Dynamics and mission design near libration points . Volume 3 Advanced methods for collinear points [[electronic resource] /] / G. Gómez ... [et al.]
| Dynamics and mission design near libration points . Volume 3 Advanced methods for collinear points [[electronic resource] /] / G. Gómez ... [et al.] |
| Pubbl/distr/stampa | Singapore ; ; River Edge, NJ, : World Scientific, c2001 |
| Descrizione fisica | 1 online resource (203 p.) |
| Disciplina | 521.3 |
| Altri autori (Persone) | GómezG (Gerard) |
| Collana | World scientific monograph series in mathematics |
| Soggetto topico |
Three-body problem
Lagrangian points |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-93456-9
9786611934569 981-279-462-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents ; Preface ; Chapter 1 Quasi-periodic Solutions Near the Equilateral Points of the Earth-Moon System ; 1.1 Introduction ; 1.2 Idea of the Resolution Method ; 1.3 The Algebraic Manipulator ; 1.4 The Newton Method ; 1.5 The Program ; 1.6 Results of the Algebraic Manipulator
1.7 Numerical Refinement 1.8 The Neighbourhood of the Computed Nearly Quasi-periodic Solution ; 1.9 Problems and Extensions ; Chapter 2 Global Description of the Orbits Near the L1 Point of the Earth-Sun System in the RTBP ; 2.1 Introduction ; 2.2 The Equations of Motion 2.3 Formal Series Solutions 2.4 On the Convergence of the Series ; 2.5 Towards a Description of the Neighbourhood of L1 ; 2.6 Discussion on the Use of Lissajous Orbits ; 2.7 Effective Reduction to the Central Manifold ; 2.8 Conclusions ; Chapter 3 Quasi-periodic Halo Orbits 3.1 Numerical Refinement 3.2 Main Program and Basic Routines ; 3.3 The Equations of Motion for the Simulations of the Control ; 3.4 The Effect of Errors ; 3.5 When a Control is Applied ; 3.6 Magnitudes Related to the Control ; 3.7 Description of the Program ; 3.8 Numerical Results Chapter 4 Transfer From the Earth to a Halo Orbit 4.1 Introduction ; 4.2 Local Approximation of the Stable Manifold ; 4.3 Globalization of the Manifold ; 4.4 Selecting Passages Near the Earth ; 4.5 Ranges in the Manifold Suited for the Transfer 4.6 Characteristics of the Orbits Near the Earth |
| Record Nr. | UNINA-9910453184103321 |
| Singapore ; ; River Edge, NJ, : World Scientific, c2001 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Dynamics and mission design near libration points . Vol. I Fundamentals : the case of collinear libration points [[electronic resource]]
| Dynamics and mission design near libration points . Vol. I Fundamentals : the case of collinear libration points [[electronic resource]] |
| Pubbl/distr/stampa | Singapore ; ; River Edge, N.J., : World Scientific, 2001 |
| Descrizione fisica | 1 online resource (462 p.) |
| Disciplina | 521.3 |
| Altri autori (Persone) | GómezG (Gerard) |
| Collana | World scientific monograph series in mathematics |
| Soggetto topico |
Three-body problem
Lagrangian points |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-95629-5
9786611956295 981-281-063-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Foreword; Preface: Introduction: Libration Points and Station Keeping; 0.1 The Neighborhood of Libration Points as a Useful Place for Spacecrafts; 0.1.1 The Libration Points in the Restricted Three-body Problem
0.1.2 The Libration Points in Perturbations of the Restricted Threebody Problem 0.1.3 Possible Missions Around the Libration Points.1.4 The Real Nominal Quasi-periodic Orbit; 0.2 Station Keeping of Libration Point Orbits; 0.2.1 Unstable Nominal Orbits 0.2.2 Requirements for an On/off Control Chapter 1 Bibliographical Survey; 1.1 Numerical Results for Three-dimensional Periodic Orbits Around L1, L2 and L3; 1.1.1 References; 1.1.2 Equations. General Properties; 1.1.3 Linear Theory Around the Equilibrium Points; 1.1.4 Description of the Results 1.2 Analytic Results for Halo Orbits Associated to L1, L2 and L3 1.2.1 References; 1.2.2 Equations of Motion; 1.2.3 Construction of Halo Periodic Solutions; 1.3 Motion Near L4 and L5; 1.3.1 References; 1.3.2 The Triangular Equilibrium Points, Location and Stability; 1.3.3 Numerical Explorations; 1.3.4 Analytic Results; 1.4 Station Keeping 1.4.1 References 1.4.2 The Control of Libration Point Satellites; 1.4.3 Station Keeping for a Translunar Station; 1.4.4 Control of an Unstable Periodic Orbit; 1.4.5 Station Keeping for the ISEE-C. Algorithm and Results ; 1.4.6 Additional Work Chapter 2 Halo Orbits. Analytic and Numerical Study |
| Record Nr. | UNINA-9910453184603321 |
| Singapore ; ; River Edge, N.J., : World Scientific, 2001 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Dynamics and mission design near libration points . Volume 2 Fundamentals : the case of triangular libration points [[electronic resource] /] / G. Gómez ... [et al.]
| Dynamics and mission design near libration points . Volume 2 Fundamentals : the case of triangular libration points [[electronic resource] /] / G. Gómez ... [et al.] |
| Pubbl/distr/stampa | Singapore ; ; River Edge, NJ, : World Scientific, c2001 |
| Descrizione fisica | 1 online resource (159 p.) |
| Disciplina | 521.3 |
| Altri autori (Persone) | GómezG (Gerard) |
| Collana | World scientific monograph series in mathematics |
| Soggetto topico |
Three-body problem
Lagrangian points |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-95630-9
9786611956301 981-281-064-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Preface; Chapter 1 Bibliographical Survey; 1.1 Equations. The Triangular Equilibrium Points and their Stability; 1.2 Numerical Results for the Motion Around L4 and L5 ; 1.3 Analytical Results for the Motion Around L4 and L5; 1.3.1 The Models Used
1.4 Miscellaneous Results 1.4.1 Station Keeping at the Triangular Equilibrium Points; 1.4.2 Some Other Results; Chapter 2 Periodic Orbits of the Bicircular Problem and Their Stability; 2.1 Introduction; 2.2 The Equations of the Bicircular Problem 2.3 Periodic Orbits with the Period of the Sun 2.4 The Tools: Numerical Continuation of Periodic Orbits and Analysis of Bifurcations; 2.4.1 Numerical Continuation of Periodic Orbits for Nonautonomous and Autonomous Equations 2.4.2 Bifurcations of Periodic Orbits: From the Autonomous to the Nonautonomous Periodic System 2.4.3 Bifurcation for Eigenvalues Equal to One; 2.5 The Periodic Orbits Obtained by Triplication Chapter 3 Numerical Simulations of the Motion in an Extended Neighborhood of the Triangular Libration Points in the Earth-Moon System 3.1 Introduction; 3.2 Simulations of Motion Starting at the Instantaneous Triangular Points at a Given Epoch 3.3 Simulations of Motion Starting Near the Planar Periodic Orbit of Kolenkiewicz and Carpenter |
| Record Nr. | UNINA-9910453185603321 |
| Singapore ; ; River Edge, NJ, : World Scientific, c2001 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Dynamics and mission design near libration points . Volume 2 Fundamentals : the case of triangular libration points [[electronic resource] /] / G. Gómez ... [et al.]
| Dynamics and mission design near libration points . Volume 2 Fundamentals : the case of triangular libration points [[electronic resource] /] / G. Gómez ... [et al.] |
| Pubbl/distr/stampa | Singapore ; ; River Edge, NJ, : World Scientific, c2001 |
| Descrizione fisica | 1 online resource (159 p.) |
| Disciplina | 521.3 |
| Altri autori (Persone) | GómezG (Gerard) |
| Collana | World scientific monograph series in mathematics |
| Soggetto topico |
Three-body problem
Lagrangian points |
| ISBN |
1-281-95630-9
9786611956301 981-281-064-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Preface; Chapter 1 Bibliographical Survey; 1.1 Equations. The Triangular Equilibrium Points and their Stability; 1.2 Numerical Results for the Motion Around L4 and L5 ; 1.3 Analytical Results for the Motion Around L4 and L5; 1.3.1 The Models Used
1.4 Miscellaneous Results 1.4.1 Station Keeping at the Triangular Equilibrium Points; 1.4.2 Some Other Results; Chapter 2 Periodic Orbits of the Bicircular Problem and Their Stability; 2.1 Introduction; 2.2 The Equations of the Bicircular Problem 2.3 Periodic Orbits with the Period of the Sun 2.4 The Tools: Numerical Continuation of Periodic Orbits and Analysis of Bifurcations; 2.4.1 Numerical Continuation of Periodic Orbits for Nonautonomous and Autonomous Equations 2.4.2 Bifurcations of Periodic Orbits: From the Autonomous to the Nonautonomous Periodic System 2.4.3 Bifurcation for Eigenvalues Equal to One; 2.5 The Periodic Orbits Obtained by Triplication Chapter 3 Numerical Simulations of the Motion in an Extended Neighborhood of the Triangular Libration Points in the Earth-Moon System 3.1 Introduction; 3.2 Simulations of Motion Starting at the Instantaneous Triangular Points at a Given Epoch 3.3 Simulations of Motion Starting Near the Planar Periodic Orbit of Kolenkiewicz and Carpenter |
| Record Nr. | UNINA-9910782276703321 |
| Singapore ; ; River Edge, NJ, : World Scientific, c2001 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Dynamics and mission design near libration points . Vol. I Fundamentals : the case of collinear libration points [[electronic resource]]
| Dynamics and mission design near libration points . Vol. I Fundamentals : the case of collinear libration points [[electronic resource]] |
| Pubbl/distr/stampa | Singapore ; ; River Edge, N.J., : World Scientific, 2001 |
| Descrizione fisica | 1 online resource (462 p.) |
| Disciplina | 521.3 |
| Altri autori (Persone) | GómezG (Gerard) |
| Collana | World scientific monograph series in mathematics |
| Soggetto topico |
Three-body problem
Lagrangian points |
| ISBN |
1-281-95629-5
9786611956295 981-281-063-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Foreword; Preface: Introduction: Libration Points and Station Keeping; 0.1 The Neighborhood of Libration Points as a Useful Place for Spacecrafts; 0.1.1 The Libration Points in the Restricted Three-body Problem
0.1.2 The Libration Points in Perturbations of the Restricted Threebody Problem 0.1.3 Possible Missions Around the Libration Points.1.4 The Real Nominal Quasi-periodic Orbit; 0.2 Station Keeping of Libration Point Orbits; 0.2.1 Unstable Nominal Orbits 0.2.2 Requirements for an On/off Control Chapter 1 Bibliographical Survey; 1.1 Numerical Results for Three-dimensional Periodic Orbits Around L1, L2 and L3; 1.1.1 References; 1.1.2 Equations. General Properties; 1.1.3 Linear Theory Around the Equilibrium Points; 1.1.4 Description of the Results 1.2 Analytic Results for Halo Orbits Associated to L1, L2 and L3 1.2.1 References; 1.2.2 Equations of Motion; 1.2.3 Construction of Halo Periodic Solutions; 1.3 Motion Near L4 and L5; 1.3.1 References; 1.3.2 The Triangular Equilibrium Points, Location and Stability; 1.3.3 Numerical Explorations; 1.3.4 Analytic Results; 1.4 Station Keeping 1.4.1 References 1.4.2 The Control of Libration Point Satellites; 1.4.3 Station Keeping for a Translunar Station; 1.4.4 Control of an Unstable Periodic Orbit; 1.4.5 Station Keeping for the ISEE-C. Algorithm and Results ; 1.4.6 Additional Work Chapter 2 Halo Orbits. Analytic and Numerical Study |
| Record Nr. | UNINA-9910782276803321 |
| Singapore ; ; River Edge, N.J., : World Scientific, 2001 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Dynamics and mission design near libration points . Volume 3 Advanced methods for collinear points [[electronic resource] /] / G. Gómez ... [et al.]
| Dynamics and mission design near libration points . Volume 3 Advanced methods for collinear points [[electronic resource] /] / G. Gómez ... [et al.] |
| Pubbl/distr/stampa | Singapore ; ; River Edge, NJ, : World Scientific, c2001 |
| Descrizione fisica | 1 online resource (203 p.) |
| Disciplina | 521.3 |
| Altri autori (Persone) | GómezG (Gerard) |
| Collana | World scientific monograph series in mathematics |
| Soggetto topico |
Three-body problem
Lagrangian points |
| ISBN |
1-281-93456-9
9786611934569 981-279-462-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents ; Preface ; Chapter 1 Quasi-periodic Solutions Near the Equilateral Points of the Earth-Moon System ; 1.1 Introduction ; 1.2 Idea of the Resolution Method ; 1.3 The Algebraic Manipulator ; 1.4 The Newton Method ; 1.5 The Program ; 1.6 Results of the Algebraic Manipulator
1.7 Numerical Refinement 1.8 The Neighbourhood of the Computed Nearly Quasi-periodic Solution ; 1.9 Problems and Extensions ; Chapter 2 Global Description of the Orbits Near the L1 Point of the Earth-Sun System in the RTBP ; 2.1 Introduction ; 2.2 The Equations of Motion 2.3 Formal Series Solutions 2.4 On the Convergence of the Series ; 2.5 Towards a Description of the Neighbourhood of L1 ; 2.6 Discussion on the Use of Lissajous Orbits ; 2.7 Effective Reduction to the Central Manifold ; 2.8 Conclusions ; Chapter 3 Quasi-periodic Halo Orbits 3.1 Numerical Refinement 3.2 Main Program and Basic Routines ; 3.3 The Equations of Motion for the Simulations of the Control ; 3.4 The Effect of Errors ; 3.5 When a Control is Applied ; 3.6 Magnitudes Related to the Control ; 3.7 Description of the Program ; 3.8 Numerical Results Chapter 4 Transfer From the Earth to a Halo Orbit 4.1 Introduction ; 4.2 Local Approximation of the Stable Manifold ; 4.3 Globalization of the Manifold ; 4.4 Selecting Passages Near the Earth ; 4.5 Ranges in the Manifold Suited for the Transfer 4.6 Characteristics of the Orbits Near the Earth |
| Record Nr. | UNINA-9910782277303321 |
| Singapore ; ; River Edge, NJ, : World Scientific, c2001 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Generating families in the restricted three-body problem / Michel Hénon
| Generating families in the restricted three-body problem / Michel Hénon |
| Autore | Hénon, Michel |
| Pubbl/distr/stampa | New York : Springer-Verlag, 1997 |
| Descrizione fisica | xi, 278 p. : ill. ; 24 cm. |
| Disciplina | 521 |
| Collana | Lecture notes in physics. New series m. Monographs, 0940-7677 ; m52 |
| Soggetto topico |
Three-body problem
Celestial mechanics Artificial satellites-Orbits |
| ISBN | 3540638024 (hardcover : alk. paper) |
| Classificazione |
LC QB362.T5
52.9.51 53.1.4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991004035199707536 |
Hénon, Michel
|
||
| New York : Springer-Verlag, 1997 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
The integral manifolds of the three body problem / / Christopher K. McCord, Kenneth R. Meyer, Quidong Wang
| The integral manifolds of the three body problem / / Christopher K. McCord, Kenneth R. Meyer, Quidong Wang |
| Autore | McCord Christopher Keil |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1998 |
| Descrizione fisica | 1 online resource (106 p.) |
| Disciplina | 521 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Three-body problem
Celestial mechanics Manifolds (Mathematics) |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0217-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1. The integrals and manifolds""; ""2. History of the problem""; ""3. Summary of results ""; ""Chapter 2. The Decomposition of the Spaces""; ""1. The spaces and maps""; ""2. The geometry of the sets""; ""Chapter 3. The Cohomology""; ""1. The cohomology of k[sub(R)](c,h)""; ""2. The cohomology of k(c,h)""; ""3. The homeomorphism type of h(c,h) and h[sub(R)](c,h)""; ""4. The cohomology of m[sub(R)](c,h)""; ""5. The cohomology of m(c,h)""; ""Chapter 4. The analysis of k(c,h) for equal masses""
""1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of Ï?,Ï? for equal masses""""2. The semi-minor axis of the ellipse for equal masses""; ""3. The graphs of Z = f(X) and Z = g(X) for equal masses""; ""4. The semi- major axis of the ellipse for equal masses""; ""5. The feasible region c(c, h)""; ""6. k[sub(R)](c,h) for equal masses""; ""7. Orientation in k(c,h)""; ""8. Positive energy""; ""Chapter 5. The analysis of k(c,h) for general masses""; ""1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of Ï?,Ï? for general masses""; ""2. The semi-minor axis of the ellipse"" ""3. The graph of Z = f(X) and Z = g(X) for general masses""""4. The semi-major axis of the ellipse for unequal masses""; ""5. k[sub(R)](c,h) for unequal masses""; ""Bibliography"" |
| Record Nr. | UNINA-9910480228503321 |
McCord Christopher Keil
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 1998 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The integral manifolds of the three body problem / / Christopher K. McCord, Kenneth R. Meyer, Quidong Wang
| The integral manifolds of the three body problem / / Christopher K. McCord, Kenneth R. Meyer, Quidong Wang |
| Autore | McCord Christopher Keil |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1998 |
| Descrizione fisica | 1 online resource (106 p.) |
| Disciplina | 521 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Three-body problem
Celestial mechanics Manifolds (Mathematics) |
| ISBN | 1-4704-0217-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1. The integrals and manifolds""; ""2. History of the problem""; ""3. Summary of results ""; ""Chapter 2. The Decomposition of the Spaces""; ""1. The spaces and maps""; ""2. The geometry of the sets""; ""Chapter 3. The Cohomology""; ""1. The cohomology of k[sub(R)](c,h)""; ""2. The cohomology of k(c,h)""; ""3. The homeomorphism type of h(c,h) and h[sub(R)](c,h)""; ""4. The cohomology of m[sub(R)](c,h)""; ""5. The cohomology of m(c,h)""; ""Chapter 4. The analysis of k(c,h) for equal masses""
""1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of Ï?,Ï? for equal masses""""2. The semi-minor axis of the ellipse for equal masses""; ""3. The graphs of Z = f(X) and Z = g(X) for equal masses""; ""4. The semi- major axis of the ellipse for equal masses""; ""5. The feasible region c(c, h)""; ""6. k[sub(R)](c,h) for equal masses""; ""7. Orientation in k(c,h)""; ""8. Positive energy""; ""Chapter 5. The analysis of k(c,h) for general masses""; ""1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of Ï?,Ï? for general masses""; ""2. The semi-minor axis of the ellipse"" ""3. The graph of Z = f(X) and Z = g(X) for general masses""""4. The semi-major axis of the ellipse for unequal masses""; ""5. k[sub(R)](c,h) for unequal masses""; ""Bibliography"" |
| Record Nr. | UNINA-9910788734503321 |
McCord Christopher Keil
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 1998 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The integral manifolds of the three body problem / / Christopher K. McCord, Kenneth R. Meyer, Quidong Wang
| The integral manifolds of the three body problem / / Christopher K. McCord, Kenneth R. Meyer, Quidong Wang |
| Autore | McCord Christopher Keil |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1998 |
| Descrizione fisica | 1 online resource (106 p.) |
| Disciplina | 521 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Three-body problem
Celestial mechanics Manifolds (Mathematics) |
| ISBN | 1-4704-0217-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1. The integrals and manifolds""; ""2. History of the problem""; ""3. Summary of results ""; ""Chapter 2. The Decomposition of the Spaces""; ""1. The spaces and maps""; ""2. The geometry of the sets""; ""Chapter 3. The Cohomology""; ""1. The cohomology of k[sub(R)](c,h)""; ""2. The cohomology of k(c,h)""; ""3. The homeomorphism type of h(c,h) and h[sub(R)](c,h)""; ""4. The cohomology of m[sub(R)](c,h)""; ""5. The cohomology of m(c,h)""; ""Chapter 4. The analysis of k(c,h) for equal masses""
""1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of Ï?,Ï? for equal masses""""2. The semi-minor axis of the ellipse for equal masses""; ""3. The graphs of Z = f(X) and Z = g(X) for equal masses""; ""4. The semi- major axis of the ellipse for equal masses""; ""5. The feasible region c(c, h)""; ""6. k[sub(R)](c,h) for equal masses""; ""7. Orientation in k(c,h)""; ""8. Positive energy""; ""Chapter 5. The analysis of k(c,h) for general masses""; ""1. y[sub(1)][sup(2)] + y[sub(2)][sup(2)] as function of Ï?,Ï? for general masses""; ""2. The semi-minor axis of the ellipse"" ""3. The graph of Z = f(X) and Z = g(X) for general masses""""4. The semi-major axis of the ellipse for unequal masses""; ""5. k[sub(R)](c,h) for unequal masses""; ""Bibliography"" |
| Record Nr. | UNINA-9910820698503321 |
McCord Christopher Keil
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 1998 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||