top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applied and computational optimal control : a control parametrization approach / / Kok Lay Teo, Bin Li, Changjun Yu, Volker Rehbock
Applied and computational optimal control : a control parametrization approach / / Kok Lay Teo, Bin Li, Changjun Yu, Volker Rehbock
Autore Teo K. L.
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (581 pages)
Disciplina 519.6
Collana Springer Optimization and Its Applications
Soggetto topico Constrained optimization
Control theory - Mathematics
Teoria de control
Optimització matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-030-69913-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Introduction -- 2 Unconstrained Optimization Techniques -- 3 Constrained Mathematical Programming -- 4 Optimization Problems Subject to Continuous Inequality Constraints -- 5 Discrete Time Optimal Control Problems -- 6 Elements of Optimal Control Theory -- 7 Gradient Formulae for Optimal Parameter Selection Problems -- 8 Control Parametrization for Canonical Optimal Control Problems -- 9 Optimal Control Problems with State and Control Constraints -- 10 Time-Lag Optimal Control Problems -- 11 Feedback Control -- 12 On Some Special Classes of Stochastic Optimal Control Problems -- A.1 Elements of Mathematical Analysis -- A.2 Global Optimization via Filled Function Approach -- A.3 Elements of Probability Theory
Record Nr. UNISA-996466413103316
Teo K. L.  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Asian journal of control
Asian journal of control
Pubbl/distr/stampa Victoria, Australia, : Wiley-Blackwell
Disciplina 629
Soggetto topico Automatic control
Control theory
Commande automatique
Théorie de la commande
Control automàtic
Teoria de control
Soggetto genere / forma Periodicals.
Revistes electròniques.
ISSN 1934-6093
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910172152303321
Victoria, Australia, : Wiley-Blackwell
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Closed Loop Control and Management : Introduction to Feedback Control Theory with Data Stream Managers / / Serge Zacher
Closed Loop Control and Management : Introduction to Feedback Control Theory with Data Stream Managers / / Serge Zacher
Autore Zacher Serge
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (396 pages)
Disciplina 629.8
Soggetto topico Automatic control
Automation
Control theory
Control automàtic
Teoria de control
Teoria de sistemes
Automatització
Soggetto genere / forma Llibres electrònics
ISBN 9783031134838
9783031134821
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Classic closed loop control from Heron till now:- Basics of the closed loop management -- Engineering of closed loops -- Mathematical Backgrounds.
Record Nr. UNISA-996511863203316
Zacher Serge  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Closed Loop Control and Management : Introduction to Feedback Control Theory with Data Stream Managers / / Serge Zacher
Closed Loop Control and Management : Introduction to Feedback Control Theory with Data Stream Managers / / Serge Zacher
Autore Zacher Serge
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (396 pages)
Disciplina 629.8
Soggetto topico Automatic control
Automation
Control theory
Control automàtic
Teoria de control
Teoria de sistemes
Automatització
Soggetto genere / forma Llibres electrònics
ISBN 9783031134838
9783031134821
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Classic closed loop control from Heron till now:- Basics of the closed loop management -- Engineering of closed loops -- Mathematical Backgrounds.
Record Nr. UNINA-9910659492603321
Zacher Serge  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Control and Inverse Problems : The 2022 Spring Workshop in Monastir, Tunisia / / edited by Kaïs Ammari, Chaker Jammazi, Faouzi Triki
Control and Inverse Problems : The 2022 Spring Workshop in Monastir, Tunisia / / edited by Kaïs Ammari, Chaker Jammazi, Faouzi Triki
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2023
Descrizione fisica 1 online resource (276 pages)
Disciplina 629.8312
Collana Trends in Mathematics
Soggetto topico Differential equations
System theory
Control theory
Differential Equations
Systems Theory, Control
Teoria de control
Problemes inversos (Equacions diferencials)
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-031-35675-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Stabilization of one dimensional wave equation with variable potential and torque -- Controlling a dynamic system through reinforcement learning -- Landweber iterative method for an inverse source problem of space-fractional diffusion equations -- On the Spectrum Distribution of Parametric Second-order Delay Differential Equations. Perspectives in Partial Pole Placement -- Exact controllability of the linear Biharmonic Schrdinger equation with space-dependent coefficients -- Carleman estimate and application to the stabilization of a dissipative hyperbolic system -- On the transfer of information in multiplier equations -- A Global Carleman Estimates of the linearized sixth-order 1 D-Boussinesq equation Application -- Nonparametric instrumental regression via mollification -- Finite-time stabilization of some classes of infinite dimensional systems -- Dispersion on certain Cartesian products of graphs -- Tracking Control of Chained Systems: application to nonholonomic unicycle mobile robots -- A short elementary proof of the Gearhart-Pruss theorem for bounded semigroups -- Revisit the damped wave equation.
Record Nr. UNINA-9910746998003321
Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Control and system theory of discrete-time stochastic systems / / Jan H. van Schuppen
Control and system theory of discrete-time stochastic systems / / Jan H. van Schuppen
Autore Schuppen J. H. van
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (940 pages)
Disciplina 629.8312
Collana Communications and Control Engineering
Soggetto topico Stochastic control theory
Stochastic systems
Discrete-time systems
Teoria de control
Processos estocàstics
Sistemes estocàstics
Sistemes de temps discret
Soggetto genere / forma Llibres electrònics
ISBN 3-030-66952-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910495184703321
Schuppen J. H. van  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Control Theory and Inverse Problems : The 2023 Workshop in Monastir, Tunisia / / edited by Kaïs Ammari, Islam Boussaada, Chaker Jammazi
Control Theory and Inverse Problems : The 2023 Workshop in Monastir, Tunisia / / edited by Kaïs Ammari, Islam Boussaada, Chaker Jammazi
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2025
Descrizione fisica 1 online resource (275 pages)
Disciplina 629.8312
Collana Trends in Mathematics
Soggetto topico System theory
Control theory
Differential equations
Systems Theory, Control
Differential Equations
Teoria de sistemes
Teoria de control
Equacions diferencials
Soggetto genere / forma Llibres electrònics
ISBN 9783031680465
3031680464
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Generalized oscillatory space in time scales and applications -- Some insights on the practical control of hyperbolic systems -- Observers for data assimilation and parameter estimation -- On the path to deciphering the helffer-nier conjecture -- Geometric inverse problem for the navier-stokes equations -- An inverse problem for the wave equation in anisotropic media -- Stability estimates for initial data in general ornstein-uhlenbeck equations -- A note on the fast stabilization of controlled discretized vlasov-poisson system -- Mathematical control of the salwater intrusion in coastal aquifers -- Some insights into partial pole placement method in observers design for time-delay systems -- On exponential stability of a delayed thermoelastic system -- Design of quasipolynomial-based controllers with dynamical parameters application to active vibration damping -- Optimization of rate of penetration through regression model.
Record Nr. UNINA-9910983391003321
Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Control theory and technology
Control theory and technology
Pubbl/distr/stampa [Guangzhou] : , : South China University of Technology and Academy of Mathematics and Systems Science, CAS, , 2014-
Descrizione fisica 1 online resource
Soggetto topico Control theory
Teoria de control
Soggetto genere / forma Periodicals.
Revistes electròniques.
ISSN 2198-0942
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910481985703321
[Guangzhou] : , : South China University of Technology and Academy of Mathematics and Systems Science, CAS, , 2014-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Controllability of singularly perturbed linear time delay systems / / Valery Y. Glizer
Controllability of singularly perturbed linear time delay systems / / Valery Y. Glizer
Autore Glizer Valery Y.
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2021]
Descrizione fisica 1 online resource (429 pages)
Disciplina 003.74
Collana Systems and Control: Foundations and Applications
Soggetto topico Linear systems
Control theory
Sistemes lineals
Teoria de control
Soggetto genere / forma Llibres electrònics
ISBN 3-030-65951-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Introduction -- 1.1 Real-Life Models -- 1.1.1 Neurosystem Model -- 1.1.2 Sunflower Equation -- 1.1.3 Model of Nuclear Reactor Dynamics -- 1.1.4 Model of Controlled Coupled-Core Nuclear Reactor -- 1.1.5 Car-Following Model: Lane as a Simple Open Curve -- 1.1.6 Car-Following Model: Lane as a Simple Closed Curve -- References -- 2 Singularly Perturbed Linear Time Delay Systems -- 2.1 Introduction -- 2.2 Singularly Perturbed Systems with Small Delays -- 2.2.1 Original System -- 2.2.2 Slow-Fast Decomposition of the Original System -- 2.2.3 Fundamental Matrix Solution -- 2.2.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Small Delays -- 2.2.5 Example 1 -- 2.2.6 Example 2: Tracking Model with Delay -- 2.2.7 Example 3: Analysis of Neurosystem Model -- 2.2.8 Example 4: Analysis of Sunflower Equation -- 2.2.9 Proof of Lemma 2.2 -- 2.2.10 Proof of Theorem 2.1 -- 2.2.10.1 Technical Proposition -- 2.2.10.2 Main Part of the Proof -- 2.3 Singularly Perturbed Systems with Delays of Two Scales -- 2.3.1 Original System -- 2.3.2 Slow-Fast Decomposition of the Original System -- 2.3.3 Fundamental Matrix Solution -- 2.3.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Delays of Two Scales -- 2.3.5 Example 5 -- 2.3.6 Example 6: Dynamics of Nuclear Reactor -- 2.3.7 Example 7: Analysis of Car-Following Model in a Simple Closed Lane -- 2.3.8 Proof of Theorem 2.2 -- 2.4 One Class of Singularly Perturbed Systems with NonsmallDelays -- 2.4.1 Original System -- 2.4.2 Slow-Fast Decomposition of the Original System -- 2.4.3 Fundamental Matrix Solution -- 2.4.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Nonsmall Delays -- 2.4.5 Example 8 -- 2.4.6 Proof of Lemma 2.4 -- 2.4.7 Proof of Theorem 2.4 -- 2.5 Concluding Remarks and Literature Review.
References -- 3 Euclidean Space Output Controllability of Linear Systems with State Delays -- 3.1 Introduction -- 3.2 Systems with Small Delays: Main Notions and Definitions -- 3.2.1 Original System -- 3.2.2 Asymptotic Decomposition of the Original System -- 3.3 Auxiliary Results -- 3.3.1 Output Controllability of a System with State Delays: Necessary and Sufficient Conditions -- 3.3.2 Linear Control Transformation in Systems with Small Delays -- 3.3.2.1 Control Transformation in the Original System -- 3.3.2.2 Asymptotic Decomposition of the Transformed System (3.30)-(3.31), (3.3) -- 3.3.3 Hybrid Set of Riccati-Type Matrix Equations -- 3.3.4 Proof of Lemma 3.1 -- 3.3.4.1 Sufficiency -- 3.3.4.2 Necessity -- 3.3.5 Proof of Lemma 3.5 -- 3.3.6 Proof of Lemma 3.7 -- 3.3.7 Proof of Lemma 3.8 -- 3.3.8 Proof of Lemma 3.9 -- 3.4 Parameter-Free Controllability Conditions for Systems with Small Delays -- 3.4.1 Case of the Standard System (3.1)-(3.2) -- 3.4.2 Case of the Nonstandard System (3.1)-(3.2) -- 3.4.3 Proofs of Theorems 3.1, 3.2, and 3.3 -- 3.4.3.1 Proof of Theorem 3.1 -- 3.4.3.2 Proof of Theorem 3.2 -- 3.4.3.3 Proof of Theorem 3.3 -- 3.5 Special Cases of Controllability for Systems with Small Delays -- 3.5.1 Complete Euclidean Space Controllability -- 3.5.2 Controllability with Respect to x(t) -- 3.5.3 Controllability with Respect to y(t) -- 3.6 Examples: Systems with Small Delays -- 3.6.1 Example 1 -- 3.6.2 Example 2 -- 3.6.3 Example 3 -- 3.6.4 Example 4 -- 3.6.5 Example 5 -- 3.6.6 Example 6: Pursuit-Evasion Engagement with Constant Speeds of Participants -- 3.6.7 Example 7: Pursuit-Evasion Engagement with Variable Speeds of Participants -- 3.6.8 Example 8: Analysis of Controlled Coupled-Core Nuclear Reactor Model -- 3.7 Systems with Delays of Two Scales: Main Notionsand Definitions -- 3.7.1 Original System.
3.7.2 Asymptotic Decomposition of the Original System -- 3.8 Linear Control Transformation in Systems with Delays of Two Scales -- 3.8.1 Control Transformation in the Original System -- 3.8.2 Asymptotic Decomposition of the Transformed System (3.196)-(3.197), (3.187) -- 3.9 Parameter-Free Controllability Conditions for Systems with Delays of Two Scales -- 3.9.1 Case of the Validity of the Assumption (AIII) -- 3.9.2 Case of the Validity of the Assumption (AIV) -- 3.9.3 Special Cases of Controllability -- 3.9.3.1 Complete Euclidean Space Controllability -- 3.9.3.2 Controllability with Respect to x(t) -- 3.9.3.3 Controllability with Respect to y(t) -- 3.9.4 Example 9 -- 3.9.5 Example 10 -- 3.9.6 Example 11: Controlled Car-Following Model in a Simple Open Lane -- 3.10 Concluding Remarks and Literature Review -- References -- 4 Complete Euclidean Space Controllability of Linear Systems with State and Control Delays -- 4.1 Introduction -- 4.2 System with Small State Delays: Main Notions and Definitions -- 4.2.1 Original System -- 4.2.2 Asymptotic Decomposition of the Original System -- 4.3 Preliminary Results -- 4.3.1 Auxiliary System with Small State Delays and Delay-Free Control -- 4.3.2 Output Controllability of the Auxiliary System and Its Slow and Fast Subsystems: Necessary and Sufficient Conditions -- 4.3.2.1 Equivalent Forms of the Auxiliary System -- 4.3.2.2 Output Controllability of the Auxiliary System -- 4.3.2.3 Output Controllability of the Slow and Fast Subsystems Associated with the Auxiliary System -- 4.3.3 Linear Control Transformation in the Original System with Small State Delays -- 4.3.4 Stabilizability of a Parameter-Dependent System with State and Control Delays by a Memory-Less Feedback Control -- 4.3.5 Proof of Lemma 4.8 -- 4.4 Parameter-Free Controllability Conditions for Systems with Small State Delays.
4.4.1 Case of the Standard System (4.1)-(4.2) -- 4.4.2 Case of the Nonstandard System (4.1)-(4.2) -- 4.4.3 Proof of Main Lemma (Lemma 4.9) -- 4.4.3.1 Auxiliary Propositions -- 4.4.3.2 Main Part of the Proof -- 4.4.4 Alternative Approach to Controllability Analysis of the Nonstandard System (4.1)-(4.2) -- 4.4.4.1 Linear Control Transformation in the Auxiliary System (4.40)-(4.42) -- 4.4.4.2 Proof of Lemma 4.10 -- 4.4.4.3 Hybrid Set of Riccati-Type Matrix Equations -- 4.4.4.4 Parameter-Free Controllability Conditions of the Nonstandard System (4.1)-(4.2) -- 4.5 Examples: Systems with Small State and Control Delays -- 4.5.1 Example 1 -- 4.5.2 Example 2 -- 4.5.3 Example 3 -- 4.6 Systems with State Delays of Two Scales: Main Notions and Definitions -- 4.6.1 Original System -- 4.6.2 Asymptotic Decomposition of the Original System -- 4.7 Auxiliary System with State Delays of Two Scales and Delay-Free Control -- 4.7.1 Description of the Auxiliary System and Some of Its Properties -- 4.7.2 Asymptotic Decomposition of the Auxiliary System (4.180)-(4.181) -- 4.7.3 Linear Control Transformation in the Auxiliary System (4.180)-(4.181) -- 4.8 Parameter-Free Controllability Conditions for Systems with Delays of Two Scales -- 4.8.1 Case of the Validity of the Assumption (AV) -- 4.8.2 Case of the Validity of the Assumption (AVI) -- 4.8.3 Example 4 -- 4.8.4 Example 5 -- 4.8.5 Example 6: Analysis of Car-Following Model with State and Control Delays -- 4.9 Concluding Remarks and Literature Review -- References -- 5 First-Order Euclidean Space Controllability Conditions for Linear Systems with Small State Delays -- 5.1 Introduction -- 5.2 Singularly Perturbed System: Main Notions and Definitions -- 5.2.1 Original System -- 5.2.2 Asymptotic Decomposition of the Original System -- 5.3 Auxiliary Results.
5.3.1 Estimates of Solutions to Some Singularly Perturbed Linear Time Delay Matrix Differential Equations -- 5.3.2 Proof of Lemma 5.1 -- 5.3.2.1 Technical Proposition -- 5.3.2.2 Main Part of the Proof -- 5.3.3 Complete Controllability of the Original System and Its Slow Subsystem: Necessary and SufficientConditions -- 5.4 Parameter-Free Controllability Conditions -- 5.4.1 Formulation of Main Assertions -- 5.4.2 Proof of Theorem 5.1 -- 5.4.3 Proof of Lemma 5.2 -- 5.4.4 Proof of Theorem 5.2 -- 5.4.4.1 Euclidean Space Controllability of a Pure Fast System -- 5.4.4.2 Main Part of the Proof -- 5.5 Examples -- 5.5.1 Example 1 -- 5.5.2 Example 2 -- 5.5.3 Example 3 -- 5.5.4 Example 4 -- 5.5.5 Example 5 -- 5.5.6 Example 6 -- 5.5.7 Example 7: Analysis of Controlled Car-Following Model in a Simple Open Lane -- 5.6 Concluding Remarks and Literature Review -- References -- 6 Miscellanies -- 6.1 Introduction -- 6.2 Euclidean Space Controllability of Linear Time Delay Systems with High Gain Control -- 6.2.1 High Gain Control System: Main Notionsand Definitions -- 6.2.1.1 Initial System -- 6.2.1.2 Transformation of the System (6.1) -- 6.2.2 High Dimension Controllability Condition for the System (6.5) -- 6.2.3 Asymptotic Decomposition of the System (6.5) -- 6.2.4 Auxiliary Results -- 6.2.4.1 Linear Control Transformation in the System (6.13)-(6.14) and Some of its Properties -- 6.2.4.2 Asymptotic Decomposition of the Transformed System (6.13), (6.21) -- 6.2.4.3 Block-Wise Estimate of the Solution to the Terminal-Value Problem (6.23) -- 6.2.5 Lower Dimension Parameter-Free Controllability Condition for the System (6.5) -- 6.2.6 Example -- 6.3 Euclidean Space Controllability of Linear Systems with Nonsmall Input Delay -- 6.3.1 Original System -- 6.3.2 Discussion on the Slow-Fast Decomposition of the Original System -- 6.3.3 Auxiliary Results.
6.3.3.1 Necessary and Sufficient Controllability Conditions of the Original System.
Record Nr. UNISA-996466544903316
Glizer Valery Y.  
Cham, Switzerland : , : Birkhäuser, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Controllability of singularly perturbed linear time delay systems / / Valery Y. Glizer
Controllability of singularly perturbed linear time delay systems / / Valery Y. Glizer
Autore Glizer Valery Y.
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2021]
Descrizione fisica 1 online resource (429 pages)
Disciplina 003.74
Collana Systems and Control: Foundations and Applications
Soggetto topico Linear systems
Control theory
Sistemes lineals
Teoria de control
Soggetto genere / forma Llibres electrònics
ISBN 3-030-65951-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Introduction -- 1.1 Real-Life Models -- 1.1.1 Neurosystem Model -- 1.1.2 Sunflower Equation -- 1.1.3 Model of Nuclear Reactor Dynamics -- 1.1.4 Model of Controlled Coupled-Core Nuclear Reactor -- 1.1.5 Car-Following Model: Lane as a Simple Open Curve -- 1.1.6 Car-Following Model: Lane as a Simple Closed Curve -- References -- 2 Singularly Perturbed Linear Time Delay Systems -- 2.1 Introduction -- 2.2 Singularly Perturbed Systems with Small Delays -- 2.2.1 Original System -- 2.2.2 Slow-Fast Decomposition of the Original System -- 2.2.3 Fundamental Matrix Solution -- 2.2.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Small Delays -- 2.2.5 Example 1 -- 2.2.6 Example 2: Tracking Model with Delay -- 2.2.7 Example 3: Analysis of Neurosystem Model -- 2.2.8 Example 4: Analysis of Sunflower Equation -- 2.2.9 Proof of Lemma 2.2 -- 2.2.10 Proof of Theorem 2.1 -- 2.2.10.1 Technical Proposition -- 2.2.10.2 Main Part of the Proof -- 2.3 Singularly Perturbed Systems with Delays of Two Scales -- 2.3.1 Original System -- 2.3.2 Slow-Fast Decomposition of the Original System -- 2.3.3 Fundamental Matrix Solution -- 2.3.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Delays of Two Scales -- 2.3.5 Example 5 -- 2.3.6 Example 6: Dynamics of Nuclear Reactor -- 2.3.7 Example 7: Analysis of Car-Following Model in a Simple Closed Lane -- 2.3.8 Proof of Theorem 2.2 -- 2.4 One Class of Singularly Perturbed Systems with NonsmallDelays -- 2.4.1 Original System -- 2.4.2 Slow-Fast Decomposition of the Original System -- 2.4.3 Fundamental Matrix Solution -- 2.4.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Nonsmall Delays -- 2.4.5 Example 8 -- 2.4.6 Proof of Lemma 2.4 -- 2.4.7 Proof of Theorem 2.4 -- 2.5 Concluding Remarks and Literature Review.
References -- 3 Euclidean Space Output Controllability of Linear Systems with State Delays -- 3.1 Introduction -- 3.2 Systems with Small Delays: Main Notions and Definitions -- 3.2.1 Original System -- 3.2.2 Asymptotic Decomposition of the Original System -- 3.3 Auxiliary Results -- 3.3.1 Output Controllability of a System with State Delays: Necessary and Sufficient Conditions -- 3.3.2 Linear Control Transformation in Systems with Small Delays -- 3.3.2.1 Control Transformation in the Original System -- 3.3.2.2 Asymptotic Decomposition of the Transformed System (3.30)-(3.31), (3.3) -- 3.3.3 Hybrid Set of Riccati-Type Matrix Equations -- 3.3.4 Proof of Lemma 3.1 -- 3.3.4.1 Sufficiency -- 3.3.4.2 Necessity -- 3.3.5 Proof of Lemma 3.5 -- 3.3.6 Proof of Lemma 3.7 -- 3.3.7 Proof of Lemma 3.8 -- 3.3.8 Proof of Lemma 3.9 -- 3.4 Parameter-Free Controllability Conditions for Systems with Small Delays -- 3.4.1 Case of the Standard System (3.1)-(3.2) -- 3.4.2 Case of the Nonstandard System (3.1)-(3.2) -- 3.4.3 Proofs of Theorems 3.1, 3.2, and 3.3 -- 3.4.3.1 Proof of Theorem 3.1 -- 3.4.3.2 Proof of Theorem 3.2 -- 3.4.3.3 Proof of Theorem 3.3 -- 3.5 Special Cases of Controllability for Systems with Small Delays -- 3.5.1 Complete Euclidean Space Controllability -- 3.5.2 Controllability with Respect to x(t) -- 3.5.3 Controllability with Respect to y(t) -- 3.6 Examples: Systems with Small Delays -- 3.6.1 Example 1 -- 3.6.2 Example 2 -- 3.6.3 Example 3 -- 3.6.4 Example 4 -- 3.6.5 Example 5 -- 3.6.6 Example 6: Pursuit-Evasion Engagement with Constant Speeds of Participants -- 3.6.7 Example 7: Pursuit-Evasion Engagement with Variable Speeds of Participants -- 3.6.8 Example 8: Analysis of Controlled Coupled-Core Nuclear Reactor Model -- 3.7 Systems with Delays of Two Scales: Main Notionsand Definitions -- 3.7.1 Original System.
3.7.2 Asymptotic Decomposition of the Original System -- 3.8 Linear Control Transformation in Systems with Delays of Two Scales -- 3.8.1 Control Transformation in the Original System -- 3.8.2 Asymptotic Decomposition of the Transformed System (3.196)-(3.197), (3.187) -- 3.9 Parameter-Free Controllability Conditions for Systems with Delays of Two Scales -- 3.9.1 Case of the Validity of the Assumption (AIII) -- 3.9.2 Case of the Validity of the Assumption (AIV) -- 3.9.3 Special Cases of Controllability -- 3.9.3.1 Complete Euclidean Space Controllability -- 3.9.3.2 Controllability with Respect to x(t) -- 3.9.3.3 Controllability with Respect to y(t) -- 3.9.4 Example 9 -- 3.9.5 Example 10 -- 3.9.6 Example 11: Controlled Car-Following Model in a Simple Open Lane -- 3.10 Concluding Remarks and Literature Review -- References -- 4 Complete Euclidean Space Controllability of Linear Systems with State and Control Delays -- 4.1 Introduction -- 4.2 System with Small State Delays: Main Notions and Definitions -- 4.2.1 Original System -- 4.2.2 Asymptotic Decomposition of the Original System -- 4.3 Preliminary Results -- 4.3.1 Auxiliary System with Small State Delays and Delay-Free Control -- 4.3.2 Output Controllability of the Auxiliary System and Its Slow and Fast Subsystems: Necessary and Sufficient Conditions -- 4.3.2.1 Equivalent Forms of the Auxiliary System -- 4.3.2.2 Output Controllability of the Auxiliary System -- 4.3.2.3 Output Controllability of the Slow and Fast Subsystems Associated with the Auxiliary System -- 4.3.3 Linear Control Transformation in the Original System with Small State Delays -- 4.3.4 Stabilizability of a Parameter-Dependent System with State and Control Delays by a Memory-Less Feedback Control -- 4.3.5 Proof of Lemma 4.8 -- 4.4 Parameter-Free Controllability Conditions for Systems with Small State Delays.
4.4.1 Case of the Standard System (4.1)-(4.2) -- 4.4.2 Case of the Nonstandard System (4.1)-(4.2) -- 4.4.3 Proof of Main Lemma (Lemma 4.9) -- 4.4.3.1 Auxiliary Propositions -- 4.4.3.2 Main Part of the Proof -- 4.4.4 Alternative Approach to Controllability Analysis of the Nonstandard System (4.1)-(4.2) -- 4.4.4.1 Linear Control Transformation in the Auxiliary System (4.40)-(4.42) -- 4.4.4.2 Proof of Lemma 4.10 -- 4.4.4.3 Hybrid Set of Riccati-Type Matrix Equations -- 4.4.4.4 Parameter-Free Controllability Conditions of the Nonstandard System (4.1)-(4.2) -- 4.5 Examples: Systems with Small State and Control Delays -- 4.5.1 Example 1 -- 4.5.2 Example 2 -- 4.5.3 Example 3 -- 4.6 Systems with State Delays of Two Scales: Main Notions and Definitions -- 4.6.1 Original System -- 4.6.2 Asymptotic Decomposition of the Original System -- 4.7 Auxiliary System with State Delays of Two Scales and Delay-Free Control -- 4.7.1 Description of the Auxiliary System and Some of Its Properties -- 4.7.2 Asymptotic Decomposition of the Auxiliary System (4.180)-(4.181) -- 4.7.3 Linear Control Transformation in the Auxiliary System (4.180)-(4.181) -- 4.8 Parameter-Free Controllability Conditions for Systems with Delays of Two Scales -- 4.8.1 Case of the Validity of the Assumption (AV) -- 4.8.2 Case of the Validity of the Assumption (AVI) -- 4.8.3 Example 4 -- 4.8.4 Example 5 -- 4.8.5 Example 6: Analysis of Car-Following Model with State and Control Delays -- 4.9 Concluding Remarks and Literature Review -- References -- 5 First-Order Euclidean Space Controllability Conditions for Linear Systems with Small State Delays -- 5.1 Introduction -- 5.2 Singularly Perturbed System: Main Notions and Definitions -- 5.2.1 Original System -- 5.2.2 Asymptotic Decomposition of the Original System -- 5.3 Auxiliary Results.
5.3.1 Estimates of Solutions to Some Singularly Perturbed Linear Time Delay Matrix Differential Equations -- 5.3.2 Proof of Lemma 5.1 -- 5.3.2.1 Technical Proposition -- 5.3.2.2 Main Part of the Proof -- 5.3.3 Complete Controllability of the Original System and Its Slow Subsystem: Necessary and SufficientConditions -- 5.4 Parameter-Free Controllability Conditions -- 5.4.1 Formulation of Main Assertions -- 5.4.2 Proof of Theorem 5.1 -- 5.4.3 Proof of Lemma 5.2 -- 5.4.4 Proof of Theorem 5.2 -- 5.4.4.1 Euclidean Space Controllability of a Pure Fast System -- 5.4.4.2 Main Part of the Proof -- 5.5 Examples -- 5.5.1 Example 1 -- 5.5.2 Example 2 -- 5.5.3 Example 3 -- 5.5.4 Example 4 -- 5.5.5 Example 5 -- 5.5.6 Example 6 -- 5.5.7 Example 7: Analysis of Controlled Car-Following Model in a Simple Open Lane -- 5.6 Concluding Remarks and Literature Review -- References -- 6 Miscellanies -- 6.1 Introduction -- 6.2 Euclidean Space Controllability of Linear Time Delay Systems with High Gain Control -- 6.2.1 High Gain Control System: Main Notionsand Definitions -- 6.2.1.1 Initial System -- 6.2.1.2 Transformation of the System (6.1) -- 6.2.2 High Dimension Controllability Condition for the System (6.5) -- 6.2.3 Asymptotic Decomposition of the System (6.5) -- 6.2.4 Auxiliary Results -- 6.2.4.1 Linear Control Transformation in the System (6.13)-(6.14) and Some of its Properties -- 6.2.4.2 Asymptotic Decomposition of the Transformed System (6.13), (6.21) -- 6.2.4.3 Block-Wise Estimate of the Solution to the Terminal-Value Problem (6.23) -- 6.2.5 Lower Dimension Parameter-Free Controllability Condition for the System (6.5) -- 6.2.6 Example -- 6.3 Euclidean Space Controllability of Linear Systems with Nonsmall Input Delay -- 6.3.1 Original System -- 6.3.2 Discussion on the Slow-Fast Decomposition of the Original System -- 6.3.3 Auxiliary Results.
6.3.3.1 Necessary and Sufficient Controllability Conditions of the Original System.
Record Nr. UNINA-9910483576203321
Glizer Valery Y.  
Cham, Switzerland : , : Birkhäuser, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui