Applied and computational optimal control : a control parametrization approach / / Kok Lay Teo, Bin Li, Changjun Yu, Volker Rehbock
| Applied and computational optimal control : a control parametrization approach / / Kok Lay Teo, Bin Li, Changjun Yu, Volker Rehbock |
| Autore | Teo K. L. |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (581 pages) |
| Disciplina | 519.6 |
| Collana | Springer Optimization and Its Applications |
| Soggetto topico |
Constrained optimization
Control theory - Mathematics Teoria de control Optimització matemàtica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-69913-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Introduction -- 2 Unconstrained Optimization Techniques -- 3 Constrained Mathematical Programming -- 4 Optimization Problems Subject to Continuous Inequality Constraints -- 5 Discrete Time Optimal Control Problems -- 6 Elements of Optimal Control Theory -- 7 Gradient Formulae for Optimal Parameter Selection Problems -- 8 Control Parametrization for Canonical Optimal Control Problems -- 9 Optimal Control Problems with State and Control Constraints -- 10 Time-Lag Optimal Control Problems -- 11 Feedback Control -- 12 On Some Special Classes of Stochastic Optimal Control Problems -- A.1 Elements of Mathematical Analysis -- A.2 Global Optimization via Filled Function Approach -- A.3 Elements of Probability Theory |
| Record Nr. | UNISA-996466413103316 |
Teo K. L.
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Asian journal of control
| Asian journal of control |
| Pubbl/distr/stampa | Victoria, Australia, : Wiley-Blackwell |
| Disciplina | 629 |
| Soggetto topico |
Automatic control
Control theory Commande automatique Théorie de la commande Control automàtic Teoria de control |
| Soggetto genere / forma |
Periodicals.
Revistes electròniques. |
| ISSN | 1934-6093 |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910172152303321 |
| Victoria, Australia, : Wiley-Blackwell | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Closed Loop Control and Management : Introduction to Feedback Control Theory with Data Stream Managers / / Serge Zacher
| Closed Loop Control and Management : Introduction to Feedback Control Theory with Data Stream Managers / / Serge Zacher |
| Autore | Zacher Serge |
| Edizione | [1st ed. 2022.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (396 pages) |
| Disciplina | 629.8 |
| Soggetto topico |
Automatic control
Automation Control theory Control automàtic Teoria de control Teoria de sistemes Automatització |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
9783031134838
9783031134821 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Classic closed loop control from Heron till now:- Basics of the closed loop management -- Engineering of closed loops -- Mathematical Backgrounds. |
| Record Nr. | UNISA-996511863203316 |
Zacher Serge
|
||
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Closed Loop Control and Management : Introduction to Feedback Control Theory with Data Stream Managers / / Serge Zacher
| Closed Loop Control and Management : Introduction to Feedback Control Theory with Data Stream Managers / / Serge Zacher |
| Autore | Zacher Serge |
| Edizione | [1st ed. 2022.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (396 pages) |
| Disciplina | 629.8 |
| Soggetto topico |
Automatic control
Automation Control theory Control automàtic Teoria de control Teoria de sistemes Automatització |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
9783031134838
9783031134821 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Classic closed loop control from Heron till now:- Basics of the closed loop management -- Engineering of closed loops -- Mathematical Backgrounds. |
| Record Nr. | UNINA-9910659492603321 |
Zacher Serge
|
||
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Control and Inverse Problems : The 2022 Spring Workshop in Monastir, Tunisia / / edited by Kaïs Ammari, Chaker Jammazi, Faouzi Triki
| Control and Inverse Problems : The 2022 Spring Workshop in Monastir, Tunisia / / edited by Kaïs Ammari, Chaker Jammazi, Faouzi Triki |
| Edizione | [1st ed. 2023.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2023 |
| Descrizione fisica | 1 online resource (276 pages) |
| Disciplina | 629.8312 |
| Collana | Trends in Mathematics |
| Soggetto topico |
Differential equations
System theory Control theory Differential Equations Systems Theory, Control Teoria de control Problemes inversos (Equacions diferencials) |
| Soggetto genere / forma |
Congressos
Llibres electrònics |
| ISBN | 3-031-35675-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Stabilization of one dimensional wave equation with variable potential and torque -- Controlling a dynamic system through reinforcement learning -- Landweber iterative method for an inverse source problem of space-fractional diffusion equations -- On the Spectrum Distribution of Parametric Second-order Delay Differential Equations. Perspectives in Partial Pole Placement -- Exact controllability of the linear Biharmonic Schrdinger equation with space-dependent coefficients -- Carleman estimate and application to the stabilization of a dissipative hyperbolic system -- On the transfer of information in multiplier equations -- A Global Carleman Estimates of the linearized sixth-order 1 D-Boussinesq equation Application -- Nonparametric instrumental regression via mollification -- Finite-time stabilization of some classes of infinite dimensional systems -- Dispersion on certain Cartesian products of graphs -- Tracking Control of Chained Systems: application to nonholonomic unicycle mobile robots -- A short elementary proof of the Gearhart-Pruss theorem for bounded semigroups -- Revisit the damped wave equation. |
| Record Nr. | UNINA-9910746998003321 |
| Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Control and system theory of discrete-time stochastic systems / / Jan H. van Schuppen
| Control and system theory of discrete-time stochastic systems / / Jan H. van Schuppen |
| Autore | Schuppen J. H. van |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (940 pages) |
| Disciplina | 629.8312 |
| Collana | Communications and Control Engineering |
| Soggetto topico |
Stochastic control theory
Stochastic systems Discrete-time systems Teoria de control Processos estocàstics Sistemes estocàstics Sistemes de temps discret |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-66952-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910495184703321 |
Schuppen J. H. van
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Control Theory and Inverse Problems : The 2023 Workshop in Monastir, Tunisia / / edited by Kaïs Ammari, Islam Boussaada, Chaker Jammazi
| Control Theory and Inverse Problems : The 2023 Workshop in Monastir, Tunisia / / edited by Kaïs Ammari, Islam Boussaada, Chaker Jammazi |
| Edizione | [1st ed. 2025.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2025 |
| Descrizione fisica | 1 online resource (275 pages) |
| Disciplina | 629.8312 |
| Collana | Trends in Mathematics |
| Soggetto topico |
System theory
Control theory Differential equations Systems Theory, Control Differential Equations Teoria de sistemes Teoria de control Equacions diferencials |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
9783031680465
3031680464 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Generalized oscillatory space in time scales and applications -- Some insights on the practical control of hyperbolic systems -- Observers for data assimilation and parameter estimation -- On the path to deciphering the helffer-nier conjecture -- Geometric inverse problem for the navier-stokes equations -- An inverse problem for the wave equation in anisotropic media -- Stability estimates for initial data in general ornstein-uhlenbeck equations -- A note on the fast stabilization of controlled discretized vlasov-poisson system -- Mathematical control of the salwater intrusion in coastal aquifers -- Some insights into partial pole placement method in observers design for time-delay systems -- On exponential stability of a delayed thermoelastic system -- Design of quasipolynomial-based controllers with dynamical parameters application to active vibration damping -- Optimization of rate of penetration through regression model. |
| Record Nr. | UNINA-9910983391003321 |
| Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Control theory and technology
| Control theory and technology |
| Pubbl/distr/stampa | [Guangzhou] : , : South China University of Technology and Academy of Mathematics and Systems Science, CAS, , 2014- |
| Descrizione fisica | 1 online resource |
| Soggetto topico |
Control theory
Teoria de control |
| Soggetto genere / forma |
Periodicals.
Revistes electròniques. |
| ISSN | 2198-0942 |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910481985703321 |
| [Guangzhou] : , : South China University of Technology and Academy of Mathematics and Systems Science, CAS, , 2014- | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Controllability of singularly perturbed linear time delay systems / / Valery Y. Glizer
| Controllability of singularly perturbed linear time delay systems / / Valery Y. Glizer |
| Autore | Glizer Valery Y. |
| Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2021] |
| Descrizione fisica | 1 online resource (429 pages) |
| Disciplina | 003.74 |
| Collana | Systems and Control: Foundations and Applications |
| Soggetto topico |
Linear systems
Control theory Sistemes lineals Teoria de control |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-65951-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Contents -- 1 Introduction -- 1.1 Real-Life Models -- 1.1.1 Neurosystem Model -- 1.1.2 Sunflower Equation -- 1.1.3 Model of Nuclear Reactor Dynamics -- 1.1.4 Model of Controlled Coupled-Core Nuclear Reactor -- 1.1.5 Car-Following Model: Lane as a Simple Open Curve -- 1.1.6 Car-Following Model: Lane as a Simple Closed Curve -- References -- 2 Singularly Perturbed Linear Time Delay Systems -- 2.1 Introduction -- 2.2 Singularly Perturbed Systems with Small Delays -- 2.2.1 Original System -- 2.2.2 Slow-Fast Decomposition of the Original System -- 2.2.3 Fundamental Matrix Solution -- 2.2.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Small Delays -- 2.2.5 Example 1 -- 2.2.6 Example 2: Tracking Model with Delay -- 2.2.7 Example 3: Analysis of Neurosystem Model -- 2.2.8 Example 4: Analysis of Sunflower Equation -- 2.2.9 Proof of Lemma 2.2 -- 2.2.10 Proof of Theorem 2.1 -- 2.2.10.1 Technical Proposition -- 2.2.10.2 Main Part of the Proof -- 2.3 Singularly Perturbed Systems with Delays of Two Scales -- 2.3.1 Original System -- 2.3.2 Slow-Fast Decomposition of the Original System -- 2.3.3 Fundamental Matrix Solution -- 2.3.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Delays of Two Scales -- 2.3.5 Example 5 -- 2.3.6 Example 6: Dynamics of Nuclear Reactor -- 2.3.7 Example 7: Analysis of Car-Following Model in a Simple Closed Lane -- 2.3.8 Proof of Theorem 2.2 -- 2.4 One Class of Singularly Perturbed Systems with NonsmallDelays -- 2.4.1 Original System -- 2.4.2 Slow-Fast Decomposition of the Original System -- 2.4.3 Fundamental Matrix Solution -- 2.4.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Nonsmall Delays -- 2.4.5 Example 8 -- 2.4.6 Proof of Lemma 2.4 -- 2.4.7 Proof of Theorem 2.4 -- 2.5 Concluding Remarks and Literature Review.
References -- 3 Euclidean Space Output Controllability of Linear Systems with State Delays -- 3.1 Introduction -- 3.2 Systems with Small Delays: Main Notions and Definitions -- 3.2.1 Original System -- 3.2.2 Asymptotic Decomposition of the Original System -- 3.3 Auxiliary Results -- 3.3.1 Output Controllability of a System with State Delays: Necessary and Sufficient Conditions -- 3.3.2 Linear Control Transformation in Systems with Small Delays -- 3.3.2.1 Control Transformation in the Original System -- 3.3.2.2 Asymptotic Decomposition of the Transformed System (3.30)-(3.31), (3.3) -- 3.3.3 Hybrid Set of Riccati-Type Matrix Equations -- 3.3.4 Proof of Lemma 3.1 -- 3.3.4.1 Sufficiency -- 3.3.4.2 Necessity -- 3.3.5 Proof of Lemma 3.5 -- 3.3.6 Proof of Lemma 3.7 -- 3.3.7 Proof of Lemma 3.8 -- 3.3.8 Proof of Lemma 3.9 -- 3.4 Parameter-Free Controllability Conditions for Systems with Small Delays -- 3.4.1 Case of the Standard System (3.1)-(3.2) -- 3.4.2 Case of the Nonstandard System (3.1)-(3.2) -- 3.4.3 Proofs of Theorems 3.1, 3.2, and 3.3 -- 3.4.3.1 Proof of Theorem 3.1 -- 3.4.3.2 Proof of Theorem 3.2 -- 3.4.3.3 Proof of Theorem 3.3 -- 3.5 Special Cases of Controllability for Systems with Small Delays -- 3.5.1 Complete Euclidean Space Controllability -- 3.5.2 Controllability with Respect to x(t) -- 3.5.3 Controllability with Respect to y(t) -- 3.6 Examples: Systems with Small Delays -- 3.6.1 Example 1 -- 3.6.2 Example 2 -- 3.6.3 Example 3 -- 3.6.4 Example 4 -- 3.6.5 Example 5 -- 3.6.6 Example 6: Pursuit-Evasion Engagement with Constant Speeds of Participants -- 3.6.7 Example 7: Pursuit-Evasion Engagement with Variable Speeds of Participants -- 3.6.8 Example 8: Analysis of Controlled Coupled-Core Nuclear Reactor Model -- 3.7 Systems with Delays of Two Scales: Main Notionsand Definitions -- 3.7.1 Original System. 3.7.2 Asymptotic Decomposition of the Original System -- 3.8 Linear Control Transformation in Systems with Delays of Two Scales -- 3.8.1 Control Transformation in the Original System -- 3.8.2 Asymptotic Decomposition of the Transformed System (3.196)-(3.197), (3.187) -- 3.9 Parameter-Free Controllability Conditions for Systems with Delays of Two Scales -- 3.9.1 Case of the Validity of the Assumption (AIII) -- 3.9.2 Case of the Validity of the Assumption (AIV) -- 3.9.3 Special Cases of Controllability -- 3.9.3.1 Complete Euclidean Space Controllability -- 3.9.3.2 Controllability with Respect to x(t) -- 3.9.3.3 Controllability with Respect to y(t) -- 3.9.4 Example 9 -- 3.9.5 Example 10 -- 3.9.6 Example 11: Controlled Car-Following Model in a Simple Open Lane -- 3.10 Concluding Remarks and Literature Review -- References -- 4 Complete Euclidean Space Controllability of Linear Systems with State and Control Delays -- 4.1 Introduction -- 4.2 System with Small State Delays: Main Notions and Definitions -- 4.2.1 Original System -- 4.2.2 Asymptotic Decomposition of the Original System -- 4.3 Preliminary Results -- 4.3.1 Auxiliary System with Small State Delays and Delay-Free Control -- 4.3.2 Output Controllability of the Auxiliary System and Its Slow and Fast Subsystems: Necessary and Sufficient Conditions -- 4.3.2.1 Equivalent Forms of the Auxiliary System -- 4.3.2.2 Output Controllability of the Auxiliary System -- 4.3.2.3 Output Controllability of the Slow and Fast Subsystems Associated with the Auxiliary System -- 4.3.3 Linear Control Transformation in the Original System with Small State Delays -- 4.3.4 Stabilizability of a Parameter-Dependent System with State and Control Delays by a Memory-Less Feedback Control -- 4.3.5 Proof of Lemma 4.8 -- 4.4 Parameter-Free Controllability Conditions for Systems with Small State Delays. 4.4.1 Case of the Standard System (4.1)-(4.2) -- 4.4.2 Case of the Nonstandard System (4.1)-(4.2) -- 4.4.3 Proof of Main Lemma (Lemma 4.9) -- 4.4.3.1 Auxiliary Propositions -- 4.4.3.2 Main Part of the Proof -- 4.4.4 Alternative Approach to Controllability Analysis of the Nonstandard System (4.1)-(4.2) -- 4.4.4.1 Linear Control Transformation in the Auxiliary System (4.40)-(4.42) -- 4.4.4.2 Proof of Lemma 4.10 -- 4.4.4.3 Hybrid Set of Riccati-Type Matrix Equations -- 4.4.4.4 Parameter-Free Controllability Conditions of the Nonstandard System (4.1)-(4.2) -- 4.5 Examples: Systems with Small State and Control Delays -- 4.5.1 Example 1 -- 4.5.2 Example 2 -- 4.5.3 Example 3 -- 4.6 Systems with State Delays of Two Scales: Main Notions and Definitions -- 4.6.1 Original System -- 4.6.2 Asymptotic Decomposition of the Original System -- 4.7 Auxiliary System with State Delays of Two Scales and Delay-Free Control -- 4.7.1 Description of the Auxiliary System and Some of Its Properties -- 4.7.2 Asymptotic Decomposition of the Auxiliary System (4.180)-(4.181) -- 4.7.3 Linear Control Transformation in the Auxiliary System (4.180)-(4.181) -- 4.8 Parameter-Free Controllability Conditions for Systems with Delays of Two Scales -- 4.8.1 Case of the Validity of the Assumption (AV) -- 4.8.2 Case of the Validity of the Assumption (AVI) -- 4.8.3 Example 4 -- 4.8.4 Example 5 -- 4.8.5 Example 6: Analysis of Car-Following Model with State and Control Delays -- 4.9 Concluding Remarks and Literature Review -- References -- 5 First-Order Euclidean Space Controllability Conditions for Linear Systems with Small State Delays -- 5.1 Introduction -- 5.2 Singularly Perturbed System: Main Notions and Definitions -- 5.2.1 Original System -- 5.2.2 Asymptotic Decomposition of the Original System -- 5.3 Auxiliary Results. 5.3.1 Estimates of Solutions to Some Singularly Perturbed Linear Time Delay Matrix Differential Equations -- 5.3.2 Proof of Lemma 5.1 -- 5.3.2.1 Technical Proposition -- 5.3.2.2 Main Part of the Proof -- 5.3.3 Complete Controllability of the Original System and Its Slow Subsystem: Necessary and SufficientConditions -- 5.4 Parameter-Free Controllability Conditions -- 5.4.1 Formulation of Main Assertions -- 5.4.2 Proof of Theorem 5.1 -- 5.4.3 Proof of Lemma 5.2 -- 5.4.4 Proof of Theorem 5.2 -- 5.4.4.1 Euclidean Space Controllability of a Pure Fast System -- 5.4.4.2 Main Part of the Proof -- 5.5 Examples -- 5.5.1 Example 1 -- 5.5.2 Example 2 -- 5.5.3 Example 3 -- 5.5.4 Example 4 -- 5.5.5 Example 5 -- 5.5.6 Example 6 -- 5.5.7 Example 7: Analysis of Controlled Car-Following Model in a Simple Open Lane -- 5.6 Concluding Remarks and Literature Review -- References -- 6 Miscellanies -- 6.1 Introduction -- 6.2 Euclidean Space Controllability of Linear Time Delay Systems with High Gain Control -- 6.2.1 High Gain Control System: Main Notionsand Definitions -- 6.2.1.1 Initial System -- 6.2.1.2 Transformation of the System (6.1) -- 6.2.2 High Dimension Controllability Condition for the System (6.5) -- 6.2.3 Asymptotic Decomposition of the System (6.5) -- 6.2.4 Auxiliary Results -- 6.2.4.1 Linear Control Transformation in the System (6.13)-(6.14) and Some of its Properties -- 6.2.4.2 Asymptotic Decomposition of the Transformed System (6.13), (6.21) -- 6.2.4.3 Block-Wise Estimate of the Solution to the Terminal-Value Problem (6.23) -- 6.2.5 Lower Dimension Parameter-Free Controllability Condition for the System (6.5) -- 6.2.6 Example -- 6.3 Euclidean Space Controllability of Linear Systems with Nonsmall Input Delay -- 6.3.1 Original System -- 6.3.2 Discussion on the Slow-Fast Decomposition of the Original System -- 6.3.3 Auxiliary Results. 6.3.3.1 Necessary and Sufficient Controllability Conditions of the Original System. |
| Record Nr. | UNISA-996466544903316 |
Glizer Valery Y.
|
||
| Cham, Switzerland : , : Birkhäuser, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Controllability of singularly perturbed linear time delay systems / / Valery Y. Glizer
| Controllability of singularly perturbed linear time delay systems / / Valery Y. Glizer |
| Autore | Glizer Valery Y. |
| Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2021] |
| Descrizione fisica | 1 online resource (429 pages) |
| Disciplina | 003.74 |
| Collana | Systems and Control: Foundations and Applications |
| Soggetto topico |
Linear systems
Control theory Sistemes lineals Teoria de control |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-65951-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Contents -- 1 Introduction -- 1.1 Real-Life Models -- 1.1.1 Neurosystem Model -- 1.1.2 Sunflower Equation -- 1.1.3 Model of Nuclear Reactor Dynamics -- 1.1.4 Model of Controlled Coupled-Core Nuclear Reactor -- 1.1.5 Car-Following Model: Lane as a Simple Open Curve -- 1.1.6 Car-Following Model: Lane as a Simple Closed Curve -- References -- 2 Singularly Perturbed Linear Time Delay Systems -- 2.1 Introduction -- 2.2 Singularly Perturbed Systems with Small Delays -- 2.2.1 Original System -- 2.2.2 Slow-Fast Decomposition of the Original System -- 2.2.3 Fundamental Matrix Solution -- 2.2.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Small Delays -- 2.2.5 Example 1 -- 2.2.6 Example 2: Tracking Model with Delay -- 2.2.7 Example 3: Analysis of Neurosystem Model -- 2.2.8 Example 4: Analysis of Sunflower Equation -- 2.2.9 Proof of Lemma 2.2 -- 2.2.10 Proof of Theorem 2.1 -- 2.2.10.1 Technical Proposition -- 2.2.10.2 Main Part of the Proof -- 2.3 Singularly Perturbed Systems with Delays of Two Scales -- 2.3.1 Original System -- 2.3.2 Slow-Fast Decomposition of the Original System -- 2.3.3 Fundamental Matrix Solution -- 2.3.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Delays of Two Scales -- 2.3.5 Example 5 -- 2.3.6 Example 6: Dynamics of Nuclear Reactor -- 2.3.7 Example 7: Analysis of Car-Following Model in a Simple Closed Lane -- 2.3.8 Proof of Theorem 2.2 -- 2.4 One Class of Singularly Perturbed Systems with NonsmallDelays -- 2.4.1 Original System -- 2.4.2 Slow-Fast Decomposition of the Original System -- 2.4.3 Fundamental Matrix Solution -- 2.4.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Nonsmall Delays -- 2.4.5 Example 8 -- 2.4.6 Proof of Lemma 2.4 -- 2.4.7 Proof of Theorem 2.4 -- 2.5 Concluding Remarks and Literature Review.
References -- 3 Euclidean Space Output Controllability of Linear Systems with State Delays -- 3.1 Introduction -- 3.2 Systems with Small Delays: Main Notions and Definitions -- 3.2.1 Original System -- 3.2.2 Asymptotic Decomposition of the Original System -- 3.3 Auxiliary Results -- 3.3.1 Output Controllability of a System with State Delays: Necessary and Sufficient Conditions -- 3.3.2 Linear Control Transformation in Systems with Small Delays -- 3.3.2.1 Control Transformation in the Original System -- 3.3.2.2 Asymptotic Decomposition of the Transformed System (3.30)-(3.31), (3.3) -- 3.3.3 Hybrid Set of Riccati-Type Matrix Equations -- 3.3.4 Proof of Lemma 3.1 -- 3.3.4.1 Sufficiency -- 3.3.4.2 Necessity -- 3.3.5 Proof of Lemma 3.5 -- 3.3.6 Proof of Lemma 3.7 -- 3.3.7 Proof of Lemma 3.8 -- 3.3.8 Proof of Lemma 3.9 -- 3.4 Parameter-Free Controllability Conditions for Systems with Small Delays -- 3.4.1 Case of the Standard System (3.1)-(3.2) -- 3.4.2 Case of the Nonstandard System (3.1)-(3.2) -- 3.4.3 Proofs of Theorems 3.1, 3.2, and 3.3 -- 3.4.3.1 Proof of Theorem 3.1 -- 3.4.3.2 Proof of Theorem 3.2 -- 3.4.3.3 Proof of Theorem 3.3 -- 3.5 Special Cases of Controllability for Systems with Small Delays -- 3.5.1 Complete Euclidean Space Controllability -- 3.5.2 Controllability with Respect to x(t) -- 3.5.3 Controllability with Respect to y(t) -- 3.6 Examples: Systems with Small Delays -- 3.6.1 Example 1 -- 3.6.2 Example 2 -- 3.6.3 Example 3 -- 3.6.4 Example 4 -- 3.6.5 Example 5 -- 3.6.6 Example 6: Pursuit-Evasion Engagement with Constant Speeds of Participants -- 3.6.7 Example 7: Pursuit-Evasion Engagement with Variable Speeds of Participants -- 3.6.8 Example 8: Analysis of Controlled Coupled-Core Nuclear Reactor Model -- 3.7 Systems with Delays of Two Scales: Main Notionsand Definitions -- 3.7.1 Original System. 3.7.2 Asymptotic Decomposition of the Original System -- 3.8 Linear Control Transformation in Systems with Delays of Two Scales -- 3.8.1 Control Transformation in the Original System -- 3.8.2 Asymptotic Decomposition of the Transformed System (3.196)-(3.197), (3.187) -- 3.9 Parameter-Free Controllability Conditions for Systems with Delays of Two Scales -- 3.9.1 Case of the Validity of the Assumption (AIII) -- 3.9.2 Case of the Validity of the Assumption (AIV) -- 3.9.3 Special Cases of Controllability -- 3.9.3.1 Complete Euclidean Space Controllability -- 3.9.3.2 Controllability with Respect to x(t) -- 3.9.3.3 Controllability with Respect to y(t) -- 3.9.4 Example 9 -- 3.9.5 Example 10 -- 3.9.6 Example 11: Controlled Car-Following Model in a Simple Open Lane -- 3.10 Concluding Remarks and Literature Review -- References -- 4 Complete Euclidean Space Controllability of Linear Systems with State and Control Delays -- 4.1 Introduction -- 4.2 System with Small State Delays: Main Notions and Definitions -- 4.2.1 Original System -- 4.2.2 Asymptotic Decomposition of the Original System -- 4.3 Preliminary Results -- 4.3.1 Auxiliary System with Small State Delays and Delay-Free Control -- 4.3.2 Output Controllability of the Auxiliary System and Its Slow and Fast Subsystems: Necessary and Sufficient Conditions -- 4.3.2.1 Equivalent Forms of the Auxiliary System -- 4.3.2.2 Output Controllability of the Auxiliary System -- 4.3.2.3 Output Controllability of the Slow and Fast Subsystems Associated with the Auxiliary System -- 4.3.3 Linear Control Transformation in the Original System with Small State Delays -- 4.3.4 Stabilizability of a Parameter-Dependent System with State and Control Delays by a Memory-Less Feedback Control -- 4.3.5 Proof of Lemma 4.8 -- 4.4 Parameter-Free Controllability Conditions for Systems with Small State Delays. 4.4.1 Case of the Standard System (4.1)-(4.2) -- 4.4.2 Case of the Nonstandard System (4.1)-(4.2) -- 4.4.3 Proof of Main Lemma (Lemma 4.9) -- 4.4.3.1 Auxiliary Propositions -- 4.4.3.2 Main Part of the Proof -- 4.4.4 Alternative Approach to Controllability Analysis of the Nonstandard System (4.1)-(4.2) -- 4.4.4.1 Linear Control Transformation in the Auxiliary System (4.40)-(4.42) -- 4.4.4.2 Proof of Lemma 4.10 -- 4.4.4.3 Hybrid Set of Riccati-Type Matrix Equations -- 4.4.4.4 Parameter-Free Controllability Conditions of the Nonstandard System (4.1)-(4.2) -- 4.5 Examples: Systems with Small State and Control Delays -- 4.5.1 Example 1 -- 4.5.2 Example 2 -- 4.5.3 Example 3 -- 4.6 Systems with State Delays of Two Scales: Main Notions and Definitions -- 4.6.1 Original System -- 4.6.2 Asymptotic Decomposition of the Original System -- 4.7 Auxiliary System with State Delays of Two Scales and Delay-Free Control -- 4.7.1 Description of the Auxiliary System and Some of Its Properties -- 4.7.2 Asymptotic Decomposition of the Auxiliary System (4.180)-(4.181) -- 4.7.3 Linear Control Transformation in the Auxiliary System (4.180)-(4.181) -- 4.8 Parameter-Free Controllability Conditions for Systems with Delays of Two Scales -- 4.8.1 Case of the Validity of the Assumption (AV) -- 4.8.2 Case of the Validity of the Assumption (AVI) -- 4.8.3 Example 4 -- 4.8.4 Example 5 -- 4.8.5 Example 6: Analysis of Car-Following Model with State and Control Delays -- 4.9 Concluding Remarks and Literature Review -- References -- 5 First-Order Euclidean Space Controllability Conditions for Linear Systems with Small State Delays -- 5.1 Introduction -- 5.2 Singularly Perturbed System: Main Notions and Definitions -- 5.2.1 Original System -- 5.2.2 Asymptotic Decomposition of the Original System -- 5.3 Auxiliary Results. 5.3.1 Estimates of Solutions to Some Singularly Perturbed Linear Time Delay Matrix Differential Equations -- 5.3.2 Proof of Lemma 5.1 -- 5.3.2.1 Technical Proposition -- 5.3.2.2 Main Part of the Proof -- 5.3.3 Complete Controllability of the Original System and Its Slow Subsystem: Necessary and SufficientConditions -- 5.4 Parameter-Free Controllability Conditions -- 5.4.1 Formulation of Main Assertions -- 5.4.2 Proof of Theorem 5.1 -- 5.4.3 Proof of Lemma 5.2 -- 5.4.4 Proof of Theorem 5.2 -- 5.4.4.1 Euclidean Space Controllability of a Pure Fast System -- 5.4.4.2 Main Part of the Proof -- 5.5 Examples -- 5.5.1 Example 1 -- 5.5.2 Example 2 -- 5.5.3 Example 3 -- 5.5.4 Example 4 -- 5.5.5 Example 5 -- 5.5.6 Example 6 -- 5.5.7 Example 7: Analysis of Controlled Car-Following Model in a Simple Open Lane -- 5.6 Concluding Remarks and Literature Review -- References -- 6 Miscellanies -- 6.1 Introduction -- 6.2 Euclidean Space Controllability of Linear Time Delay Systems with High Gain Control -- 6.2.1 High Gain Control System: Main Notionsand Definitions -- 6.2.1.1 Initial System -- 6.2.1.2 Transformation of the System (6.1) -- 6.2.2 High Dimension Controllability Condition for the System (6.5) -- 6.2.3 Asymptotic Decomposition of the System (6.5) -- 6.2.4 Auxiliary Results -- 6.2.4.1 Linear Control Transformation in the System (6.13)-(6.14) and Some of its Properties -- 6.2.4.2 Asymptotic Decomposition of the Transformed System (6.13), (6.21) -- 6.2.4.3 Block-Wise Estimate of the Solution to the Terminal-Value Problem (6.23) -- 6.2.5 Lower Dimension Parameter-Free Controllability Condition for the System (6.5) -- 6.2.6 Example -- 6.3 Euclidean Space Controllability of Linear Systems with Nonsmall Input Delay -- 6.3.1 Original System -- 6.3.2 Discussion on the Slow-Fast Decomposition of the Original System -- 6.3.3 Auxiliary Results. 6.3.3.1 Necessary and Sufficient Controllability Conditions of the Original System. |
| Record Nr. | UNINA-9910483576203321 |
Glizer Valery Y.
|
||
| Cham, Switzerland : , : Birkhäuser, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||