top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Functional applications of text analytics systems / / Steven Simske and Marie Vans, editors
Functional applications of text analytics systems / / Steven Simske and Marie Vans, editors
Edizione [1st ed.]
Pubbl/distr/stampa Denmark : , : River Publishers, , [2021]
Descrizione fisica 1 online resource (292 pages)
Disciplina 006.312
Collana River Publishers Series in Document Engineering
Soggetto topico Text data mining
ISBN 1-00-333822-4
1-003-33822-4
1-000-79358-3
87-7022-342-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgement -- List of Figures -- List of Tables -- List of Abbreviations -- 1: Linguistics and NLP -- 1.1 Introduction -- 1.2 General Considerations -- 1.3 Machine Learning Aspects -- 1.3.1 Machine Learning Features -- 1.3.2 Other Machine Learning Approaches -- 1.4 Design/System Considerations -- 1.4.1 Sensitivity Analysis -- 1.4.2 Iterative Tradeoff in Approach -- 1.4.3 Competition - Cooperation Algorithms -- 1.4.4 Top-Down and Bottom-Up Designs -- 1.4.5 Agent-Based Models and Other Simulations -- 1.5 Applications/Examples -- 1.6 Test and Configuration -- 1.7 Summary -- 2: Summarization -- 2.1 Introduction -- 2.2 General Considerations -- 2.2.1 Summarization Approaches - An Overview -- 2.2.2 Weighting Factors in Extractive Summarization -- 2.2.3 Other Considerations in Extractive Summarization -- 2.2.4 Meta-Algorithmics and Extractive Summarization -- 2.3 Machine Learning Aspects -- 2.4 Design/System Considerations -- 2.5 Applications/Examples -- 2.6 Test and Configuration -- 2.7 Summary -- 3: Clustering, Classification, and Categorization -- 3.1 Introduction -- 3.1.1 Clustering -- 3.1.2 Regularization - An Introduction -- 3.1.3 Regularization and Clustering -- 3.2 General Considerations -- 3.3 Machine Learning Aspects -- 3.3.1 Machine Learning and Clustering -- 3.3.2 Machine Learning and Classification -- 3.3.3 Machine Learning and Categorization -- 3.4 Design/System Considerations -- 3.5 Applications/Examples -- 3.5.1 Query-Synonym Expansion -- 3.5.2 ANOVA, Cross-Correlation, and Image Classification -- 3.6 Test and Configuration -- 3.7 Summary -- 4: Translation -- 4.1 Introduction -- 4.2 General Considerations -- 4.2.1 Review of Relevant Prior Research -- 4.2.2 Summarization as a Means to Functionally Grade the Accuracy of Translation.
4.3 Machine Learning Aspects -- 4.3.1 Summarization and Translation -- 4.3.2 Document Reading Order -- 4.3.3 Other Machine Learning Considerations -- 4.4 Design/System Considerations -- 4.5 Applications/Examples -- 4.6 Test and Configuration -- 4.7 Summary -- 5: Optimization -- 5.1 Introduction -- 5.2 General Considerations -- 5.3 Machine Learning Aspects -- 5.4 Design/System Considerations -- 5.5 Applications/Examples -- 5.5.1 Document Clustering -- 5.5.2 Document Classification -- 5.5.3 Web Mining -- 5.5.4 Information and Content Extraction -- 5.5.5 Natural Language Processing -- 5.5.6 Sentiment Analysis -- 5.5.7 Native vs. Non-Native Speakers -- 5.5.8 Virtual Reality and Augmented Reality -- 5.6 Test and Configuration -- 5.7 Summary -- 6: Learning -- 6.1 Introduction -- 6.1.1 Reading Order -- 6.1.2 Repurposing of Text -- 6.1.3 Philosophies of Learning -- 6.2 General Considerations -- 6.2.1 Metadata -- 6.2.2 Pathways of Learning -- 6.3 Machine Learning Aspects -- 6.3.1 Learning About Machine Learning -- 6.3.2 Machine Learning Constraints -- 6.4 Design/System Considerations -- 6.4.1 Do Not Use Machine Learning for the Sake of Using Machine Learning -- 6.4.2 Learning to Learn -- 6.4.3 Prediction Time -- 6.5 Applications/Examples -- 6.5.1 Curriculum Development -- 6.5.2 Customized Education Planning -- 6.5.3 Personalized Rehearsing -- 6.6 Test and Configuration -- 6.7 Summary -- 7: Testing and Configuration -- 7.1 Introduction -- 7.2 General Considerations -- 7.2.1 Data-Ops -- 7.2.2 Text Analytics and Immunological Data -- 7.2.3 Text Analytics and Cybersecurity -- 7.2.4 Data-Ops and Testing -- 7.3 Machine Learning Aspects -- 7.4 Design/System Considerations -- 7.5 Applications/Examples -- 7.6 Test and Configuration -- 7.7 Summary -- Index -- About the Author.
Record Nr. UNINA-9910794691603321
Denmark : , : River Publishers, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Functional applications of text analytics systems / / Steven Simske and Marie Vans, editors
Functional applications of text analytics systems / / Steven Simske and Marie Vans, editors
Edizione [1st ed.]
Pubbl/distr/stampa Denmark : , : River Publishers, , [2021]
Descrizione fisica 1 online resource (292 pages)
Disciplina 006.312
Collana River Publishers Series in Document Engineering
Soggetto topico Text data mining
ISBN 1-00-333822-4
1-003-33822-4
1-000-79358-3
87-7022-342-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgement -- List of Figures -- List of Tables -- List of Abbreviations -- 1: Linguistics and NLP -- 1.1 Introduction -- 1.2 General Considerations -- 1.3 Machine Learning Aspects -- 1.3.1 Machine Learning Features -- 1.3.2 Other Machine Learning Approaches -- 1.4 Design/System Considerations -- 1.4.1 Sensitivity Analysis -- 1.4.2 Iterative Tradeoff in Approach -- 1.4.3 Competition - Cooperation Algorithms -- 1.4.4 Top-Down and Bottom-Up Designs -- 1.4.5 Agent-Based Models and Other Simulations -- 1.5 Applications/Examples -- 1.6 Test and Configuration -- 1.7 Summary -- 2: Summarization -- 2.1 Introduction -- 2.2 General Considerations -- 2.2.1 Summarization Approaches - An Overview -- 2.2.2 Weighting Factors in Extractive Summarization -- 2.2.3 Other Considerations in Extractive Summarization -- 2.2.4 Meta-Algorithmics and Extractive Summarization -- 2.3 Machine Learning Aspects -- 2.4 Design/System Considerations -- 2.5 Applications/Examples -- 2.6 Test and Configuration -- 2.7 Summary -- 3: Clustering, Classification, and Categorization -- 3.1 Introduction -- 3.1.1 Clustering -- 3.1.2 Regularization - An Introduction -- 3.1.3 Regularization and Clustering -- 3.2 General Considerations -- 3.3 Machine Learning Aspects -- 3.3.1 Machine Learning and Clustering -- 3.3.2 Machine Learning and Classification -- 3.3.3 Machine Learning and Categorization -- 3.4 Design/System Considerations -- 3.5 Applications/Examples -- 3.5.1 Query-Synonym Expansion -- 3.5.2 ANOVA, Cross-Correlation, and Image Classification -- 3.6 Test and Configuration -- 3.7 Summary -- 4: Translation -- 4.1 Introduction -- 4.2 General Considerations -- 4.2.1 Review of Relevant Prior Research -- 4.2.2 Summarization as a Means to Functionally Grade the Accuracy of Translation.
4.3 Machine Learning Aspects -- 4.3.1 Summarization and Translation -- 4.3.2 Document Reading Order -- 4.3.3 Other Machine Learning Considerations -- 4.4 Design/System Considerations -- 4.5 Applications/Examples -- 4.6 Test and Configuration -- 4.7 Summary -- 5: Optimization -- 5.1 Introduction -- 5.2 General Considerations -- 5.3 Machine Learning Aspects -- 5.4 Design/System Considerations -- 5.5 Applications/Examples -- 5.5.1 Document Clustering -- 5.5.2 Document Classification -- 5.5.3 Web Mining -- 5.5.4 Information and Content Extraction -- 5.5.5 Natural Language Processing -- 5.5.6 Sentiment Analysis -- 5.5.7 Native vs. Non-Native Speakers -- 5.5.8 Virtual Reality and Augmented Reality -- 5.6 Test and Configuration -- 5.7 Summary -- 6: Learning -- 6.1 Introduction -- 6.1.1 Reading Order -- 6.1.2 Repurposing of Text -- 6.1.3 Philosophies of Learning -- 6.2 General Considerations -- 6.2.1 Metadata -- 6.2.2 Pathways of Learning -- 6.3 Machine Learning Aspects -- 6.3.1 Learning About Machine Learning -- 6.3.2 Machine Learning Constraints -- 6.4 Design/System Considerations -- 6.4.1 Do Not Use Machine Learning for the Sake of Using Machine Learning -- 6.4.2 Learning to Learn -- 6.4.3 Prediction Time -- 6.5 Applications/Examples -- 6.5.1 Curriculum Development -- 6.5.2 Customized Education Planning -- 6.5.3 Personalized Rehearsing -- 6.6 Test and Configuration -- 6.7 Summary -- 7: Testing and Configuration -- 7.1 Introduction -- 7.2 General Considerations -- 7.2.1 Data-Ops -- 7.2.2 Text Analytics and Immunological Data -- 7.2.3 Text Analytics and Cybersecurity -- 7.2.4 Data-Ops and Testing -- 7.3 Machine Learning Aspects -- 7.4 Design/System Considerations -- 7.5 Applications/Examples -- 7.6 Test and Configuration -- 7.7 Summary -- Index -- About the Author.
Record Nr. UNINA-9910811011803321
Denmark : , : River Publishers, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Low resource social media text mining / / Shriphani Palakodety, Ashiqur R. KhudaBukhsh, Guha Jayachandran
Low resource social media text mining / / Shriphani Palakodety, Ashiqur R. KhudaBukhsh, Guha Jayachandran
Autore Palakodety Shriphani
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (67 pages)
Disciplina 006.312
Collana SpringerBriefs in Computer Science
Soggetto topico Text data mining
Natural language processing (Computer science)
ISBN 981-16-5625-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910502650503321
Palakodety Shriphani  
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Low resource social media text mining / / Shriphani Palakodety, Ashiqur R. KhudaBukhsh, Guha Jayachandran
Low resource social media text mining / / Shriphani Palakodety, Ashiqur R. KhudaBukhsh, Guha Jayachandran
Autore Palakodety Shriphani
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (67 pages)
Disciplina 006.312
Collana SpringerBriefs in Computer Science
Soggetto topico Text data mining
Natural language processing (Computer science)
ISBN 981-16-5625-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996464533103316
Palakodety Shriphani  
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Mastering Text Analytics : A Hands-on Guide to NLP Using Python / / by Shailendra Kadre, Shailesh Kadre, Subhendu Dey
Mastering Text Analytics : A Hands-on Guide to NLP Using Python / / by Shailendra Kadre, Shailesh Kadre, Subhendu Dey
Autore Kadre Shailendra
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Berkeley, CA : , : Apress : , : Imprint : Apress, , 2025
Descrizione fisica 1 online resource (293 pages)
Disciplina 006.3
Altri autori (Persone) KadreShailesh
DeySubhendu
Collana Professional and Applied Computing Series
Soggetto topico Natural language processing (Computer science)
Text data mining
Python (Computer program language)
ISBN 9798868815829
9798868815812
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Natural Language Processing: An Introduction -- Chapter 2. Collecting and Extracting the Data for NLP Projects -- Chapter 3. NLP Data Preprocessing Tasks Involving Strings & Python Regular Expressions -- Chapter 4. NLP Data Preprocessing Tasks with nltk -- Chapter 5. Lexical Analysis -- Chapter 6. Syntactic and Semantic Techniques in NLP -- Chapter 7. Advanced Pragmatic Techniques and Specialized Topics in NLP -- Chapter 8. Transformers, Generative AI, & LangChain -- Chapter 9. Advancing with LangChain & OpenAI -- Chapter 10. Case Study on Symantec Analysis.
Record Nr. UNINA-9911021958503321
Kadre Shailendra  
Berkeley, CA : , : Apress : , : Imprint : Apress, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Practical text mining with Perl [[electronic resource] /] / Roger Bilisoly
Practical text mining with Perl [[electronic resource] /] / Roger Bilisoly
Autore Bilisoly Roger <1963->
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2008
Descrizione fisica 1 online resource (322 p.)
Disciplina 005.74
Collana Wiley series on methods and applications in data mining
Soggetto topico Text data mining
Perl (Computer program language)
Soggetto genere / forma Electronic books.
ISBN 1-118-21050-6
1-281-78799-X
9786611787998
0-470-38286-4
0-470-38285-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Practical Text Mining With Perl; Contents; List of Figures; List of Tables; Preface; Acknowledgments; 1 Introduction; 2 Text Patterns; 3 Quantitative Text Summaries; 4 Probability and Text Sampling; 5 Applying Information Retrieval to Text Mining; 6 Concordance Lines and Corpus Linguistics; 7 Multivariate Techniques with Text; 8 Text Clustering; 9 A Sample of Additional Topics; Appendix A: Overview of Perl for Text Mining; Appendix B: Summary of R used in this Book; References; Index
Record Nr. UNINA-9910143987203321
Bilisoly Roger <1963->  
Hoboken, N.J., : Wiley, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Practical text mining with Perl [[electronic resource] /] / Roger Bilisoly
Practical text mining with Perl [[electronic resource] /] / Roger Bilisoly
Autore Bilisoly Roger <1963->
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2008
Descrizione fisica 1 online resource (322 p.)
Disciplina 005.74
Collana Wiley series on methods and applications in data mining
Soggetto topico Text data mining
Perl (Computer program language)
ISBN 1-118-21050-6
1-281-78799-X
9786611787998
0-470-38286-4
0-470-38285-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Practical Text Mining With Perl; Contents; List of Figures; List of Tables; Preface; Acknowledgments; 1 Introduction; 2 Text Patterns; 3 Quantitative Text Summaries; 4 Probability and Text Sampling; 5 Applying Information Retrieval to Text Mining; 6 Concordance Lines and Corpus Linguistics; 7 Multivariate Techniques with Text; 8 Text Clustering; 9 A Sample of Additional Topics; Appendix A: Overview of Perl for Text Mining; Appendix B: Summary of R used in this Book; References; Index
Record Nr. UNINA-9910829995403321
Bilisoly Roger <1963->  
Hoboken, N.J., : Wiley, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Revista humanidades digitales : RHD = Journal of digital humanities
Revista humanidades digitales : RHD = Journal of digital humanities
Pubbl/distr/stampa Madrid, : [Universidad Nacional de Educación a Distancia (UNED)], 2017-10-10-
Descrizione fisica Online-Ressource
Disciplina 890
400
Soggetto topico Electronic journals
Humanities - Periodicals
Digital libraries
Text data mining
Sentiment analysis
Corpora (Linguistics)
Natural language processing (Computer science)
Digital preservation
Soggetto genere / forma Zeitschrift
Soggetto non controllato digital archives
digital media
digitization
ISSN 2531-1786
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti Journal of digital humanities
RHD
Record Nr. UNINA-9910330728103321
Madrid, : [Universidad Nacional de Educación a Distancia (UNED)], 2017-10-10-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Revista Humanidades Digitales (RHD) = : Journal of Digital Humanities
Revista Humanidades Digitales (RHD) = : Journal of Digital Humanities
Pubbl/distr/stampa Spain, : Universidad Nacional de Educación a Distancia (UNED), 2017-9999
Soggetto topico Electronic journals
Humanities - Periodicals
Digital libraries
Text data mining
Sentiment analysis
Corpora (Linguistics)
Natural language processing (Computer science)
Digital preservation
Soggetto non controllato digital archives
digital media
digitization
ISSN 2531-1786
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione spa
Record Nr. UNISA-996321023603316
Spain, : Universidad Nacional de Educación a Distancia (UNED), 2017-9999
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Text as data : computational methods of understanding written expression using SAS / / Barry deVille, Gurpreet Singh Bawa
Text as data : computational methods of understanding written expression using SAS / / Barry deVille, Gurpreet Singh Bawa
Autore De Ville Barry
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (235 pages)
Disciplina 006.312
Collana Wiley and SAS business series
Soggetto topico Text data mining
Soggetto genere / forma Electronic books.
ISBN 9781119487142
1-119-48714-5
1-119-48715-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- About the Authors -- Introduction -- Chapter 1 Text Mining and Text Analytics -- Background and Terminology -- Text Analytics: What Is It? -- Brief History of Text -- Writing Systems of the World -- Meaning and Ambiguity -- Notes -- Chapter 2 Text Analytics Process Overview -- Text Analytics Processing -- Process Building Blocks -- Preparation -- Utilization -- Process Description -- Text Mining Data Sources -- Capture -- Linguistic Processing -- Parsing and Parse Products -- Internal Representation and Text Products -- Representation -- Notes -- Chapter 3 Text Data Source Capture -- Text Mining Data Source Assembly -- Use Case: Accessing Text from SAS Conference Proceedings -- Text Data Capture Process -- Consuming Linguistics Text Products -- Notes -- Chapter 4 Document Content and Characterization -- Authorship Analytics: Early Text Indicators and Measures -- Function Words as Indicators -- Beyond Function Words -- Words and Word Forms as Psychological Artifacts -- A Case Study in Gender Detection -- Data Product Example -- Analysis Results -- Summarization and Discourse Analysis -- Elementary Operations as Building Blocks to Results -- Fact Extraction -- Sentiment Extraction -- Conditional Inference -- Deployment -- Summarization -- Conclusion -- Notes -- Chapter 5 Textual Abstraction: Latent Structure, Dimension Reduction -- Text Mining Data Source Assembly -- Latent Structure and Dimensional Reduction -- Singular Value Decomposition as Dimension Reduction -- Latent Semantic Analysis -- Clustering Approach to Document Classification -- SVD Approach to Document Indexing -- Rough Meaning - Approximation for Singular Value Dimensions -- Semantic Indexing: Assigning Category Based on Singular Value Dimensional Scores -- Identifying Topics Using Latent Structure.
Latent Structure: Tracking Topic Term Variability Across Semantic Fields -- Conclusion -- Notes -- Chapter 6 Classification and Prediction -- Use Case Scenario -- Composite Document Construction -- Model Development -- Ensemble or Multiagent Models -- Identifying Drivers of Textual Consumer Feedback Using Distance-Based Clustering and Matrix Factorization -- Use Case Scenario: Retailer Reliability Ecommerce -- Discussion -- Notes -- Chapter 7 Boolean Methods of Classification and Prediction -- Rule-Based Text Classification and Prediction -- Method Description -- Characteristics of Boolean Rule Methods -- Example of Boolean Rules Applied to Text Mining Vaccine Data -- An Example Analysis -- Summary -- Notes -- Chapter 8 Speech to Text -- Introduction -- Processing Audio Feedback -- Business Problem -- Process Components -- Further Analysis: Sentiment and Latent Topics -- Conclusion -- Notes -- Appendix A Mood State Identification in Text -- Origins of Mood State Identification -- An Approach to Mood State Developed at SAS -- Background and Discussion -- An Example Mood State Process Flow -- Notes -- Appendix B A Design Approach to Characterizing Users Based on AudioInteractions on a Conversational AI Platform -- Audio-Based User Interaction Inference -- Recommendation Perspective vs. Conventional -- Sole Dependency on Text-Based Bots -- Implementation Scenario: Voice-Based Conversational AI Platform -- Component Process Flow -- Constructed Interaction -- Note -- Appendix C SAS Patents in Text Analytics -- Glossary -- Index -- EULA.
Record Nr. UNINA-9910555092303321
De Ville Barry  
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui