Textile finishing : recent developments and future trends / / edited by K.L. Mittal and Thomas Bahners |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Scrivener Publishing : , : Wiley, , 2017 |
Descrizione fisica | 1 online resource (586 pages) : illustrations |
Disciplina | 677.02 |
Soggetto topico | Textile finishing - Technological innovations |
ISBN |
9781119426875 (eBook)
1119426871 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1 Recent Developments and Current Challenges in Textile Finishing -- 1 Recent Concepts of Antimicrobial Textile Finishes -- 1.1 Introduction -- 1.2 Antimicrobial Agents -- 1.2.1 Mechanisms of Antimicrobial Activity -- 1.2.2 Structures of Antimicrobial Agents -- 1.2.2.1 Leaching Antimicrobial Agents -- 1.2.2.2 Bound Antimicrobial Agents -- 1.3 Low Adhesion Agents -- 1.4 Dual-Action Antimicrobial Agents -- 1.5 Evaluation of Antimicrobial Activity of Functionalized Textiles -- 1.5.1 Standardized Methods for the Determination of Antibacterial Activity -- 1.5.2 Standardized Methods for the Determination of Antifungal Activity -- 1.6 Health and Environmental Issues -- 1.6.1 Health and Environmental Impacts of Antimicrobial Compounds -- 1.7 Future Trends -- 1.8 Summary -- Acknowledgement -- References -- 2 Flame Retardant Textile Finishes -- 2.1 Introduction -- 2.2 Current Commercial, Durable Flame Retardants: Advantages and Disadvantages -- 2.3 Current Challenges -- 2.3.1 Minimisation of Effluents -- 2.3.2 Replacing Formaldehyde Chemistry, Particularly with Respect to Cotton and Blended Fabrics -- 2.3.2.1 Oligomeric Phosphate-Phosphonate -- 2.3.2.2 Multifunctional Carboxylic Acids -- 2.3.2.3 Alkyl Phosphoramidate Adduct -- 2.3.2.4 Phosphonyl Cyanurates -- 2.3.2.5 Cellulose-Phosphoramidate Ester Interchange -- 2.3.2.6 Cellulose-Chloro Triazinyl Derivative Condensation -- 2.3.2.7 Phosphorus Acid Derivatives of Cellulose -- 2.3.2.8 Phosphorus-Nitrogen-Silicon Developments -- 2.3.2.9 Polymer Networks -- 2.3.2.10 Other Finishing Treatments -- 2.3.3 Replacing Bromine, Notably in Coating and Back-Coating Formulations -- 2.3.3.1 Reducing the BrFR Concentrations -- 2.3.3.2 Possible Bromine-Chlorine and Phosphorus-Bromine Synergies -- 2.3.3.3 Effectiveness of Phosphorus.
2.3.3.4 The Sensitisation of Decomposition or Flame Retarding Efficiency of Phosphorus-Based Systems -- 2.3.3.5 The Introduction of a Volatile and Possible Vapour-Phase Active, Phosphorus-Based Flame Retardant Component -- 2.4 Novel Surface Chemistries -- 2.4.1 Sol-Gel Surface Treatments -- 2.4.2 Layer-by-Layer Treatments -- 2.4.3 Polymer Coating and UV and Plasma Grafting Treatments -- 2.4.3.1 Plasma Treatments -- 2.4.3.2 UV and Other Grafting Treatments -- 2.5 Summary -- References -- Bibliography -- 3 Striving for Self-Cleaning Textiles - Critical Thoughts on Current Literature -- 3.1 Introduction -- 3.2 Fundamental Principles -- 3.2.1 Self-Cleaning - The Super-Hydrophobic Approach -- 3.2.2 Self-Cleaning - The Super-Hydrophilic Approach -- 3.2.3 Expected Merits of the Concepts -- 3.3 Attempts to Attain Super-Hydrophobic Behavior -- 3.3.1 Minimized Surface Free Energy -- 3.3.1.1 Novel Chemical Finishes of Non-Polar Character -- 3.3.1.2 Deposition of Non-Polar Thin Layers by Plasma and Dielectric Barrier Discharge (DBD) -- 3.3.1.3 Deposition of Non-Polar Thin Layers by Photo-Chemical Surface Modification -- 3.3.2 Enhancing Liquid Repellence by Adding Surface Roughness -- 3.3.2.1 Application of Micro- and Nano-Rough (Hybrid) Coatings -- 3.3.2.2 Incorporation of Micro- and Nanoparticles -- 3.3.2.3 Laser-Based Surface Roughening -- 3.4 Attempts to Attain Super-Hydrophilic Properties -- 3.4.1 Use of Photo-Catalytic TiO2 -- 3.4.2 Making Use of Micro-Roughness According to the Wenzel Model -- 3.5 Relevance for Dirt Take-Up, Cleanability, and Self-Cleaning -- 3.6 Summary -- References -- 4 Metallization of Polymers and Textiles -- 4.1 Introduction -- 4.2 Main Methods of Metallization -- 4.2.1 Methods Based on Physical Vapor Deposition -- 4.2.2 Chemical Vapor Deposition Methods -- 4.3 Electroless Metallization -- 4.4 Summary -- References. 5 Wettability Characterization in Textiles - Use and Abuse of Measuring Procedures -- 5.1 Introduction -- 5.2 Peculiarities of Textile Substrates -- 5.3 Wettability Measurements on Fabrics -- 5.3.1 Contact Angle Measurements -- 5.3.2 Drop Penetration Tests -- 5.3.3 Soaking or Rising Height Test -- 5.3.4 The Wilhelmy Method -- 5.4 Contact Angle Measurements on Fibers -- 5.4.1 Adapting the Wilhelmy Plate Method to Single Fibers -- 5.4.2 The Washburn Approach - Wilhelmy Wicking Method -- 5.5 Summary and Concluding Remarks -- Acknowledgements -- References -- Part 2 Surface Modification Techniques for Textiles -- 6 Surface Functionalization of Synthetic Textiles by Atmospheric Pressure Plasma -- 6.1 Introduction -- 6.2 Processing Parameters of Atmospheric Pressure Plasma (APP) Jet -- 6.3 Change in Single Fiber Wettability Due to APP Jet Treatment -- 6.4 Hydrophobic Recovery after APP Jet Treatment -- 6.5 Chemical and Topographical Changes on Fiber Surface Due to APP Jet Treatment -- 6.6 Fabric Damage Due to APP Jet Treatment -- 6.7 Improvement of Textile Serviceability Properties by APP Jet Treatment -- 6.7.1 Water Wicking Property -- 6.7.2 Detergency -- 6.7.3 Dyeability -- 6.8 Summary and Prospects -- Acknowledgements -- References -- 7 UV-Based Photo-Chemical Surface Modification of Textile Fabrics -- 7.1 Introduction -- 7.2 Fundamentals of the Process -- 7.2.1 Photo-Addition, Irradiation in Air -- 7.2.2 Layer Formation by Homo-Polymerization and Graft-co-Polymerization -- 7.2.3 Experimental Concept -- 7.3 Fiber Properties Defined by the Surface Chemistry of Deposited Layers -- 7.3.1 Wetting and Adhesion -- 7.3.2 Wetting and Protein Adhesion - Antifouling Surfaces -- 7.3.3 Highly Liquid Repellent Technical Textiles -- 7.3.4 Patterned Wettablitity -- 7.4 Fiber Modification by Bulk Properties of Deposited Layers -- 7.4.1 Mechanical and Thermal Stability. 7.4.2 Barrier Function -- 7.4.3 Charge Storage -- 7.4.4 Permanent Flame Retardant Finish -- 7.5 Summary and Outlook -- References -- Part 3 Innovative Functionalities of Textiles -- 8 Glimpses into Tunable Wettability of Textiles -- 8.1 Introduction -- 8.2 Paths to Tunable Wettability -- 8.2.1 Fibre and Textile Surface Functionalisation -- 8.2.2 Stimuli-Responsive Hydrogel Functionalising Systems -- 8.2.3 Modes of Functionalisation and Additional Parameters to be Considered -- 8.3 Practical Aspects and Applications -- 8.4 Prospects -- 8.5 Summary -- References -- 9 3D Textile Structures for Harvesting Water from Fog: Overview and Perspectives -- 9.1 Introduction -- 9.2 Biological Models -- 9.2.1 Namib Desert Grass -- 9.2.2 Black Beetle in the Namib Desert -- 9.2.3 Epiphytic bromeliads -- 9.2.4 Pinus canariensis -- 9.3 Textile Development and Engineering -- 9.3.1 Fog Harvesting Efficiency in the Laboratory -- 9.3.2 Model of Drop Formation on the Yarn System of 3D Textiles -- 9.3.3 Scale Up to an Industrial Process -- 9.4 Technical Realization -- 9.5 Summary and Prospects -- References -- 10 Textile-Fixed Catalysts and their Use in Heterogeneous Catalysis -- 10.1 Introduction -- 10.2 Immobilization of Catalysts on Textile Carrier Materials -- 10.2.1 Inorganic Catalysts -- 10.2.2 Organo-Metallic Catalysts -- 10.2.3 Enzymes -- 10.2.4 Organic Catalysts -- 10.3 Summary and Outlook -- Acknowledgements -- References -- 11 Medical Textiles as Substrates for Tissue Engineering -- 11.1 Introduction -- 11.1.1 Concept of TE -- 11.1.2 Background of Medical Textiles in TE -- 11.2 Fiber Formation Approaches -- 11.2.1 Wet Spinning -- 11.2.2 Melt Spinning -- 11.2.3 Microfluidic Spinning -- 11.2.4 Self-Assembly -- 11.3 Fiber-Based Architectures for the TE Scaffold -- 11.3.1 Woven Fabrics -- 11.3.2 Knitted Fabrics -- 11.3.3 Braided Fabrics -- 11.3.4 Non-Woven Fabrics. 11.3.5 Bioprinting -- 11.4 Applications of Medical Textiles in TE -- 11.4.1 Musculoskeletal Tissues -- 11.4.2 Muscular Tissues -- 11.4.3 Ocular Tissues -- 11.4.4 Nerve Tissue -- 11.4.5 Skin -- 11.5 Summary and Prospects -- Note -- References -- Part 4 Fiber-Reinforced Composites -- 12 Thermoset Resin Based Fiber Reinforced Biocomposites -- 12.1 Introduction -- 12.1.1 Reinforcements and Fillers -- 12.1.2 Resins -- 12.1.3 Composites -- 12.1.4 Nanocomposites -- 12.1.5 Interfaces -- 12.1.6 Petroleum Based and Biobased Resins and Fibers -- 12.2 Characteristics of Biocomposites -- 12.3 Composite Classification -- 12.3.1 Hybrid Composites -- 12.3.2 'Greener' Composites -- 12.3.3 'Green' Composites -- 12.4 Natural Fiber Processing -- 12.4.1 Fiber Extraction -- 12.4.2 Fiber Treatments -- 12.4.3 Fiber Forms (Nonwoven, Woven, Knitted) -- 12.5 Polymeric Resins -- 12.5.1 Green Resins -- 12.5.2 Thermoset Green Resins -- 12.5.2.1 Protein Based Resins -- 12.5.2.2 Starch Based Resins -- 12.5.2.3 Fats/Lipids/Oils Based Resins -- 12.6 Biobased Thermoset Composites -- 12.6.1 Plant Based Cellulose Fiber Biocomposites -- 12.6.2 Starch Based Biocomposites -- 12.6.3 Protein Based Biocomposites -- 12.6.4 Chitosan Based Biocomposites -- 12.6.5 Lipid Based Biocomposites -- 12.7 Bionanocomposites -- 12.7.1 Starch Based Nanocomposites -- 12.7.2 Cellulose Based Nanocomposites -- 12.7.3 Protein Based Nanocomposites -- 12.7.4 Chitosan Based Nanocomposites -- 12.8 Applications and Advantages of Biocomposites -- 12.9 Opportunity and Challenges -- 12.10 Summary -- References -- 13 Characterisation of Fibre/Matrix Adhesion in Biobased Fibre-Reinforced Thermoplastic Composites -- 13.1 Introduction -- 13.1.1 Terms and Definitions -- 13.1.1.1 Fibre -- 13.1.1.2 Fibre Bundle -- 13.1.1.3 Equivalent Diameter -- 13.1.1.4 Critical Length -- 13.1.1.5 Aspect Ratio and Critical Aspect Ratio. 13.1.1.6 Single Element versus Collective. |
Record Nr. | UNINA-9910270920203321 |
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Scrivener Publishing : , : Wiley, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Textile finishing : recent developments and future trends / / edited by K.L. Mittal and Thomas Bahners |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Scrivener Publishing : , : Wiley, , 2017 |
Descrizione fisica | 1 online resource (586 pages) : illustrations |
Disciplina | 677.02 |
Collana | THEi Wiley ebooks |
Soggetto topico | Textile finishing - Technological innovations |
ISBN |
1-5231-2383-4
1-119-42687-1 1-119-42685-5 1-119-42679-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1 Recent Developments and Current Challenges in Textile Finishing -- 1 Recent Concepts of Antimicrobial Textile Finishes -- 1.1 Introduction -- 1.2 Antimicrobial Agents -- 1.2.1 Mechanisms of Antimicrobial Activity -- 1.2.2 Structures of Antimicrobial Agents -- 1.2.2.1 Leaching Antimicrobial Agents -- 1.2.2.2 Bound Antimicrobial Agents -- 1.3 Low Adhesion Agents -- 1.4 Dual-Action Antimicrobial Agents -- 1.5 Evaluation of Antimicrobial Activity of Functionalized Textiles -- 1.5.1 Standardized Methods for the Determination of Antibacterial Activity -- 1.5.2 Standardized Methods for the Determination of Antifungal Activity -- 1.6 Health and Environmental Issues -- 1.6.1 Health and Environmental Impacts of Antimicrobial Compounds -- 1.7 Future Trends -- 1.8 Summary -- Acknowledgement -- References -- 2 Flame Retardant Textile Finishes -- 2.1 Introduction -- 2.2 Current Commercial, Durable Flame Retardants: Advantages and Disadvantages -- 2.3 Current Challenges -- 2.3.1 Minimisation of Effluents -- 2.3.2 Replacing Formaldehyde Chemistry, Particularly with Respect to Cotton and Blended Fabrics -- 2.3.2.1 Oligomeric Phosphate-Phosphonate -- 2.3.2.2 Multifunctional Carboxylic Acids -- 2.3.2.3 Alkyl Phosphoramidate Adduct -- 2.3.2.4 Phosphonyl Cyanurates -- 2.3.2.5 Cellulose-Phosphoramidate Ester Interchange -- 2.3.2.6 Cellulose-Chloro Triazinyl Derivative Condensation -- 2.3.2.7 Phosphorus Acid Derivatives of Cellulose -- 2.3.2.8 Phosphorus-Nitrogen-Silicon Developments -- 2.3.2.9 Polymer Networks -- 2.3.2.10 Other Finishing Treatments -- 2.3.3 Replacing Bromine, Notably in Coating and Back-Coating Formulations -- 2.3.3.1 Reducing the BrFR Concentrations -- 2.3.3.2 Possible Bromine-Chlorine and Phosphorus-Bromine Synergies -- 2.3.3.3 Effectiveness of Phosphorus.
2.3.3.4 The Sensitisation of Decomposition or Flame Retarding Efficiency of Phosphorus-Based Systems -- 2.3.3.5 The Introduction of a Volatile and Possible Vapour-Phase Active, Phosphorus-Based Flame Retardant Component -- 2.4 Novel Surface Chemistries -- 2.4.1 Sol-Gel Surface Treatments -- 2.4.2 Layer-by-Layer Treatments -- 2.4.3 Polymer Coating and UV and Plasma Grafting Treatments -- 2.4.3.1 Plasma Treatments -- 2.4.3.2 UV and Other Grafting Treatments -- 2.5 Summary -- References -- Bibliography -- 3 Striving for Self-Cleaning Textiles - Critical Thoughts on Current Literature -- 3.1 Introduction -- 3.2 Fundamental Principles -- 3.2.1 Self-Cleaning - The Super-Hydrophobic Approach -- 3.2.2 Self-Cleaning - The Super-Hydrophilic Approach -- 3.2.3 Expected Merits of the Concepts -- 3.3 Attempts to Attain Super-Hydrophobic Behavior -- 3.3.1 Minimized Surface Free Energy -- 3.3.1.1 Novel Chemical Finishes of Non-Polar Character -- 3.3.1.2 Deposition of Non-Polar Thin Layers by Plasma and Dielectric Barrier Discharge (DBD) -- 3.3.1.3 Deposition of Non-Polar Thin Layers by Photo-Chemical Surface Modification -- 3.3.2 Enhancing Liquid Repellence by Adding Surface Roughness -- 3.3.2.1 Application of Micro- and Nano-Rough (Hybrid) Coatings -- 3.3.2.2 Incorporation of Micro- and Nanoparticles -- 3.3.2.3 Laser-Based Surface Roughening -- 3.4 Attempts to Attain Super-Hydrophilic Properties -- 3.4.1 Use of Photo-Catalytic TiO2 -- 3.4.2 Making Use of Micro-Roughness According to the Wenzel Model -- 3.5 Relevance for Dirt Take-Up, Cleanability, and Self-Cleaning -- 3.6 Summary -- References -- 4 Metallization of Polymers and Textiles -- 4.1 Introduction -- 4.2 Main Methods of Metallization -- 4.2.1 Methods Based on Physical Vapor Deposition -- 4.2.2 Chemical Vapor Deposition Methods -- 4.3 Electroless Metallization -- 4.4 Summary -- References. 5 Wettability Characterization in Textiles - Use and Abuse of Measuring Procedures -- 5.1 Introduction -- 5.2 Peculiarities of Textile Substrates -- 5.3 Wettability Measurements on Fabrics -- 5.3.1 Contact Angle Measurements -- 5.3.2 Drop Penetration Tests -- 5.3.3 Soaking or Rising Height Test -- 5.3.4 The Wilhelmy Method -- 5.4 Contact Angle Measurements on Fibers -- 5.4.1 Adapting the Wilhelmy Plate Method to Single Fibers -- 5.4.2 The Washburn Approach - Wilhelmy Wicking Method -- 5.5 Summary and Concluding Remarks -- Acknowledgements -- References -- Part 2 Surface Modification Techniques for Textiles -- 6 Surface Functionalization of Synthetic Textiles by Atmospheric Pressure Plasma -- 6.1 Introduction -- 6.2 Processing Parameters of Atmospheric Pressure Plasma (APP) Jet -- 6.3 Change in Single Fiber Wettability Due to APP Jet Treatment -- 6.4 Hydrophobic Recovery after APP Jet Treatment -- 6.5 Chemical and Topographical Changes on Fiber Surface Due to APP Jet Treatment -- 6.6 Fabric Damage Due to APP Jet Treatment -- 6.7 Improvement of Textile Serviceability Properties by APP Jet Treatment -- 6.7.1 Water Wicking Property -- 6.7.2 Detergency -- 6.7.3 Dyeability -- 6.8 Summary and Prospects -- Acknowledgements -- References -- 7 UV-Based Photo-Chemical Surface Modification of Textile Fabrics -- 7.1 Introduction -- 7.2 Fundamentals of the Process -- 7.2.1 Photo-Addition, Irradiation in Air -- 7.2.2 Layer Formation by Homo-Polymerization and Graft-co-Polymerization -- 7.2.3 Experimental Concept -- 7.3 Fiber Properties Defined by the Surface Chemistry of Deposited Layers -- 7.3.1 Wetting and Adhesion -- 7.3.2 Wetting and Protein Adhesion - Antifouling Surfaces -- 7.3.3 Highly Liquid Repellent Technical Textiles -- 7.3.4 Patterned Wettablitity -- 7.4 Fiber Modification by Bulk Properties of Deposited Layers -- 7.4.1 Mechanical and Thermal Stability. 7.4.2 Barrier Function -- 7.4.3 Charge Storage -- 7.4.4 Permanent Flame Retardant Finish -- 7.5 Summary and Outlook -- References -- Part 3 Innovative Functionalities of Textiles -- 8 Glimpses into Tunable Wettability of Textiles -- 8.1 Introduction -- 8.2 Paths to Tunable Wettability -- 8.2.1 Fibre and Textile Surface Functionalisation -- 8.2.2 Stimuli-Responsive Hydrogel Functionalising Systems -- 8.2.3 Modes of Functionalisation and Additional Parameters to be Considered -- 8.3 Practical Aspects and Applications -- 8.4 Prospects -- 8.5 Summary -- References -- 9 3D Textile Structures for Harvesting Water from Fog: Overview and Perspectives -- 9.1 Introduction -- 9.2 Biological Models -- 9.2.1 Namib Desert Grass -- 9.2.2 Black Beetle in the Namib Desert -- 9.2.3 Epiphytic bromeliads -- 9.2.4 Pinus canariensis -- 9.3 Textile Development and Engineering -- 9.3.1 Fog Harvesting Efficiency in the Laboratory -- 9.3.2 Model of Drop Formation on the Yarn System of 3D Textiles -- 9.3.3 Scale Up to an Industrial Process -- 9.4 Technical Realization -- 9.5 Summary and Prospects -- References -- 10 Textile-Fixed Catalysts and their Use in Heterogeneous Catalysis -- 10.1 Introduction -- 10.2 Immobilization of Catalysts on Textile Carrier Materials -- 10.2.1 Inorganic Catalysts -- 10.2.2 Organo-Metallic Catalysts -- 10.2.3 Enzymes -- 10.2.4 Organic Catalysts -- 10.3 Summary and Outlook -- Acknowledgements -- References -- 11 Medical Textiles as Substrates for Tissue Engineering -- 11.1 Introduction -- 11.1.1 Concept of TE -- 11.1.2 Background of Medical Textiles in TE -- 11.2 Fiber Formation Approaches -- 11.2.1 Wet Spinning -- 11.2.2 Melt Spinning -- 11.2.3 Microfluidic Spinning -- 11.2.4 Self-Assembly -- 11.3 Fiber-Based Architectures for the TE Scaffold -- 11.3.1 Woven Fabrics -- 11.3.2 Knitted Fabrics -- 11.3.3 Braided Fabrics -- 11.3.4 Non-Woven Fabrics. 11.3.5 Bioprinting -- 11.4 Applications of Medical Textiles in TE -- 11.4.1 Musculoskeletal Tissues -- 11.4.2 Muscular Tissues -- 11.4.3 Ocular Tissues -- 11.4.4 Nerve Tissue -- 11.4.5 Skin -- 11.5 Summary and Prospects -- Note -- References -- Part 4 Fiber-Reinforced Composites -- 12 Thermoset Resin Based Fiber Reinforced Biocomposites -- 12.1 Introduction -- 12.1.1 Reinforcements and Fillers -- 12.1.2 Resins -- 12.1.3 Composites -- 12.1.4 Nanocomposites -- 12.1.5 Interfaces -- 12.1.6 Petroleum Based and Biobased Resins and Fibers -- 12.2 Characteristics of Biocomposites -- 12.3 Composite Classification -- 12.3.1 Hybrid Composites -- 12.3.2 'Greener' Composites -- 12.3.3 'Green' Composites -- 12.4 Natural Fiber Processing -- 12.4.1 Fiber Extraction -- 12.4.2 Fiber Treatments -- 12.4.3 Fiber Forms (Nonwoven, Woven, Knitted) -- 12.5 Polymeric Resins -- 12.5.1 Green Resins -- 12.5.2 Thermoset Green Resins -- 12.5.2.1 Protein Based Resins -- 12.5.2.2 Starch Based Resins -- 12.5.2.3 Fats/Lipids/Oils Based Resins -- 12.6 Biobased Thermoset Composites -- 12.6.1 Plant Based Cellulose Fiber Biocomposites -- 12.6.2 Starch Based Biocomposites -- 12.6.3 Protein Based Biocomposites -- 12.6.4 Chitosan Based Biocomposites -- 12.6.5 Lipid Based Biocomposites -- 12.7 Bionanocomposites -- 12.7.1 Starch Based Nanocomposites -- 12.7.2 Cellulose Based Nanocomposites -- 12.7.3 Protein Based Nanocomposites -- 12.7.4 Chitosan Based Nanocomposites -- 12.8 Applications and Advantages of Biocomposites -- 12.9 Opportunity and Challenges -- 12.10 Summary -- References -- 13 Characterisation of Fibre/Matrix Adhesion in Biobased Fibre-Reinforced Thermoplastic Composites -- 13.1 Introduction -- 13.1.1 Terms and Definitions -- 13.1.1.1 Fibre -- 13.1.1.2 Fibre Bundle -- 13.1.1.3 Equivalent Diameter -- 13.1.1.4 Critical Length -- 13.1.1.5 Aspect Ratio and Critical Aspect Ratio. 13.1.1.6 Single Element versus Collective. |
Record Nr. | UNINA-9910819610903321 |
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Scrivener Publishing : , : Wiley, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|