A-B processes : : Towards Energy Self-sufficient Municipal Wastewater Treatment / / Jun Gu, Yu Liu, Meng Zhang |
Autore | Gu Jun |
Pubbl/distr/stampa | [s.l.] : , : IWA Publishing, , 2019 |
Descrizione fisica | 1 online resource (1 p.) |
Soggetto topico |
Technology & Engineering / Mining
Science / Applied Sciences Science / Environmental Science Science |
ISBN | 1-78906-008-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910765735003321 |
Gu Jun | ||
[s.l.] : , : IWA Publishing, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Algal Systems for Resource Recovery from Waste and Wastewater / Piet N.L. Lens, Amitap Khandelwal |
Pubbl/distr/stampa | United Kingdom : , : IWA Publishing, , 2023 |
Descrizione fisica | 1 online resource (266 p.) |
Collana | Integrated Environmental Technology Series |
Soggetto topico |
Technology & Engineering / Mining
Science / Applied Sciences Science / Environmental Science Science |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910832983803321 |
United Kingdom : , : IWA Publishing, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Clean Technologies Toward a Sustainable Future : : Physicochemical, Biochemical and Biotechnological Approaches / / Pradeep Verma, Maulin P. Shah |
Pubbl/distr/stampa | United Kingdom : , : IWA Publishing, , 2023 |
Descrizione fisica | 1 online resource (342 p.) |
Soggetto topico |
Technology & Engineering / Mining
Science / Applied Sciences Science / Environmental Science Science |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910832983703321 |
United Kingdom : , : IWA Publishing, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
International Rainwater Catchment Systems Experiences : : Towards sustainability / / José Arturo Gleason Espíndola, César Augusto Casiano Flores |
Edizione | [1st ed.] |
Pubbl/distr/stampa | [s.l.] : , : IWA Publishing, , 2020 |
Descrizione fisica | 1 online resource (1 p.) |
Soggetto topico |
Technology & Engineering / Mining
Science / Applied Sciences Science / Environmental Science Science |
ISBN | 1-78906-058-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910477302103321 |
[s.l.] : , : IWA Publishing, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Landfill Leachate Management |
Autore | Kumar Tyagi Vinay |
Edizione | [1st ed.] |
Pubbl/distr/stampa | London : , : IWA Publishing, , 2023 |
Descrizione fisica | 1 online resource (494 pages) |
Disciplina | 628.44564 |
Altri autori (Persone) | OjhaC. S. P |
Soggetto topico |
Technology & Engineering / Mining
Science / Applied Sciences Science / Environmental Science Science |
ISBN | 1-78906-331-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910832991803321 |
Kumar Tyagi Vinay | ||
London : , : IWA Publishing, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Membrane Based Point-of-Use Drinking Water Treatment Systems / Pawan Kumar Labhasetwar, Anshul Yadav |
Autore | Labhasetwar Pawan Kumar |
Edizione | [1st ed.] |
Pubbl/distr/stampa | United Kingdom : , : IWA Publishing, , 2023 |
Descrizione fisica | 1 online resource (229 p.) |
Disciplina | 628.1674 |
Soggetto topico |
Technology & Engineering / Mining
Science / Applied Sciences Science / Environmental Science Science |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Cover -- Contents -- About the authors -- Foreword -- Preface -- Acknowledgements -- Disclaimer -- Chapter 1 : Water sources and quality parameters -- 1.1 Introduction -- 1.2 Sources of Water -- 1.2.1 Surface water -- 1.2.2 Groundwater -- 1.3 Drinking Water Quality Parameters -- 1.3.1 Physical parameters -- 1.3.1.1 pH -- 1.3.1.2 Colour, taste and odour -- 1.3.1.3 Turbidity/total suspended solids -- 1.3.1.4 Total dissolved solids -- 1.3.1.5 Dissolved gases -- 1.3.2 Chemical parameters -- 1.3.2.1 Hardness -- 1.3.2.2 Major ions -- 1.3.2.3 Heavy metals -- 1.3.3 Microbiological -- 1.3.3.1 Bacteria -- 1.3.3.2 Virus -- 1.3.3.3 Protozoa -- 1.3.3.4 Helminths -- 1.3.3.5 Phytoplankton -- 1.3.4 Emerging contaminants in water -- 1.3.4.1 Pesticides -- 1.3.4.2 Pharmaceutical and personal care products -- 1.3.4.3 Radioactive elements -- 1.4 Summary -- Chapter 2 : Water supply systems and the need for point-of-use treatment systems -- 2.1 Introduction -- 2.2 Water Supply Systems -- 2.2.1 Catchment -- 2.2.2 Source -- 2.2.3 Treatment plant -- 2.2.4 Distribution network -- 2.2.5 Households -- 2.3 Major Contaminants in Water Sources -- 2.4 Treatment for Surface Water Sources -- 2.4.1 Aerator -- 2.4.2 Pre-sedimentation -- 2.4.3 Coagulation, flocculation, and sedimentation -- 2.4.3.1 Coagulation -- 2.4.3.2 Flocculation -- 2.4.3.3 Sedimentation -- 2.4.4 Filtration -- 2.4.4.1 Filter materials -- 2.4.4.2 Types of filters -- 2.5 Treatment for Groundwater -- 2.5.1 Pre-filtration (optional) -- 2.5.2 Electrocoagulation -- 2.5.3 Adsorption -- 2.5.4 Membrane filtration -- 2.5.5 Disinfection -- 2.5.5.1 Chlorination -- 2.5.5.2 Ultraviolet disinfection.
2.5.5.3 Ozonation -- 2.5.5.4 Copper-silver ionisation -- 2.5.6 Solar disinfection -- 2.6 Degradation of Water Quality at the Source -- 2.7 Deterioration of Water Quality from Source and Centralised Water Treatment Plants to Households -- 2.7.1 Need for point-of-use water treatment systems -- 2.7.2 Summary -- Chapter 3 : Point-of-use water treatment systems -- 3.1 Introduction -- 3.2 Point-of-Entry and Point-of-Use Water Treatment Systems -- 3.2.1 Point-of-Entry water treatment systems -- 3.2.2 Point-of-use water treatment systems -- 3.3 Classification of Point-of-use Water Treatment Systems -- 3.4 Components of Membrane-Based POINT-OF-USE Water Treatment Systems -- 3.4.1 Storage tank -- 3.4.2 Pre-treatment -- 3.4.2.1 Media filters -- 3.4.2.2 Cartridge filters -- 3.4.2.3 Activated carbon filters -- 3.4.3 Membranes -- 3.4.3.1 Transport mechanism -- 3.4.3.2 Structure -- 3.4.3.3 Geometry -- 3.4.3.4 Nature -- 3.4.3.5 Pore size -- 3.4.4 Post-treatment -- 3.4.4.1 Ultraviolet disinfection -- 3.4.4.2 Remineralisation -- 3.4.4.3 Total dissolved solids adjustment/controller -- 3.4.4.4 Sensors -- 3.5 Limitations of POINT-OF-USE Water Treatment Systems -- 3.6 Smart and Futuristic Membrane-Based POINT-OF-USE Water Treatment Systems -- 3.7 Summary -- Chapter 4 : Design of membrane-based point-of-use water treatment systems -- 4.1 Introduction -- 4.2 Design Parameters for Membrane-Based point-of-use Water Treatment System -- 4.2.1 Capacity -- 4.2.1.1 Case study 1 -- 4.2.1.2 Case study 2 -- 4.2.2 Pre-treatment system -- 4.2.2.1 Dimension of activated carbon filter -- 4.2.3 Membranes (size, length, area, recovery, rejection) -- 4.2.3.1 Membrane area calculation -- 4.2.3.2 Membrane length calculation. 4.2.3.3 Per cent rejection -- 4.2.3.4 Per cent recovery -- 4.2.4 Membrane module -- 4.2.4.1 Feed spacer -- 4.2.4.2 Permeate spacer -- 4.2.4.3 Permeate tube -- 4.2.4.4 Endcap -- 4.2.5 Post-treatment -- 4.2.5.1 Chlorination -- 4.2.5.2 Ultraviolet disinfection -- 4.2.5.3 Total dissolved solids adjustment/controller (bypass, adding chemicals, etc.) -- 4.3 Design of Multi-Stage Membrane-Based POINT-OF-USE Water Treatment System -- 4.4 summary -- Chapter 5 : Modelling membrane operations in membrane-based point-of-use water treatment systems -- 5.1 Introduction -- 5.2 General Principles of Modelling -- 5.3 Transport Models Used in Modelling Membrane Processes -- 5.4 Modelling reverse osmosis Process -- 5.4.1 Modelling transport phenomena in reverse osmosis membrane -- 5.4.2 Membrane reliability modelling -- 5.4.3 Modelling transport and fouling mechanisms -- 5.4.4 Modelling concentration polarisation -- 5.4.5 Energy consumption -- 5.4.5.1 Specific energy consumption -- 5.4.5.2 Energy efficiency -- 5.5 Case studies -- 5.5.1 Modelling velocity field and concentration polarisation -- 5.5.1.1 Velocity field -- 5.5.1.2 Concentration polarisation -- 5.5.2 Effect of spacer filament geometry on velocity field and concentration polarisation -- 5.5.2.1 Velocity field -- 5.5.2.2 Concentration polarisation -- 5.6 Summary -- Chapter 6 : Operation and maintenance of membrane-based point-of-use water treatment systems -- 6.1 Introduction -- 6.2 Operation and Maintenance Related Challenges of point-of-use Water Treatment Systems -- 6.2.1 Clogging of the pre-treatment unit -- 6.2.2 Clogging/fouling of membranes -- 6.2.2.1 Types of fouling -- 6.2.3 Failure of post-treatment -- 6.2.4 Non-functional sensors. 6.3 Preventive Maintenance of Membrane-Based POINT-OF-USE Water Treatment Systems -- 6.3.1 Maintenance of pre-treatment unit -- 6.3.2 Maintenance of membrane unit -- 6.3.2.1 Membrane unit cleaning -- 6.3.2.2 Anti-foulant chemical design -- 6.3.3 Maintenance of post-treatment -- 6.4 Troubleshooting of POINT-OF-USE Water Treatment System -- 6.4.1 Consistently replace reverse osmosis pre-filters -- 6.4.2 Test hardness of feed water -- 6.4.3 Test pressure of feed water -- 6.4.4 Inspect feed water temperature -- 6.4.5 Test total dissolved solids of product water -- 6.4.6 Test reject water -- 6.4.7 Replacement of membranes -- 6.4.8 Routine cleaning and disinfection -- 6.5 Summary -- Chapter 7 : Techno-economic analysis of membrane-based point-of-use water treatment systems -- 7.1 Introduction -- 7.2 Cost-Effectiveness of Centralised Water Treatment Plants -- 7.3 Cost-Effectiveness of point-of-use Water Treatment Systems -- 7.4 P o U Water Treatment Systems Market Dynamics -- 7.4.1 Driver: increasing water contamination -- 7.4.2 Restraint: high installation, equipment and operational cost -- 7.4.3 Opportunity: scarcity of clean water in developing and underdeveloped countries -- 7.4.4 Challenge: ageing infrastructure -- 7.4.5 Counter-top units are the widely preferred device of point-of-use water treatment systems -- 7.4.6 Increased demand from the residential sector -- 7.4.7 Reverse osmosis is the most preferred point-of-use water treatment technology -- 7.5 Country-Wise Costs of point-of-use Water Treatment Systems -- 7.6 Economic Analysis of point-of-use Water Treatment Systems -- 7.6.1 Capital investment -- 7.6.2 Cost of membrane-based point-of-use water treatment systems. 7.7 Global Market Size of Membrane-Based point-of-use Water Treatment Systems -- 7.8 Cost Details of Membrane-Based point-of-use Water Treatment Systems: A Case Study From India -- 7.9 Summary -- Chapter 8 : Certification and evaluation of membrane-based point-of-use water treatment systems -- 8.1 Introduction -- 8.2 Standards for Evaluation/Certification from International Agencies -- 8.2.1 World Health Organisation -- 8.2.2 National Science Foundation/American National Standards Institute -- 8.2.3 National Science Foundation-International -- 8.2.4 Water Quality India Association -- 8.3 Country-Specific Standards for Evaluation/Certification -- 8.3.1 Brazil -- 8.3.2 Canada -- 8.3.3 China -- 8.3.4 European Union -- 8.3.5 India -- 8.3.6 Mexico -- 8.3.7 The United States of America -- 8.4 Certification/Evaluation Process -- 8.4.1 Certification process description -- 8.4.1.1 Process development -- 8.4.1.2 Technical Review Board -- 8.4.2 Certification process -- 8.4.2.1 Application -- 8.4.2.2 Document review, preliminary audit, and finalisation of activities -- 8.4.2.3 Contract -- 8.4.2.4 Evaluation -- 8.4.3 Point-of-use water treatment system testing schedules -- 8.4.3.1 Testing schedule considerations -- 8.4.3.2 Communication to the manufacturer -- 8.4.3.3 Complaints and appeals -- 8.4.3.4 Surveillance -- 8.5 Summary -- References -- Index. |
Record Nr. | UNINA-9910831805903321 |
Labhasetwar Pawan Kumar | ||
United Kingdom : , : IWA Publishing, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanobiohybrids for Advanced Wastewater Treatment and Energy Recovery / Piet N.L. Lens, Priyanka Uddandarao |
Pubbl/distr/stampa | United Kingdom : , : IWA Publishing, , 2023 |
Descrizione fisica | 1 online resource (244 p.) |
Collana | Integrated Environmental Technology Series |
Soggetto topico |
Technology & Engineering / Mining
Science / Applied Sciences Science / Environmental Science Science |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910831804103321 |
United Kingdom : , : IWA Publishing, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Seawater Reverse Osmosis (SWRO) Desalination : : Energy consumption in plants, advanced low-energy technologies, and future developments for improving energy efficiency / / Seungkwan Hong, Kiho Park, Jungbin Kim, Abayomi Babatunde Alayande, Youngjin Kim |
Pubbl/distr/stampa | United Kingdom : , : IWA Publishing, , 2023 |
Descrizione fisica | 1 online resource (168 p.) |
Soggetto topico |
Technology & Engineering / Mining
Science / Applied Sciences Science / Environmental Science Science |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910832986103321 |
United Kingdom : , : IWA Publishing, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Technological Solutions for Water Sustainability : Challenges and Prospects - Towards a Water-Secure India |
Autore | Philip Ligy |
Edizione | [First edition.] |
Pubbl/distr/stampa | London : , : IWA Publishing, , 2023 |
Descrizione fisica | 1 online resource (322 pages) |
Altri autori (Persone) |
PradeepT
Murty BhallamudiS |
Soggetto topico |
Technology & Engineering / Mining
Science / Applied Sciences Science / Environmental Science Science |
ISBN | 1-78906-371-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Cover -- Contents -- Preface -- Acknowledgements -- Section 1: The Status and Challenges for Sustainable Water Management in India -- Introduction -- Chapter 1: Sustainable management of water -- 1.1 INTRODUCTION -- 1.2 THE IMPENDING WATER CRISIS -- 1.3 THE GAP BETWEEN AVAILABILITY AND NEED FOR WATER IN INDIA -- 1.4 SUSTAINABLE WATER MANAGEMENT -- 1.4.1 Water sustainability -- 1.4.2 Sustainability indices -- 1.4.3 Urban water sustainability -- 1.4.4 Rural water sustainability -- 1.5 CHALLENGES TO ACHIEVING SUSTAINABILITY -- 1.5.1 Climate change -- 1.5.2 Urbanization -- 1.5.3 Other challenges -- 1.6 THE WAY FORWARD FOR ACHIEVING SUSTAINABILITY -- 1.6.1 Circular economy -- 1.6.2 Integral management for increased resilience -- 1.6.3 Adaptive planning -- 1.7 CONCLUSIONS -- REFERENCES -- Chapter 2: Water quality status and challenges in India and Nepal -- 2.1 INTRODUCTION -- 2.2 CURRENT AND FUTURE WATER QUALITY CHALLENGES IN THE INDIAN AND NEPALESE WATER SECTORS -- 2.2.1 Water pollution -- 2.2.2 Overuse and groundwater depletion -- 2.2.3 Intermittent supply and aged water infrastructure -- 2.2.4 Lack of wastewater treatment facilities -- 2.2.5 Climate change -- 2.2.6 Transboundary water issues -- 2.3 WATER QUALITY CRITERIA AND REGULATIONS -- 2.4 PUBLIC HEALTH AND ENVIRONMENTAL IMPACTS OF WATER POLLUTION -- 2.5 SOCIO-ECONOMIC IMPLICATION OF WATER POLLUTION -- 2.6 CHALLENGES IN WATER RECLAMATION AND REUSE -- 2.7 FUTURE PERSPECTIVE AND THE WAY FORWARD -- 2.8 SUMMARY -- REFERENCES -- Chapter 3: Domestic and industrial wastewater treatment: current status and challenges in India -- 3.1 INTRODUCTION -- 3.2 DOMESTIC AND INDUSTRIAL WASTEWATER POLLUTANTS -- 3.3 CURRENT STATUS OF WASTEWATER TREATMENT IN INDIA -- 3.4 REGULATIONS AND POLICIES ON WASTEWATER MANAGEMENT -- 3.5 SUSTAINABLE WASTEWATER MANAGEMENT -- 3.5.1 Life cycle analysis.
3.5.2 Circular economy -- 3.5.3 Zero liquid discharge -- 3.5.3.1 Chemplast Sanmar Limited -- 3.5.4 Pharmez Special Economic Zone (SEZ), Ahmedabad -- 3.6 CASE STUDIES ON WASTEWATER REUSE -- 3.6.1 Tertiary treatment plants to meet industrial water demand in India -- 3.6.1.1 Bangalore Water Supply and Sewerage Board (BWSSB) -- 3.6.1.2 Chennai Metropolitan Water Supply and Sewerage Board (CMWSSB) -- 3.6.1.3 Surat Municipal Corporation (SMC) -- 3.6.1.4 Bhandenwadi STP, Nagpur -- 3.6.1.5 Kodangaiyur STP, Tamil Nadu -- 3.6.2 Examples of Wastewater Reuse from the Global South -- 3.6.2.1 South Africa -- 3.6.2.2 Egypt -- 3.6.2.3 Mexico -- 3.6.2.4 Peru -- 3.7 THE WAY FORWARD -- REFERENCES -- Chapter 4: Urban water infrastructure: current status and challenges in India -- 4.1 INTRODUCTION -- 4.2 HISTORY OF WATER INFRASTRUCTURE IN INDIA -- 4.2.1 Water supply systems -- 4.2.2 Sewerage systems -- 4.2.3 Stormwater drainage systems -- 4.3 CURRENT STATUS AND CHALLENGES WITH WATER INFRASTRUCTURE -- 4.3.1 Water supply systems -- 4.3.2 Sewerage systems -- 4.3.3 Stormwater drainage systems -- 4.4 THE WAY FORWARD -- 4.4.1 Water circularity -- 4.4.2 Leakage reduction -- 4.4.3 Sustainable urban drainage systems -- 4.4.4 Integrated planning -- 4.4.5 Others -- 4.5 SUMMARY -- REFERENCES -- Chapter 5: Designing water policy in India as adaptive governance for sustainability -- 5.1 INTRODUCTION -- 5.2 BACKGROUND -- 5.3 CURRENT STATUS OF WATER GOVERNANCE IN INDIA -- 5.4 ADAPTIVE GOVERNANCE: FRAGMENTATION DOES NOT IMPLY BREAKDOWN -- 5.5 PATHWAYS TO SUSTAINABILITY -- REFERENCES -- Section 2: New-Age Material for Water and Wastewater Treatment -- Introduction -- Chapter 6: Function-led design of porous organic materials for water treatment -- 6.1 INTRODUCTION -- 6.2 CLASSIFICATION OF POROUS ORGANIC MATERIALS -- 6.3 DESIGN AND FABRICATION OF POPS. 6.4 ADSORPTION-BASED WATER PURIFICATION -- 6.5 NANOFILTRATION-BASED WATER PURIFICATION -- 6.6 CONCLUSION -- REFERENCES -- Chapter 7: New materials for arsenic and fluoride removal -- 7.1 INTRODUCTION -- 7.1.1 Arsenic and fluoride contamination -- 7.1.2 The current scenario in India -- 7.2 MATERIALS FOR ARSENIC AND FLUORIDE REMOVAL -- 7.2.1 Metal oxides and hydroxides -- 7.2.2 Biopolymers and biominerals -- 7.2.3 Biological origin -- 7.2.4 Carbon based materials -- 7.2.5 Biochar -- 7.2.6 Metal organic frameworks -- 7.2.7 Other technologies -- 7.3 EVALUATING SUSTAINABILITY INDICES OF TECHNIQUES -- 7.4 CONCLUSION -- REFERENCES -- Chapter 8: Emerging carbon-based nanocomposites for the removal of hazardous materials -- 8.1 INTRODUCTION -- 8.2 SYNTHESIS OF CARBON-BASED NANOMATERIALS -- 8.2.1 Carbon nanotubes -- 8.2.2 Graphene -- 8.2.3 Carbon nanofibres -- 8.3 DEVELOPMENT OF CARBON-BASED NANOCOMPOSITES FOR WATER TREATMENT -- 8.4 REMOVAL OF HAZARDOUS MATERIALS USING CARBON-BASED NANOCOMPOSITES -- 8.4.1 Adsorption using carbon-based nanocomposites -- 8.4.2 Catalysis using carbon-based nanocomposites -- 8.5 FUTURE PERSPECTIVE OF CARBON-BASED NANOCOMPOSITES FOR ENVIRONMENTAL APPLICATIONS -- 8.6 CONCLUSION -- REFERENCES -- Chapter 9: Bio-polymer-reinforced nanocomposites for water and wastewater treatment: applications and future prospects -- 9.1 INTRODUCTION -- 9.2 BIOPOLYMERS AND BIOPOLYMER NANOCOMPOSITES -- 9.3 SYNTHESIS OF BIOPOLYMER NANOCOMPOSITE -- 9.4 APPLICATIONS OF BPNCS FOR WATER AND WASTEWATER REMEDIATION -- 9.4.1 BPNCs as adsorbent -- 9.4.2 BPNCs as photocatalysts -- 9.4.3 BPNCs in disinfection of water -- 9.4.4 Recycling and disposal of spent materials -- 9.5 CONCLUSION, CHALLENGES, AND THE WAY FORWARD -- REFERENCES -- Chapter 10: A holistic approach to assess the toxic behaviour of emerging nanomaterials in aquatic system -- 10.1 INTRODUCTION. 10.2 POTENTIAL TOXICITY OF EMERGING NANOMATERIALS IN AQUATIC ECOSYSTEMS -- 10.2.1 Nanomaterials -- 10.2.2 Graphene-based materials -- 10.2.3 Metal-organic-frameworks -- 10.2.4 Other nanocomposites -- 10.3 FATE AND TOXIC EFFECT OF NANOMATERIALS IN AQUATIC SYSTEMS -- 10.3.1 Plankton -- 10.3.2 Crustaceans and fish -- 10.3.3 Amphibians -- 10.4 METHODS OF TOXICITY EVALUATION IN AQUATIC ORGANISMS -- 10.4.1 Behavioural studies -- 10.4.2 Physiological studies -- 10.4.3 Reproduction studies -- 10.4.4 Mortality studies -- 10.4.5 Transgenerational studies -- 10.4.6 Bioaccumulation studies -- 10.4.7 Exposure to humans through the aquatic environment -- 10.5 TOXICITY ASSESSMENT OF NANOMATERIALS -- 10.5.1 In vitro toxicity assessment -- 10.5.2 In-vivo toxicity assessment -- 10.5.2.1 Exposure pathways -- 10.5.2.2 Blood contact -- 10.5.2.3 Immune system response -- 10.5.2.4 Biodistribution and toxicokinetics -- 10.6 FACTORS CONTRIBUTING TOWARDS TOXICITY ENHANCEMENT -- 10.6.1 Dose-dependent toxicity -- 10.6.2 Size-dependent toxicity -- 10.6.3 Surface coating and functionalization-dependent toxicity -- 10.7 GREENER ALTERNATIVES TOWARDS REDUCTION OF NON-TARGET TOXICITY -- 10.8 CHALLENGES, FUTURE OUTLOOK, AND CONCLUSION -- REFERENCES -- Section 3: New Technologies for Water and Wastewater Treatment -- Introduction -- Chapter 11: New technologies for drinking water -- 11.1 INTRODUCTION -- 11.2 ADSORPTION-BASED PURIFICATION TECHNOLOGIES -- 11.3 MEMBRANES -- 11.4 CAPACITIVE DEIONIZATION -- 11.5 ATMOSPHERIC WATER HARVESTING -- 11.6 EMERGING TECHNOLOGIES FOR WATER PURIFICATION -- REFERENCES -- Chapter 12: Pulsed power technology for water and wastewater treatment -- 12.1 INTRODUCTION -- 12.2 PULSED POWER TECHNOLOGY -- 12.2.1 Chemical and physical effects of PPT -- 12.2.1.1 Oxidative species -- 12.2.1.2 Reductive species -- 12.2.1.3 Physical effects. 12.2.2 Mechanisms of PPT-based water treatment -- 12.2.3 Comparison of PPT with conventional AOPs -- 12.3 FACTORS AFFECTING THE PERFORMANCE OF PPT -- 12.3.1 Input energy -- 12.3.2 Reactor configuration -- 12.3.3 Solution pH -- 12.3.4 Gas in which discharge occurs -- 12.3.5 Solution conductivity -- 12.4 APPLICATIONS OF PPT FOR WATER AND WASTEWATER TREATMENT -- 12.4.1 Organic pollutants -- 12.4.2 Emerging contaminants -- 12.4.3 Disinfection -- 12.5 COMPARISON OF PPT'S ENERGY EFFICIENCY WITH THAT OF OTHER TECHNOLOGIES -- 12.6 IMPACTS OF PPT ON OTHER WATER QUALITY PARAMETERS -- 12.7 INTEGRATION OF PPT WITH OTHER TREATMENT TECHNOLOGIES -- 12.8 CHALLENGES FOR THE IMPLEMENTATION OF PLASMA-BASED WATER TECHNOLOGIES -- 12.9 SUMMARY -- REFERENCES -- Chapter 13: Application of engineered natural treatment systems for pollution abatement -- 13.1 INTRODUCTION -- 13.2 PHARMACEUTICALS AND PERSONAL CARE PRODUCTS -- 13.2.1 Sources and categories of PPCPs -- 13.2.2 Occurrence of PPCPs in various environmental matrices -- 13.2.3 Adverse effects of PPCPs -- 13.3 ENGINEERED NATURAL TREATMENT SYSTEMS -- 13.3.1 Constructed wetland as an ENTS -- 13.3.2 Types and components of constructed wetlands -- 13.3.3 Removal of organics, nutrients, and pathogens -- 13.3.4 Removal of heavy metals -- 13.4 FATE OF PPCPS IN ENTS AND THEIR REMOVAL MECHANISMS -- 13.4.1 Attenuation of PPCPs in CWs -- 13.4.2 The contributions of different removal mechanisms -- 13.5 FACTORS AFFECTING THE PERFORMANCE OF ENTS -- 13.5.1 Flow configurations -- 13.5.2 Substrate materials -- 13.5.3 Plant species -- 13.5.4 Operating conditions -- 13.6 CASE STUDIES FOR THE APPLICATION OF ENTS -- 13.6.1 Decentralized rural wastewater treatment using constructed wetlands -- 13.6.2 In-situ remediation of polluted lake using floating treatment wetland -- 13.7 SUMMARY -- REFERENCES. Chapter 14: Carbon-based filters for water and wastewater treatment. |
Record Nr. | UNINA-9910832998603321 |
Philip Ligy | ||
London : , : IWA Publishing, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|