Carbon dots as theranostic agents / / Madhuri Sharon and Ashmi Mewada |
Autore | Sharon Madhuri |
Pubbl/distr/stampa | Hoboken, NJ : , : Scrivener Publishing Wiley, , 2018 |
Descrizione fisica | 1 online resource (221 pages) |
Disciplina | 615.1/9 |
Collana | Advances in nanotechnology & applications |
Soggetto topico |
Nanoparticles
Nanostructured materials Carbon TECHNOLOGY & ENGINEERING / Material Science |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-46043-3
1-119-46045-X |
Classificazione | TEC021000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910555135403321 |
Sharon Madhuri
![]() |
||
Hoboken, NJ : , : Scrivener Publishing Wiley, , 2018 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Carbon dots as theranostic agents / / Madhuri Sharon and Ashmi Mewada |
Autore | Sharon Madhuri |
Pubbl/distr/stampa | Hoboken, NJ : , : Scrivener Publishing Wiley, , 2018 |
Descrizione fisica | 1 online resource (221 pages) |
Disciplina | 615.1/9 |
Collana | Advances in nanotechnology & applications |
Soggetto topico |
Nanoparticles
Nanostructured materials Carbon TECHNOLOGY & ENGINEERING / Material Science |
ISBN |
1-119-46043-3
1-119-46045-X |
Classificazione | TEC021000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910830419103321 |
Sharon Madhuri
![]() |
||
Hoboken, NJ : , : Scrivener Publishing Wiley, , 2018 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
An introduction to graphene and carbon nanotubes / / by John E. Proctor, Daniel Melendrez Armada and Aravind Vijayaraghavan |
Autore | Proctor John Edward <1981 or 1982, > |
Edizione | [First edition.] |
Pubbl/distr/stampa | Boca Raton, FL : , : CRC Press, an imprint of Taylor and Francis, , 2017 |
Descrizione fisica | 1 online resource (302 pages) : 120 illustrations |
Disciplina | 620.1/15 |
Soggetto topico |
Carbon nanotubes
Graphene Nanostructured materials SCIENCE / Chemistry / General TECHNOLOGY & ENGINEERING / Material Science |
ISBN |
1-315-36819-6
1-315-35123-4 1-4987-5181-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Useful Equations -- 1 Introduction -- 1.1 Graphite -- 1.2 Carbon fibres -- 1.3 Buckminsterfullerene (C[sub(60)]) and multi-walled carbon nanotubes (MWCNTs) -- 1.4 Single-walled carbon nanotubes (SWCNTs) -- 1.5 Graphene -- References -- 2 Interatomic Bonding in Graphene and Diamond -- 2.1 An introduction to molecular orbital theory -- 2.2 Orbital hybridization in carbon and the C�C interatomic bond -- 2.3 Lengths and bond energies of sp, sp[sup(2)] and sp[sup(3)] bonds -- 2.4 What if the bonding geometry does not allow pure sp, sp[sup(2)] or sp[sup(3)] hybridization? -- References -- 3 Electronic Dispersion Relation of Graphene -- 3.1 Some introductory remarks on the application of tight-binding theory to graphene -- 3.2 Application of molecular orbital theory to the p-electrons in graphene -- 3.3 Simple tight-binding calculation for p-electrons in graphene -- 3.4 Valence and conduction bands in graphene -- 3.5 Massless Dirac fermions in graphene -- 3.6 How important is the group velocity at the Fermi level? -- 3.7 Vanishing density of states close to the K point in graphene -- 3.8 Cyclotron motion of electrons in graphene -- References -- 4 Advanced Considerations on the Electronic Dispersion Relation of Graphene -- 4.1 The Hall effect -- 4.2 Quantum Hall effect in graphene -- References -- 5 Electronic Dispersion Relation of Single-Walled Carbon Nanotubes (SWCNTs) -- 5.1 Some introductory notes -- 5.2 Primitive unit cell and first Brillouin zone of SWCNTs -- 5.3 Prediction of the semiconducting or metallic nature of individual SWCNTs -- 5.4 Energy dispersion relation of armchair SWCNTs -- 5.5 Energy dispersion relation of zigzag SWCNTs -- 5.6 Electronic density of states in SWCNTs -- 5.7 Excitons in SWCNTs -- 5.8 Experimental verification of SWCNT dispersion relation -- 5.9 Curvature effects in SWCNTs -- References -- 6 Phonons in Graphene and Single-Walled Carbon Nanotubes (SWCNTs) -- 6.1 Why study the phonons? -- 6.2 Theory -- 6.3 Experiment -- 6.4 Phonons in SWCNTs -- References -- 7 Raman Spectra of Graphene and Single-Walled Carbon Nanotubes (SWCNTs) -- 7.1 Overview -- 7.2 Principal peaks in the Raman spectrum of pristine mono-layer graphene -- 7.3 Raman spectra of pristine bi-layer and few-layer graphene, and pristine Bernal stacked graphite -- 7.4 Raman spectra of pristine graphite with different stacking arrangements -- 7.5 Characterization of pristine graphene samples using Raman spectroscopy -- 7.6 Raman spectrum of diamond -- 7.7 Raman spectra of defective graphene and graphite -- 7.8 Raman spectra of SWCNTs -- References -- 8 Diffraction and Microscopy Experiments on Graphene and Carbon Nanotubes -- 8.1 Laue treatment of diffraction -- 8.2 Reciprocal lattice and structure factor of graphene.
8.3 Electron diffraction on graphene: Evidence for microscopic rippling of the graphene sheet -- 8.4 Atomic resolution transmission electron microscopy (TEM) and scanning probe microscopy of graphene -- 8.5 Atomic resolution transmission electron microscopy (TEM) and scanning probe microscopy of carbon nanotubes -- 8.6 X-ray diffraction studies of graphene and SWCNTs -- References -- 9 Preparation and Processing of Graphene and SWCNTs -- 9.1 Motivation -- 9.2 Graphitization of carbon materials via heat treatment -- 9.3 Preparation of graphene -- 9.4 Growth and processing of SWCNTs -- References -- 10 Thermal and Mechanical Properties of Graphene and SWCNTs -- 10.1 Thermal expansion coefficient of graphene -- 10.2 Thermodynamic stability of graphene -- 10.3 Mechanical properties of graphene -- 10.4 Mechanical properties of SWCNTs -- 10.5 High-pressure behaviour of graphene, SWCNTs and fullerenes in the context of the carbon phase diagram -- References -- 11 Chemical Modification of Graphene -- 11.1 Overview -- 11.2 Hydrogenation of graphene -- 11.3 Halogenation of graphene -- 11.4 Graphene oxide -- References -- 12 Current Topics in Graphene and Carbon Nanotube Research -- 12.1 Overview of the potential applications of carbon nanotubes and graphene -- 12.2 Electronics applications of carbon nanotubes and graphene -- 12.3 Carbon nanotube and graphene composites -- 12.4 Biomedical applications of carbon nanotubes and graphene -- 12.5 Carbon nanotubes and graphene for energy storage -- 12.6 Conclusion -- References -- Appendix A: Raman Scattering in Non-Molecular Solids -- Appendix B: Additional Notes on the Application of Tight-Binding Theory to Graphene -- Appendix C: Fourier Transform Treatment of Diffraction, Scherrer Broadening -- Bibliography -- Index. |
Record Nr. | UNINA-9910163880503321 |
Proctor John Edward <1981 or 1982, >
![]() |
||
Boca Raton, FL : , : CRC Press, an imprint of Taylor and Francis, , 2017 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanoscale Multifunctional Materials [[electronic resource] ] : Science & Applications |
Autore | Mukhopadhyay S |
Pubbl/distr/stampa | Hoboken, : Wiley, 2011 |
Descrizione fisica | 1 online resource (428 p.) |
Disciplina | 620.115 |
Soggetto topico |
Diffusion
Nanostructured materials Porous materials TECHNOLOGY & ENGINEERING / Material Science Technology and engineering -- Material science Chemical & Materials Engineering Engineering & Applied Sciences Materials Science |
Soggetto genere / forma | Electronic books. |
ISBN |
1-283-25793-9
9786613257932 1-118-11405-1 1-118-11406-X 1-118-11403-5 |
Classificazione | TEC021000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
NANOSCALEMULTIFUNCTIONALMATERIALS; CONTENTS; CONTRIBUTORS; PREFACE; SECTION I OVERVIEW; 1 Key Attributes of Nanoscale Materials and Special Functionalities Emerging From Them; 2 Societal Impact and Future Trends in Nanomaterials; SECTION II PROCESSING AND ANALYSIS; 3 Fabrication Techniques for Growing Carbon Nanotubes; 4 Nanoparticles and Polymer Nanocomposites; 5 Laser-Assisted Fabrication Techniques; 6 Experimental Characterization of Nanomaterials; 7 Modeling and Simulation of Nanoscale Materials; SECTION III APPLICATIONS; 8 Nanomaterials for Alternative Energy
9 Enhancement of Through-Thickness Thermal Conductivity in Adhesively Bonded Joints Using Aligned Carbon Nanotubes10 Use of Metal Nanoparticles in Environmental Cleanup; 11 Use of Carbon Nanotubes in Water Treatment; 12 Peptide Nanotubes in Biomedical and Environmental Applications; INDEX |
Record Nr. | UNINA-9910139594103321 |
Mukhopadhyay S
![]() |
||
Hoboken, : Wiley, 2011 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanoscale Multifunctional Materials : Science & Applications |
Autore | Mukhopadhyay S |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, : Wiley, 2011 |
Descrizione fisica | 1 online resource (428 p.) |
Disciplina | 620.115 |
Soggetto topico |
Diffusion
Nanostructured materials Porous materials TECHNOLOGY & ENGINEERING / Material Science Technology and engineering -- Material science Chemical & Materials Engineering Engineering & Applied Sciences Materials Science |
ISBN |
1-283-25793-9
9786613257932 1-118-11405-1 1-118-11406-X 1-118-11403-5 |
Classificazione | TEC021000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
NANOSCALEMULTIFUNCTIONALMATERIALS; CONTENTS; CONTRIBUTORS; PREFACE; SECTION I OVERVIEW; 1 Key Attributes of Nanoscale Materials and Special Functionalities Emerging From Them; 2 Societal Impact and Future Trends in Nanomaterials; SECTION II PROCESSING AND ANALYSIS; 3 Fabrication Techniques for Growing Carbon Nanotubes; 4 Nanoparticles and Polymer Nanocomposites; 5 Laser-Assisted Fabrication Techniques; 6 Experimental Characterization of Nanomaterials; 7 Modeling and Simulation of Nanoscale Materials; SECTION III APPLICATIONS; 8 Nanomaterials for Alternative Energy
9 Enhancement of Through-Thickness Thermal Conductivity in Adhesively Bonded Joints Using Aligned Carbon Nanotubes10 Use of Metal Nanoparticles in Environmental Cleanup; 11 Use of Carbon Nanotubes in Water Treatment; 12 Peptide Nanotubes in Biomedical and Environmental Applications; INDEX |
Record Nr. | UNINA-9910820210303321 |
Mukhopadhyay S
![]() |
||
Hoboken, : Wiley, 2011 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Phosphorus(III) ligands in homogeneous catalysis [[electronic resource] ] : design and synthesis / / edited by Paul Kamer & Piet W.N.M. van Leeuwen |
Autore | Kamer Paul |
Pubbl/distr/stampa | Chichester, West Sussex, United Kingdom, : John Wiley & Sons, Ltd., 2012 |
Descrizione fisica | 1 online resource (567 p.) |
Disciplina |
541.2242
546.712595 546/.712595 |
Altri autori (Persone) | LeeuwenP. W. N. M. van (Piet W. N. M.) |
Soggetto topico |
Phosphorus compounds
Ligands Catalysis TECHNOLOGY & ENGINEERING / Material Science |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-78471-7
9786613695109 1-118-29970-1 1-118-29971-X 1-118-29973-6 |
Classificazione | TEC021000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Phosphorus( III ) Ligands in Homogeneous Catalysis: Design and Synthesis; Contents; List of Contributors; Preface; 1 Phosphorus Ligand Effects in Homogeneous Catalysis and Rational Catalyst Design; 1.1 Introduction; 1.2 Properties of phosphorus ligands; 1.2.1 Electronic ligand parameters; 1.2.2 Steric ligand parameters; 1.2.3 Bite angle effects; 1.2.4 Molecular electrostatic potential (MESP) approach; 1.3 Asymmetric ligands; 1.4 Rational ligand design in nickel-catalysed hydrocyanation; 1.4.1 Introduction; 1.4.2 Mechanistic insights; 1.4.3 Rational design; 1.5 Conclusions; References
2 Chiral Phosphines and Diphosphines2.1 Introduction; 2.1.1 Early developments; 2.2 Chiral chelating diphosphines with a linking scaffold; 2.2.1 Building chiral backbones from naturally available materials; 2.2.2 Design and synthesis of chiral backbones; 2.2.3 Synthesis from optical resolution of phosphine precursors or intermediates; 2.3 Chiral atropisomeric biaryl diphosphines; 2.3.1 Synthesis of BINAP and its derivatives; 2.3.2 Synthesis of atropisomeric biaryl ligands; 2.3.3 General strategies of synthesizing of atropisomeric biaryl ligands; 2.4 Chiral phosphacyclic diphosphines 2.4.1 Fundamental discovery and syntheses of BPE and DuPhos2.4.2 Design and synthesis of bisphosphetanes; 2.4.3 Design and synthesis of bisphospholanes; 2.4.4 Design and synthesis of bisphospholes; 2.4.5 Design and synthesis of bisphosphinanes; 2.4.6 Design and synthesis of bisphosphepines; 2.4.7 Summary of synthetic strategies of phosphacycles; 2.5 P-stereogenic diphosphine ligands; 2.6 Experimental procedures for the syntheses of selected diphosphine ligands; 2.6.1 Synthesis procedure for DIOP* ligand; 2.6.2 Synthesis procedure of SDP ligands; 2.6.3 Synthesis procedure of (R,R)-BICP 2.6.4 Synthesis procedure of SEGPHOS2.6.5 Synthesis procedure of Ph-BPE; 2.6.6 Synthesis procedure of TangPhos; 2.6.7 Synthesis procedure of Binaphane; 2.7 Concluding remarks; References; 3 Design and Synthesis of Phosphite Ligands for Homogeneous Catalysis; 3.1 Introduction; 3.2 Synthesis of phosphites; 3.2.1 Monophosphites; 3.2.2 Diphosphite ligands; 3.2.3 Triphosphites; 3.3 Highlights of catalytic applications of phosphite ligands; 3.3.1 Hydrogenation reactions; 3.3.2 Functionalization of alkenes: hydroformylation and hydrocyanation 3.3.3 Addition of nucleophiles to carbonyl compounds and derivatives3.3.4 Allylic substitution reactions; 3.3.5 Miscellaneous reactions; 3.4 General synthetic procedures; 3.4.1 Symmetrically substituted phosphites; 3.4.2 Nonsymmetrically substituted phosphites; 3.4.3 Phosphites bearing dioxaphospho-cyclic units; References; 4 Phosphoramidite Ligands; 4.1 Introduction; 4.1.1 History; 4.2 Synthesis of phosphoramidites; 4.3 Reactivity of the phosphoramidites; 4.4 Types of phosphoramidite ligands; 4.4.1 Acyclic monodentate phosphoramidites; 4.4.2 Cyclic monodentate phosphoramidites based on diols 4.4.3 Cyclic phosphoramidites based on amino alcohols |
Record Nr. | UNINA-9910141261103321 |
Kamer Paul
![]() |
||
Chichester, West Sussex, United Kingdom, : John Wiley & Sons, Ltd., 2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Phosphorus(III) ligands in homogeneous catalysis : design and synthesis / / edited by Paul Kamer & Piet W.N.M. van Leeuwen |
Autore | Kamer Paul |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Chichester, West Sussex, United Kingdom, : John Wiley & Sons, Ltd., 2012 |
Descrizione fisica | 1 online resource (567 p.) |
Disciplina |
541.2242
546.712595 546/.712595 |
Altri autori (Persone) | LeeuwenP. W. N. M. van (Piet W. N. M.) |
Soggetto topico |
Phosphorus compounds
Ligands Catalysis TECHNOLOGY & ENGINEERING / Material Science |
ISBN |
1-280-78471-7
9786613695109 1-118-29970-1 1-118-29971-X 1-118-29973-6 |
Classificazione | TEC021000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Phosphorus( III ) Ligands in Homogeneous Catalysis: Design and Synthesis; Contents; List of Contributors; Preface; 1 Phosphorus Ligand Effects in Homogeneous Catalysis and Rational Catalyst Design; 1.1 Introduction; 1.2 Properties of phosphorus ligands; 1.2.1 Electronic ligand parameters; 1.2.2 Steric ligand parameters; 1.2.3 Bite angle effects; 1.2.4 Molecular electrostatic potential (MESP) approach; 1.3 Asymmetric ligands; 1.4 Rational ligand design in nickel-catalysed hydrocyanation; 1.4.1 Introduction; 1.4.2 Mechanistic insights; 1.4.3 Rational design; 1.5 Conclusions; References
2 Chiral Phosphines and Diphosphines2.1 Introduction; 2.1.1 Early developments; 2.2 Chiral chelating diphosphines with a linking scaffold; 2.2.1 Building chiral backbones from naturally available materials; 2.2.2 Design and synthesis of chiral backbones; 2.2.3 Synthesis from optical resolution of phosphine precursors or intermediates; 2.3 Chiral atropisomeric biaryl diphosphines; 2.3.1 Synthesis of BINAP and its derivatives; 2.3.2 Synthesis of atropisomeric biaryl ligands; 2.3.3 General strategies of synthesizing of atropisomeric biaryl ligands; 2.4 Chiral phosphacyclic diphosphines 2.4.1 Fundamental discovery and syntheses of BPE and DuPhos2.4.2 Design and synthesis of bisphosphetanes; 2.4.3 Design and synthesis of bisphospholanes; 2.4.4 Design and synthesis of bisphospholes; 2.4.5 Design and synthesis of bisphosphinanes; 2.4.6 Design and synthesis of bisphosphepines; 2.4.7 Summary of synthetic strategies of phosphacycles; 2.5 P-stereogenic diphosphine ligands; 2.6 Experimental procedures for the syntheses of selected diphosphine ligands; 2.6.1 Synthesis procedure for DIOP* ligand; 2.6.2 Synthesis procedure of SDP ligands; 2.6.3 Synthesis procedure of (R,R)-BICP 2.6.4 Synthesis procedure of SEGPHOS2.6.5 Synthesis procedure of Ph-BPE; 2.6.6 Synthesis procedure of TangPhos; 2.6.7 Synthesis procedure of Binaphane; 2.7 Concluding remarks; References; 3 Design and Synthesis of Phosphite Ligands for Homogeneous Catalysis; 3.1 Introduction; 3.2 Synthesis of phosphites; 3.2.1 Monophosphites; 3.2.2 Diphosphite ligands; 3.2.3 Triphosphites; 3.3 Highlights of catalytic applications of phosphite ligands; 3.3.1 Hydrogenation reactions; 3.3.2 Functionalization of alkenes: hydroformylation and hydrocyanation 3.3.3 Addition of nucleophiles to carbonyl compounds and derivatives3.3.4 Allylic substitution reactions; 3.3.5 Miscellaneous reactions; 3.4 General synthetic procedures; 3.4.1 Symmetrically substituted phosphites; 3.4.2 Nonsymmetrically substituted phosphites; 3.4.3 Phosphites bearing dioxaphospho-cyclic units; References; 4 Phosphoramidite Ligands; 4.1 Introduction; 4.1.1 History; 4.2 Synthesis of phosphoramidites; 4.3 Reactivity of the phosphoramidites; 4.4 Types of phosphoramidite ligands; 4.4.1 Acyclic monodentate phosphoramidites; 4.4.2 Cyclic monodentate phosphoramidites based on diols 4.4.3 Cyclic phosphoramidites based on amino alcohols |
Record Nr. | UNINA-9910810261803321 |
Kamer Paul
![]() |
||
Chichester, West Sussex, United Kingdom, : John Wiley & Sons, Ltd., 2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|