Effective kan fibrations in simplicial sets / / Benno van den Berg and Eric Faber
| Effective kan fibrations in simplicial sets / / Benno van den Berg and Eric Faber |
| Autore | van den Berg Benno |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (230 pages) |
| Disciplina | 780 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Mathematics
Teoria de l'homotopia |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-031-18900-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Related Work -- Acknowledgements -- Contents -- 1 Introduction -- 1.1 Fibrations as Structure -- 1.2 Effective Kan Fibrations -- 1.3 Summary of Contents -- Part I Π-Types from Moore Paths -- 2 Preliminaries -- 2.1 Fibred Structure -- 2.2 Double Categories of Left and Right Lifting Structures -- 2.3 Algebraic Weak Factorisation Systems -- 2.4 A Double Category of Coalgebras -- 2.5 Cofibrant Generation by a Double Category -- 2.6 Fibred Structure Revisited -- 2.7 Concluding Remark on Notation -- 3 An Algebraic Weak Factorisation System from a Dominance -- 4 An Algebraic Weak Factorisation System from a Moore Structure -- 4.1 Defining the Algebraic Weak Factorisation System -- 4.1.1 Functorial Factorisation -- 4.1.2 The Comonad -- 4.1.3 The Monad -- 4.1.4 The Distributive Law -- 4.2 Hyperdeformation Retracts -- 4.2.1 Hyperdeformation Retracts are Coalgebras -- 4.2.2 Hyperdeformation Retracts are Bifibred -- 4.3 Naive Fibrations -- 5 The Frobenius Construction -- 5.1 Naive Left Fibrations -- 5.2 The Frobenius Construction -- 6 Mould Squares and Effective Fibrations -- 6.1 A New Notion of Fibred Structure -- 6.2 Effective Fibrations -- 6.2.1 Effective Trivial Fibrations -- 6.2.2 Right and Left Fibrations -- 7 -Types -- Part II Simplicial Sets -- 8 Effective Trivial Kan Fibrations in Simplicial Sets -- 8.1 Effective Cofibrations -- 8.2 Effective Trivial Kan Fibrations -- 8.3 Local Character and Classical Correctness -- 9 Simplicial Sets as a Symmetric Moore Category -- 9.1 Polynomial Yoga -- 9.2 A Simplicial Poset of Traversals -- 9.3 Simplicial Moore Paths -- 9.4 Geometric Realization of a Traversal -- 10 Hyperdeformation Retracts in Simplicial Sets -- 10.1 Hyperdeformation Retracts Are Effective Cofibrations -- 10.2 Hyperdeformation Retracts as Internal Presheaves -- 10.3 A Small Double Category of Hyperdeformation Retracts.
10.4 Naive Kan Fibrations in Simplicial Sets -- 11 Mould Squares in Simplicial Sets -- 11.1 Small Mould Squares -- 11.2 Effective Kan Fibrations in Terms of ``Filling'' -- 12 Horn Squares -- 12.1 Effective Kan Fibrations in Terms of Horn Squares -- 12.2 Local Character and Classical Correctness -- 13 Conclusion -- 13.1 Properties of Effective Kan Fibrations -- 13.2 Directions for Future Research -- A Axioms -- A.1 Moore Structure -- A.2 Dominance -- B Cubical Sets -- C Degenerate Horn Fillers Are Unique -- D Uniform Kan Fibrations -- References -- Index. |
| Record Nr. | UNINA-9910634047703321 |
van den Berg Benno
|
||
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Effective kan fibrations in simplicial sets / / Benno van den Berg and Eric Faber
| Effective kan fibrations in simplicial sets / / Benno van den Berg and Eric Faber |
| Autore | van den Berg Benno |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (230 pages) |
| Disciplina | 780 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Mathematics
Teoria de l'homotopia |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-031-18900-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Related Work -- Acknowledgements -- Contents -- 1 Introduction -- 1.1 Fibrations as Structure -- 1.2 Effective Kan Fibrations -- 1.3 Summary of Contents -- Part I Π-Types from Moore Paths -- 2 Preliminaries -- 2.1 Fibred Structure -- 2.2 Double Categories of Left and Right Lifting Structures -- 2.3 Algebraic Weak Factorisation Systems -- 2.4 A Double Category of Coalgebras -- 2.5 Cofibrant Generation by a Double Category -- 2.6 Fibred Structure Revisited -- 2.7 Concluding Remark on Notation -- 3 An Algebraic Weak Factorisation System from a Dominance -- 4 An Algebraic Weak Factorisation System from a Moore Structure -- 4.1 Defining the Algebraic Weak Factorisation System -- 4.1.1 Functorial Factorisation -- 4.1.2 The Comonad -- 4.1.3 The Monad -- 4.1.4 The Distributive Law -- 4.2 Hyperdeformation Retracts -- 4.2.1 Hyperdeformation Retracts are Coalgebras -- 4.2.2 Hyperdeformation Retracts are Bifibred -- 4.3 Naive Fibrations -- 5 The Frobenius Construction -- 5.1 Naive Left Fibrations -- 5.2 The Frobenius Construction -- 6 Mould Squares and Effective Fibrations -- 6.1 A New Notion of Fibred Structure -- 6.2 Effective Fibrations -- 6.2.1 Effective Trivial Fibrations -- 6.2.2 Right and Left Fibrations -- 7 -Types -- Part II Simplicial Sets -- 8 Effective Trivial Kan Fibrations in Simplicial Sets -- 8.1 Effective Cofibrations -- 8.2 Effective Trivial Kan Fibrations -- 8.3 Local Character and Classical Correctness -- 9 Simplicial Sets as a Symmetric Moore Category -- 9.1 Polynomial Yoga -- 9.2 A Simplicial Poset of Traversals -- 9.3 Simplicial Moore Paths -- 9.4 Geometric Realization of a Traversal -- 10 Hyperdeformation Retracts in Simplicial Sets -- 10.1 Hyperdeformation Retracts Are Effective Cofibrations -- 10.2 Hyperdeformation Retracts as Internal Presheaves -- 10.3 A Small Double Category of Hyperdeformation Retracts.
10.4 Naive Kan Fibrations in Simplicial Sets -- 11 Mould Squares in Simplicial Sets -- 11.1 Small Mould Squares -- 11.2 Effective Kan Fibrations in Terms of ``Filling'' -- 12 Horn Squares -- 12.1 Effective Kan Fibrations in Terms of Horn Squares -- 12.2 Local Character and Classical Correctness -- 13 Conclusion -- 13.1 Properties of Effective Kan Fibrations -- 13.2 Directions for Future Research -- A Axioms -- A.1 Moore Structure -- A.2 Dominance -- B Cubical Sets -- C Degenerate Horn Fillers Are Unique -- D Uniform Kan Fibrations -- References -- Index. |
| Record Nr. | UNISA-996503567003316 |
van den Berg Benno
|
||
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Homotopy theory and arithmetic geometry : motivic and diophantine aspects, LMS-CMI Research School, London, July 2018 / / edited by Frank Neumann and Ambrus Pál
| Homotopy theory and arithmetic geometry : motivic and diophantine aspects, LMS-CMI Research School, London, July 2018 / / edited by Frank Neumann and Ambrus Pál |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (223 pages) |
| Disciplina | 514.24 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Arithmetical algebraic geometry
Homotopy theory Teoria de l'homotopia Geometria algebraica aritmètica |
| Soggetto genere / forma |
Congressos
Llibres electrònics |
| ISBN | 3-030-78977-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Contents -- 1 Homotopy Theory and Arithmetic Geometry-Motivic and Diophantine Aspects: An Introduction -- 1.1 Overview of Themes -- 1.2 Summaries of Individual Contributions -- References -- 2 An Introduction to A1-Enumerative Geometry -- 2.1 Introduction -- 2.2 Preliminaries -- 2.2.1 Enriching the Topological Degree -- 2.2.2 The Grothendieck-Witt Ring -- 2.2.3 Lannes' Formula -- 2.2.4 The Unstable Motivic Homotopy Category -- 2.2.5 Colimits -- 2.2.6 Purity -- 2.3 A1-enumerative Geometry -- 2.3.1 The Eisenbud-Khimshiashvili-Levine Signature Formula -- 2.3.2 Sketch of Proof for Theorem 4 -- 2.3.3 A1-Milnor Numbers -- 2.3.4 An Arithmetic Count of the Lines on a Smooth Cubic Surface -- 2.3.5 An Arithmetic Count of the Lines Meeting 4Lines in Space -- Notation Guide -- References -- 3 Cohomological Methods in Intersection Theory -- 3.1 Introduction -- 3.2 Étale Motives -- 3.2.1 The h-topology -- 3.2.2 Construction of Motives, After Voevodsky -- 3.2.3 Functoriality -- 3.2.4 Representability Theorems -- 3.3 Finiteness and Euler Characteristic -- 3.3.1 Locally Constructible Motives -- 3.3.2 Integrality of Traces and Rationality of ζ-Functions -- 3.3.3 Grothendieck-Verdier Duality -- 3.3.4 Generic Base Change: A Motivic Variation on Deligne's Proof -- 3.4 Characteristic Classes -- 3.4.1 Künneth Formula -- 3.4.2 Grothendieck-Lefschetz Formula -- References -- 4 Étale Homotopy and Obstructions to Rational Points -- 4.1 Introduction -- 4.2 ∞-Categories -- 4.2.1 Motivation -- 4.2.2 Quasi-Categories -- 4.2.3 ∞-Groupoids and the Homotopy Hypothesis -- 4.2.4 Quasi-Categories from Topological Categories -- 4.2.5 ∞-Category Theory -- 4.2.6 The Homotopy Category -- 4.2.7 ∞-Categories and Homological Algebra -- 4.2.8 Stable ∞-Categories -- 4.2.9 Localization -- 4.3 ∞-Topoi -- 4.3.1 Definitions -- 4.3.2 The Shape of an ∞-Topos.
4.4 Obstruction Theory -- 4.4.1 Obstruction Theory for Homotopy Types -- 4.4.2 For ∞-Topoi and Linear(ized) Versions -- 4.5 Étale Homotopy and Rational Points -- 4.5.1 The étale ∞-Topos -- 4.5.2 Rational Points -- 4.5.3 The Local-to-Global Principle -- 4.6 Galois Theory and Embedding Problems -- 4.6.1 Topoi and Embedding Problems -- References -- 5 A1-homotopy Theory and Contractible Varieties: A Survey -- 5.1 Introduction: Topological and Algebro-Geometric Motivations -- 5.1.1 Open Contractible Manifolds -- 5.1.2 Contractible Algebraic Varieties -- 5.2 A User's Guide to A1-homotopy Theory -- 5.2.1 Brief Topological Motivation -- 5.2.2 Homotopy Functors in Algebraic Geometry -- 5.2.3 The Unstable A1-homotopy Category: Construction -- Spaces -- Nisnevich and cdh Distinguished Squares -- Localization -- 5.2.4 The Unstable A1-homotopy Category: Basic Properties -- Motivic Spheres -- Representability Statements -- Representability of Chow Groups -- The Purity Isomorphism -- Comparison of Nisnevich and cdh-local A1-weak Equivalences -- 5.2.5 A Snapshot of the Stable Motivic Homotopy Category -- Stable Representablity of Algebraic K-theory -- Milnor-Witt K-theory -- 5.3 Concrete A1-weak Equivalences -- 5.3.1 Constructing A1-weak Equivalences of Smooth Schemes -- 5.3.2 A1-weak Equivalences vs. Weak Equivalences -- 5.3.3 Cancellation Questions and A1-weak Equivalences -- 5.3.4 Danielewski Surfaces and Generalizations -- 5.3.5 Building Quasi-Affine A1-contractible Varieties -- Unipotent Quotients -- Other Quasi-Affine A1-contractible Varieties -- 5.4 Further Computations in A1-homotopy Theory -- 5.4.1 A1-homotopy Sheaves -- Basic Definitions -- A1-rigid Varieties Embed into H(k) -- 5.4.2 A1-connectedness and Geometry -- A1-connectedness and Rationality Properties -- 5.4.3 A1-homotopy Sheaves Spheres and Brouwer Degree -- 5.4.4 A1-homotopy at Infinity. One-point Compactifications -- Stable End Spaces -- 5.5 Cancellation Questions and A1-contractibility -- 5.5.1 The Biregular Cancellation Problem -- 5.5.2 A1-contractibility vs Topological Contractibility -- Affine Lines on Topologically Contractible Surfaces -- Chow Groups and Vector Bundles on Topologically Contractible Surfaces -- 5.5.3 Cancellation Problems and the Russell Cubic -- The Russell Cubic and Equivariant K-theory -- Higher Chow Groups and Stable A1-contractibility -- 5.5.4 A1-contractibility of the Koras-Russell Threefold -- 5.5.5 Koras-Russell Fiber Bundles -- References -- Index. |
| Record Nr. | UNISA-996466408503316 |
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Homotopy theory and arithmetic geometry : motivic and diophantine aspects, LMS-CMI Research School, London, July 2018 / / edited by Frank Neumann and Ambrus Pál
| Homotopy theory and arithmetic geometry : motivic and diophantine aspects, LMS-CMI Research School, London, July 2018 / / edited by Frank Neumann and Ambrus Pál |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (223 pages) |
| Disciplina | 514.24 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Arithmetical algebraic geometry
Homotopy theory Teoria de l'homotopia Geometria algebraica aritmètica |
| Soggetto genere / forma |
Congressos
Llibres electrònics |
| ISBN | 3-030-78977-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Contents -- 1 Homotopy Theory and Arithmetic Geometry-Motivic and Diophantine Aspects: An Introduction -- 1.1 Overview of Themes -- 1.2 Summaries of Individual Contributions -- References -- 2 An Introduction to A1-Enumerative Geometry -- 2.1 Introduction -- 2.2 Preliminaries -- 2.2.1 Enriching the Topological Degree -- 2.2.2 The Grothendieck-Witt Ring -- 2.2.3 Lannes' Formula -- 2.2.4 The Unstable Motivic Homotopy Category -- 2.2.5 Colimits -- 2.2.6 Purity -- 2.3 A1-enumerative Geometry -- 2.3.1 The Eisenbud-Khimshiashvili-Levine Signature Formula -- 2.3.2 Sketch of Proof for Theorem 4 -- 2.3.3 A1-Milnor Numbers -- 2.3.4 An Arithmetic Count of the Lines on a Smooth Cubic Surface -- 2.3.5 An Arithmetic Count of the Lines Meeting 4Lines in Space -- Notation Guide -- References -- 3 Cohomological Methods in Intersection Theory -- 3.1 Introduction -- 3.2 Étale Motives -- 3.2.1 The h-topology -- 3.2.2 Construction of Motives, After Voevodsky -- 3.2.3 Functoriality -- 3.2.4 Representability Theorems -- 3.3 Finiteness and Euler Characteristic -- 3.3.1 Locally Constructible Motives -- 3.3.2 Integrality of Traces and Rationality of ζ-Functions -- 3.3.3 Grothendieck-Verdier Duality -- 3.3.4 Generic Base Change: A Motivic Variation on Deligne's Proof -- 3.4 Characteristic Classes -- 3.4.1 Künneth Formula -- 3.4.2 Grothendieck-Lefschetz Formula -- References -- 4 Étale Homotopy and Obstructions to Rational Points -- 4.1 Introduction -- 4.2 ∞-Categories -- 4.2.1 Motivation -- 4.2.2 Quasi-Categories -- 4.2.3 ∞-Groupoids and the Homotopy Hypothesis -- 4.2.4 Quasi-Categories from Topological Categories -- 4.2.5 ∞-Category Theory -- 4.2.6 The Homotopy Category -- 4.2.7 ∞-Categories and Homological Algebra -- 4.2.8 Stable ∞-Categories -- 4.2.9 Localization -- 4.3 ∞-Topoi -- 4.3.1 Definitions -- 4.3.2 The Shape of an ∞-Topos.
4.4 Obstruction Theory -- 4.4.1 Obstruction Theory for Homotopy Types -- 4.4.2 For ∞-Topoi and Linear(ized) Versions -- 4.5 Étale Homotopy and Rational Points -- 4.5.1 The étale ∞-Topos -- 4.5.2 Rational Points -- 4.5.3 The Local-to-Global Principle -- 4.6 Galois Theory and Embedding Problems -- 4.6.1 Topoi and Embedding Problems -- References -- 5 A1-homotopy Theory and Contractible Varieties: A Survey -- 5.1 Introduction: Topological and Algebro-Geometric Motivations -- 5.1.1 Open Contractible Manifolds -- 5.1.2 Contractible Algebraic Varieties -- 5.2 A User's Guide to A1-homotopy Theory -- 5.2.1 Brief Topological Motivation -- 5.2.2 Homotopy Functors in Algebraic Geometry -- 5.2.3 The Unstable A1-homotopy Category: Construction -- Spaces -- Nisnevich and cdh Distinguished Squares -- Localization -- 5.2.4 The Unstable A1-homotopy Category: Basic Properties -- Motivic Spheres -- Representability Statements -- Representability of Chow Groups -- The Purity Isomorphism -- Comparison of Nisnevich and cdh-local A1-weak Equivalences -- 5.2.5 A Snapshot of the Stable Motivic Homotopy Category -- Stable Representablity of Algebraic K-theory -- Milnor-Witt K-theory -- 5.3 Concrete A1-weak Equivalences -- 5.3.1 Constructing A1-weak Equivalences of Smooth Schemes -- 5.3.2 A1-weak Equivalences vs. Weak Equivalences -- 5.3.3 Cancellation Questions and A1-weak Equivalences -- 5.3.4 Danielewski Surfaces and Generalizations -- 5.3.5 Building Quasi-Affine A1-contractible Varieties -- Unipotent Quotients -- Other Quasi-Affine A1-contractible Varieties -- 5.4 Further Computations in A1-homotopy Theory -- 5.4.1 A1-homotopy Sheaves -- Basic Definitions -- A1-rigid Varieties Embed into H(k) -- 5.4.2 A1-connectedness and Geometry -- A1-connectedness and Rationality Properties -- 5.4.3 A1-homotopy Sheaves Spheres and Brouwer Degree -- 5.4.4 A1-homotopy at Infinity. One-point Compactifications -- Stable End Spaces -- 5.5 Cancellation Questions and A1-contractibility -- 5.5.1 The Biregular Cancellation Problem -- 5.5.2 A1-contractibility vs Topological Contractibility -- Affine Lines on Topologically Contractible Surfaces -- Chow Groups and Vector Bundles on Topologically Contractible Surfaces -- 5.5.3 Cancellation Problems and the Russell Cubic -- The Russell Cubic and Equivariant K-theory -- Higher Chow Groups and Stable A1-contractibility -- 5.5.4 A1-contractibility of the Koras-Russell Threefold -- 5.5.5 Koras-Russell Fiber Bundles -- References -- Index. |
| Record Nr. | UNINA-9910502651603321 |
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Real homotopy of configuration spaces : Peccot Lecture, Collège de France, March and May 2020 / / Najib Idrissi
| Real homotopy of configuration spaces : Peccot Lecture, Collège de France, March and May 2020 / / Najib Idrissi |
| Autore | Idrissi Najib |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer International Publishing, , [2022] |
| Descrizione fisica | 1 online resource (201 pages) |
| Disciplina | 514.2 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Algebraic topology
Homotopy theory - History Teoria de l'homotopia Topologia algebraica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
9783031044281
9783031044274 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996479371903316 |
Idrissi Najib
|
||
| Cham, Switzerland : , : Springer International Publishing, , [2022] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Real homotopy of configuration spaces : Peccot Lecture, Collège de France, March and May 2020 / / Najib Idrissi
| Real homotopy of configuration spaces : Peccot Lecture, Collège de France, March and May 2020 / / Najib Idrissi |
| Autore | Idrissi Najib |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer International Publishing, , [2022] |
| Descrizione fisica | 1 online resource (201 pages) |
| Disciplina | 514.2 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Algebraic topology
Homotopy theory - History Teoria de l'homotopia Topologia algebraica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
9783031044281
9783031044274 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910574857703321 |
Idrissi Najib
|
||
| Cham, Switzerland : , : Springer International Publishing, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Simplicial and dendroidal homotopy theory / / Gijs Heuts, Ieke Moerdijk
| Simplicial and dendroidal homotopy theory / / Gijs Heuts, Ieke Moerdijk |
| Autore | Heuts Gijs |
| Pubbl/distr/stampa | Cham, : Springer Nature, 2022 |
| Descrizione fisica | 1 online resource (xx, 612 pages) : illustrations |
| Altri autori (Persone) | MoerdijkIeke |
| Collana | Ergebnisse der Mathematik und ihrer Grenzgebiete |
| Soggetto topico |
Homotopy theory
Teoria de l'homotopia |
| Soggetto genere / forma | Llibres electrònics |
| Soggetto non controllato |
Operads
infinity-operad infinity-category simplicial set dendroidal set simplicial space simplicial operad model categories Bousfield localization Boardman-Vogt higher algebra |
| ISBN | 3-031-10447-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Part I The Elementary Theory of Simplicial and Dendroidal Sets 1 Operads 2 Simplicial Sets 3 Dendroidal Sets 4 Tensor Products of Dendroidal Sets 5 Kan Conditions for Simplicial Sets 6 Kan Conditions for Dendroidal Sets Part II The Homotopy Theory of Simplicial and Dendroidal Sets 7 Model Categories 8 Model Structures on the Category of Simplicial Sets 9 Three Model Structures on the Category of Dendroidal Sets Part III The Homotopy Theory of Simplicial and Dendroidal Spaces 10 Reedy Categories and Diagrams of Spaces 11 Mapping Spaces and Bousfield Localizations 12 Dendroidal Spaces and ∞-Operads 13 Left Fibrations and the Covariant Model Structure 14 Simplicial Operads and ∞-Operads Epilogue References Index |
| Record Nr. | UNISA-996485661003316 |
Heuts Gijs
|
||
| Cham, : Springer Nature, 2022 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Simplicial and dendroidal homotopy theory / / Gijs Heuts, Ieke Moerdijk
| Simplicial and dendroidal homotopy theory / / Gijs Heuts, Ieke Moerdijk |
| Autore | Heuts Gijs |
| Pubbl/distr/stampa | Cham, : Springer Nature, 2022 |
| Descrizione fisica | 1 online resource (xx, 612 pages) : illustrations |
| Altri autori (Persone) | MoerdijkIeke |
| Collana | Ergebnisse der Mathematik und ihrer Grenzgebiete |
| Soggetto topico |
Homotopy theory
Teoria de l'homotopia |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-031-10447-1 |
| Classificazione | MAT002010MAT038000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Part I The Elementary Theory of Simplicial and Dendroidal Sets 1 Operads 2 Simplicial Sets 3 Dendroidal Sets 4 Tensor Products of Dendroidal Sets 5 Kan Conditions for Simplicial Sets 6 Kan Conditions for Dendroidal Sets Part II The Homotopy Theory of Simplicial and Dendroidal Sets 7 Model Categories 8 Model Structures on the Category of Simplicial Sets 9 Three Model Structures on the Category of Dendroidal Sets Part III The Homotopy Theory of Simplicial and Dendroidal Spaces 10 Reedy Categories and Diagrams of Spaces 11 Mapping Spaces and Bousfield Localizations 12 Dendroidal Spaces and ∞-Operads 13 Left Fibrations and the Covariant Model Structure 14 Simplicial Operads and ∞-Operads Epilogue References Index |
| Record Nr. | UNINA-9910586579203321 |
Heuts Gijs
|
||
| Cham, : Springer Nature, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||