling Response Uncertainty -- 10.1 Introduction -- 10.2 Surrogate Models and Ranking -- 10.3 Experimental Design and Response Surface Analysis -- 10.3.1 Introduction.
10.3.2 The Design of Experiments -- 10.3.3 Response Surface Designs -- 10.3.4 Simple Illustrative Example -- 10.3.5 Limitations -- 10.4 Distance Methods for Modeling Response Uncertainty -- 10.4.1 Introduction -- 10.4.2 Earth Model Selection by Clustering -- 10.4.2.1 Introduction -- 10.4.2.2 k-Means Clustering -- 10.4.2.3 Clustering of Earth Models for Response Uncertainty Evaluation -- 10.4.3 Oil Reservoir Case Study -- 10.4.4 Sensitivity Analysis -- 10.4.5 Limitations -- Further Reading -- 11 Value of Information -- 11.1 Introduction -- 11.2 The Value of Information Problem -- 11.2.1 Introduction -- 11.2.2 Reliability versus Information Content -- 11.2.3 Summary of the VOI Methodology -- 11.2.3.1 Steps 1 and 2: VOI Decision Tree -- 11.2.3.2 Steps 3 and 4: Value of Perfect Information -- 11.2.3.3 Step 5: Value of Imperfect Information -- 11.2.4 Value of Information for Earth Modeling Problems -- 11.2.5 Earth Models -- 11.2.6 Value of Information Calculation -- 11.2.7 Example Case Study -- 11.2.7.1 Introduction -- 11.2.7.2 Earth Modeling -- 11.2.7.3 Decision Problem -- 11.2.7.4 The Possible Data Sources -- 11.2.7.5 Data Interpretation -- Further Reading -- 12 Example Case Study -- 12.1 Introduction -- 12.1.1 General Description -- 12.1.2 Contaminant Transport -- 12.1.3 Costs Involved -- 12.2 Solution -- 12.2.1 Solving the Decision Problem -- 12.2.2 Buying More Data -- 12.2.2.1 Buying Geological Information -- 12.2.2.2 Buying Geophysical Information -- 12.3 Sensitivity Analysis -- Index.
Record Nr. UNINA-9910141250103321
Caers Jef  
Hoboken, N.J., : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling uncertainty in the earth sciences [[electronic resource] /] / Jef Caers
Modeling uncertainty in the earth sciences [[electronic resource] /] / Jef Caers
Autore Caers Jef
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2011
Descrizione fisica 1 online resource (240 p.)
Disciplina 550.15118
Soggetto topico Geology - Mathematical models
Earth sciences - Statistical methods
Three-dimensional imaging in geology
Uncertainty
ISBN 1-283-17797-8
1-119-99871-9
1-119-99593-0
1-119-99592-2
9786613177971
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Modeling Uncertainty in the Earth Sciences -- Contents -- Preface -- Acknowledgements -- 1 Introduction -- 1.1 Example Application -- 1.1.1 Description -- 1.1.2 3D Modeling -- 1.2 Modeling Uncertainty -- Further Reading -- 2 Review on Statistical Analysis and Probability Theory -- 2.1 Introduction -- 2.2 Displaying Data with Graphs -- 2.2.1 Histograms -- 2.3 Describing Data with Numbers -- 2.3.1 Measuring the Center -- 2.3.2 Measuring the Spread -- 2.3.3 Standard Deviation and Variance -- 2.3.4 Properties of the Standard Deviation -- 2.3.5 Quantiles and the QQ Plot -- 2.4 Probability -- 2.4.1 Introduction -- 2.4.2 Sample Space, Event, Outcomes -- 2.4.3 Conditional Probability -- 2.4.4 Bayes' Rule -- 2.5 Random Variables -- 2.5.1 Discrete Random Variables -- 2.5.2 Continuous Random Variables -- 2.5.2.1 Probability Density Function (pdf) -- 2.5.2.2 Cumulative Distribution Function -- 2.5.3 Expectation and Variance -- 2.5.3.1 Expectation -- 2.5.3.2 Population Variance -- 2.5.4 Examples of Distribution Functions -- 2.5.4.1 The Gaussian (Normal) Random Variable and Distribution -- 2.5.4.2 Bernoulli Random Variable -- 2.5.4.3 Uniform Random Variable -- 2.5.4.4 A Poisson Random Variable -- 2.5.4.5 The Lognormal Distribution -- 2.5.5 The Empirical Distribution Function versus the Distribution Model -- 2.5.6 Constructing a Distribution Function from Data -- 2.5.7 Monte Carlo Simulation -- 2.5.8 Data Transformations -- 2.6 Bivariate Data Analysis -- 2.6.1 Introduction -- 2.6.2 Graphical Methods: Scatter plots -- 2.6.3 Data Summary: Correlation (Coefficient) -- 2.6.3.1 Definition -- 2.6.3.2 Properties of r -- Further Reading -- 3 Modeling Uncertainty: Concepts and Philosophies -- 3.1 What is Uncertainty? -- 3.2 Sources of Uncertainty -- 3.3 Deterministic Modeling -- 3.4 Models of Uncertainty -- 3.5 Model and Data Relationship.
3.6 Bayesian View on Uncertainty -- 3.7 Model Verification and Falsification -- 3.8 Model Complexity -- 3.9 Talking about Uncertainty -- 3.10 Examples -- 3.10.1 Climate Modeling -- 3.10.1.1 Description -- 3.10.1.2 Creating Data Sets Using Models -- 3.10.1.3 Parameterization of Subgrid Variability -- 3.10.1.4 Model Complexity -- 3.10.2 Reservoir Modeling -- 3.10.2.1 Description -- 3.10.2.2 Creating Data Sets Using Models -- 3.10.2.3 Parameterization of Subgrid Variability -- 3.10.2.4 Model Complexity -- Further Reading -- 4 Engineering the Earth: Making Decisions Under Uncertainty -- 4.1 Introduction -- 4.2 Making Decisions -- 4.2.1 Example Problem -- 4.2.2 The Language of Decision Making -- 4.2.3 Structuring the Decision -- 4.2.4 Modeling the Decision -- 4.2.4.1 Payoffs and Value Functions -- 4.2.4.2 Weighting -- 4.2.4.3 Trade-Offs -- 4.2.4.4 Sensitivity Analysis -- 4.3 Tools for Structuring Decision Problems -- 4.3.1 Decision Trees -- 4.3.2 Building Decision Trees -- 4.3.3 Solving Decision Trees -- 4.3.4 Sensitivity Analysis -- Further Reading -- 5 Modeling Spatial Continuity -- 5.1 Introduction -- 5.2 The Variogram -- 5.2.1 Autocorrelation in 1D -- 5.2.2 Autocorrelation in 2D and 3D -- 5.2.3 The Variogram and Covariance Function -- 5.2.4 Variogram Analysis -- 5.2.4.1 Anisotropy -- 5.2.4.2 What is the Practical Meaning of a Variogram? -- 5.2.5 A Word on Variogram Modeling -- 5.3 The Boolean or Object Model -- 5.3.1 Motivation -- 5.3.2 Object Models -- 5.4 3D Training Image Models -- Further Reading -- 6 Modeling Spatial Uncertainty -- 6.1 Introduction -- 6.2 Object-Based Simulation -- 6.3 Training Image Methods -- 6.3.1 Principle of Sequential Simulation -- 6.3.2 Sequential Simulation Based on Training Images -- 6.3.3 Example of a 3D Earth Model -- 6.4 Variogram-Based Methods -- 6.4.1 Introduction -- 6.4.2 Linear Estimation.
6.4.3 Inverse Square Distance -- 6.4.4 Ordinary Kriging -- 6.4.5 The Kriging Variance -- 6.4.6 Sequential Gaussian Simulation -- 6.4.6.1 Kriging to Create a Model of Uncertainty -- 6.4.6.2 Using Kriging to Perform (Sequential) Gaussian Simulation -- Further Reading -- 7 Constraining Spatial Models of Uncertainty with Data -- 7.1 Data Integration -- 7.2 Probability-Based Approaches -- 7.2.1 Introduction -- 7.2.2 Calibration of Information Content -- 7.2.3 Integrating Information Content -- 7.2.4 Application to Modeling Spatial Uncertainty -- 7.3 Variogram-Based Approaches -- 7.4 Inverse Modeling Approaches -- 7.4.1 Introduction -- 7.4.2 The Role of Bayes' Rule in Inverse Model Solutions -- 7.4.3 Sampling Methods -- 7.4.3.1 Rejection Sampling -- 7.4.3.2 Metropolis Sampler -- 7.4.4 Optimization Methods -- Further Reading -- 8 Modeling Structural Uncertainty -- 8.1 Introduction -- 8.2 Data for Structural Modeling in the Subsurface -- 8.3 Modeling a Geological Surface -- 8.4 Constructing a Structural Model -- 8.4.1 Geological Constraints and Consistency -- 8.4.2 Building the Structural Model -- 8.5 Gridding the Structural Model -- 8.5.1 Stratigraphic Grids -- 8.5.2 Grid Resolution -- 8.6 Modeling Surfaces through Thicknesses -- 8.7 Modeling Structural Uncertainty -- 8.7.1 Sources of Uncertainty -- 8.7.2 Models of Structural Uncertainty -- Further Reading -- 9 Visualizing Uncertainty -- 9.1 Introduction -- 9.2 The Concept of Distance -- 9.3 Visualizing Uncertainty -- 9.3.1 Distances, Metric Space and Multidimensional Scaling -- 9.3.2 Determining the Dimension of Projection -- 9.3.3 Kernels and Feature Space -- 9.3.4 Visualizing the Data-Model Relationship -- Further Reading -- 10 Modeling Response Uncertainty -- 10.1 Introduction -- 10.2 Surrogate Models and Ranking -- 10.3 Experimental Design and Response Surface Analysis -- 10.3.1 Introduction.
10.3.2 The Design of Experiments -- 10.3.3 Response Surface Designs -- 10.3.4 Simple Illustrative Example -- 10.3.5 Limitations -- 10.4 Distance Methods for Modeling Response Uncertainty -- 10.4.1 Introduction -- 10.4.2 Earth Model Selection by Clustering -- 10.4.2.1 Introduction -- 10.4.2.2 k-Means Clustering -- 10.4.2.3 Clustering of Earth Models for Response Uncertainty Evaluation -- 10.4.3 Oil Reservoir Case Study -- 10.4.4 Sensitivity Analysis -- 10.4.5 Limitations -- Further Reading -- 11 Value of Information -- 11.1 Introduction -- 11.2 The Value of Information Problem -- 11.2.1 Introduction -- 11.2.2 Reliability versus Information Content -- 11.2.3 Summary of the VOI Methodology -- 11.2.3.1 Steps 1 and 2: VOI Decision Tree -- 11.2.3.2 Steps 3 and 4: Value of Perfect Information -- 11.2.3.3 Step 5: Value of Imperfect Information -- 11.2.4 Value of Information for Earth Modeling Problems -- 11.2.5 Earth Models -- 11.2.6 Value of Information Calculation -- 11.2.7 Example Case Study -- 11.2.7.1 Introduction -- 11.2.7.2 Earth Modeling -- 11.2.7.3 Decision Problem -- 11.2.7.4 The Possible Data Sources -- 11.2.7.5 Data Interpretation -- Further Reading -- 12 Example Case Study -- 12.1 Introduction -- 12.1.1 General Description -- 12.1.2 Contaminant Transport -- 12.1.3 Costs Involved -- 12.2 Solution -- 12.2.1 Solving the Decision Problem -- 12.2.2 Buying More Data -- 12.2.2.1 Buying Geological Information -- 12.2.2.2 Buying Geophysical Information -- 12.3 Sensitivity Analysis -- Index.
Record Nr. UNINA-9910830595503321
Caers Jef  
Hoboken, N.J., : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui