Arabesques and geometry [videorecording] / by Antonio F. Costa, Bernardo Gómez |
Pubbl/distr/stampa | [Berlin] : Springer, [1999] |
Descrizione fisica | 1 videocassette (21 min.) : sd., col. ; 1/2 in. + 1 guide |
Disciplina | 510 |
Altri autori (Persone) |
Costa González, Antonio Félix
Gómez García, Bernardoauthor Fernández Abellán, Antonio |
Collana | Springer VideoMATH |
Soggetto topico |
Geometry
Geometry in art Symmetry Arabesques Symmetry groups Islamic architecture Islamic art |
ISBN | 3540926402 |
Classificazione |
LC QA447.A73
AMS 00A08 |
Formato | Videocassette ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991001568579707536 |
[Berlin] : Springer, [1999] | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Boundary theory for symmetric Markov processes / Martin L. Silverstein |
Autore | Silverstein, Martin L. |
Pubbl/distr/stampa | Berlin : Springer-Verlag, 1976 |
Descrizione fisica | xvi, 313 p. ; 25 cm |
Disciplina | 519.233 |
Collana | Lecture notes in mathematics, 0075-8434 ; 516 |
Soggetto topico |
Boundary theory
Markov processes Semigroups Symmetry groups |
ISBN | 3540076883 |
Classificazione | AMS 60J50 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000721469707536 |
Silverstein, Martin L.
![]() |
||
Berlin : Springer-Verlag, 1976 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Branching in the presence of symmetry / D. H. Sattinger |
Autore | Sattinger, David H. |
Pubbl/distr/stampa | Philadelphia, Pa. : SIAM (Society for Industrial and Applied Mathematics), 1983 |
Descrizione fisica | vii, 73 p. : ill. ; 25 cm. |
Disciplina | 515.353 |
Collana | CBMS-NSF Regional conference series in applied mathematics ; 40 |
Soggetto topico |
Bifurcation theory
Functional equations Maxima and minima Singularities Symmetry groups |
ISBN | 0898711827 |
Classificazione |
AMS 20C99
AMS 35B32 AMS 35B35 QA431 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000722919707536 |
Sattinger, David H.
![]() |
||
Philadelphia, Pa. : SIAM (Society for Industrial and Applied Mathematics), 1983 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Combinatoire et représentation du groupe symétrique : actes de la Table ronde du C.N.R.S., tenue à l'Université Louis Pasteur de Strasbourg, 26 au 30 avril 1976 / édité par D. Foata |
Autore | Foata, Dominique |
Pubbl/distr/stampa | Berlin : Springer Verlag, 1977 |
Descrizione fisica | iv, 339 p. : ill. ; 24 cm |
Disciplina | 512.22 |
Collana | Lecture notes in mathematics, 0075-8434 ; 579 |
Soggetto topico |
Combinatorial analysis
Representations of groups Symmetric functions Symmetry groups |
ISBN | 3540081437 |
Classificazione |
AMS 20-06
AMS 20-XX AMS 20B30 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | fre |
Record Nr. | UNISALENTO-991000754559707536 |
Foata, Dominique
![]() |
||
Berlin : Springer Verlag, 1977 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Geometric symmetry / E. H. Lockwood and R. H. Macmillan |
Autore | Lockwood, Edward Harrington |
Pubbl/distr/stampa | Cambridge : Cambridge University Press, 1978 |
Descrizione fisica | x, 228 p. : ill. (some col.) ; 31 cm. |
Disciplina | 516.1 |
Altri autori (Persone) | Macmillan, Robert Hugh |
Soggetto topico |
Geometry
Symmetry Symmetry groups |
ISBN | 0521216850 |
Classificazione | AMS 51-XX |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000941519707536 |
Lockwood, Edward Harrington
![]() |
||
Cambridge : Cambridge University Press, 1978 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Geometry of crystallographic groups [[electronic resource] /] / Andrzej Szczepański |
Autore | Szczepański Andrzej |
Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, 2012 |
Descrizione fisica | 1 online resource (208 p.) |
Disciplina | 548/.81 |
Collana | Algebra and discrete mathematics |
Soggetto topico |
Symmetry groups
Crystallography, Mathematical |
Soggetto genere / forma | Electronic books. |
ISBN |
1-283-63598-4
981-4412-26-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; 1. Definitions; 1.1 Exercises; 2. Bieberbach Theorems; 2.1 The first Bieberbach Theorem; 2.2 Proof of the second Bieberbach Theorem; 2.2.1 Cohomology group language; 2.3 Proof of the third Bieberbach Theorem; 2.4 Exercises; 3. Classification Methods; 3.1 Three methods of classification; 3.1.1 The methods of Calabi and Auslander-Vasquez; 3.2 Classification in dimension two; 3.3 Platycosms; 3.4 Exercises; 4. Flat Manifolds with b1 = 0; 4.1 Examples of (non)primitive groups; 4.2 Minimal dimension; 4.3 Exercises; 5. Outer Automorphism Groups
5.1 Some representation theory and 9-diagrams5.2 Infinity of outer automorphism group; 5.3 R1 - groups; 5.4 Exercises; 6. Spin Structures and Dirac Operator; 6.1 Spin(n) group; 6.2 Vector bundles; 6.3 Spin structure; 6.3.1 Case of cyclic holonomy; 6.4 The Dirac operator; 6.5 Exercises; 7. Flat Manifolds with Complex Structures; 7.1 Kahler flat manifolds in low dimensions; 7.2 The Hodge diamond for Kahler flat manifolds; 7.3 Exercises; 8. Crystallographic Groups as Isometries of Hn; 8.1 Hyperbolic space Hn; 8.2 Exercises; 9. Hantzsche-Wendt Groups; 9.1 Definitions; 9.2 Non-oriented GHW groups 9.3 Graph connecting GHW manifolds9.4 Abelianization of HW group; 9.5 Relation with Fibonacci groups; 9.6 An invariant of GHW; 9.7 Complex Hantzsche-Wendt manifolds; 9.8 Exercises; 10. Open Problems; 10.1 The classification problems; 10.2 The Anosov relation for flat manifolds; 10.3 Generalized Hantzsche-Wendt flat manifolds; 10.4 Flat manifolds and other geometries; 10.5 The Auslander conjecture; Appendix A Alternative Proof of Bieberbach Theorem; Appendix B Burnside Transfer Theorem; Appendix C Example of a Flat Manifold without Symmetry; Bibliography; Index |
Record Nr. | UNINA-9910461795303321 |
Szczepański Andrzej
![]() |
||
Hackensack, NJ, : World Scientific, 2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Geometry of crystallographic groups [[electronic resource] /] / Andrzej Szczepański |
Autore | Szczepański Andrzej |
Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, 2012 |
Descrizione fisica | 1 online resource (208 p.) |
Disciplina | 548/.81 |
Collana | Algebra and discrete mathematics |
Soggetto topico |
Symmetry groups
Crystallography, Mathematical |
ISBN |
1-283-63598-4
981-4412-26-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; 1. Definitions; 1.1 Exercises; 2. Bieberbach Theorems; 2.1 The first Bieberbach Theorem; 2.2 Proof of the second Bieberbach Theorem; 2.2.1 Cohomology group language; 2.3 Proof of the third Bieberbach Theorem; 2.4 Exercises; 3. Classification Methods; 3.1 Three methods of classification; 3.1.1 The methods of Calabi and Auslander-Vasquez; 3.2 Classification in dimension two; 3.3 Platycosms; 3.4 Exercises; 4. Flat Manifolds with b1 = 0; 4.1 Examples of (non)primitive groups; 4.2 Minimal dimension; 4.3 Exercises; 5. Outer Automorphism Groups
5.1 Some representation theory and 9-diagrams5.2 Infinity of outer automorphism group; 5.3 R1 - groups; 5.4 Exercises; 6. Spin Structures and Dirac Operator; 6.1 Spin(n) group; 6.2 Vector bundles; 6.3 Spin structure; 6.3.1 Case of cyclic holonomy; 6.4 The Dirac operator; 6.5 Exercises; 7. Flat Manifolds with Complex Structures; 7.1 Kahler flat manifolds in low dimensions; 7.2 The Hodge diamond for Kahler flat manifolds; 7.3 Exercises; 8. Crystallographic Groups as Isometries of Hn; 8.1 Hyperbolic space Hn; 8.2 Exercises; 9. Hantzsche-Wendt Groups; 9.1 Definitions; 9.2 Non-oriented GHW groups 9.3 Graph connecting GHW manifolds9.4 Abelianization of HW group; 9.5 Relation with Fibonacci groups; 9.6 An invariant of GHW; 9.7 Complex Hantzsche-Wendt manifolds; 9.8 Exercises; 10. Open Problems; 10.1 The classification problems; 10.2 The Anosov relation for flat manifolds; 10.3 Generalized Hantzsche-Wendt flat manifolds; 10.4 Flat manifolds and other geometries; 10.5 The Auslander conjecture; Appendix A Alternative Proof of Bieberbach Theorem; Appendix B Burnside Transfer Theorem; Appendix C Example of a Flat Manifold without Symmetry; Bibliography; Index |
Record Nr. | UNINA-9910785918503321 |
Szczepański Andrzej
![]() |
||
Hackensack, NJ, : World Scientific, 2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
[Lambda]-rings and the representation theory of the symmetric group / Donald Knutson |
Autore | Knutson, Donald |
Pubbl/distr/stampa | Berlin : Springer-Verlag, 1973 |
Descrizione fisica | iv, 203 p. ; 26 cm |
Disciplina | 512.22 |
Collana | Lecture notes in mathematics, 0075-8434 ; 308 |
Soggetto topico |
Commutative rings
Representations of groups Symmetry groups |
ISBN | 3540061843 |
Classificazione | AMS 20C30 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991001056739707536 |
Knutson, Donald
![]() |
||
Berlin : Springer-Verlag, 1973 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Line groups in physics : theory and applications to nanotubes and polymers / / M. Damnjanovic, I. Milosevic |
Autore | Damnjanovic M (Milan), <1953-> |
Edizione | [1st ed. 2010.] |
Pubbl/distr/stampa | Heidelberg, : Springer, c2010 |
Descrizione fisica | 1 online resource (XII, 200p. 76 illus., 38 illus. in color.) |
Disciplina | 530.411 |
Altri autori (Persone) | MilosevicI (Ivanka) |
Collana | Lecture notes in physics |
Soggetto topico |
Nanostructured materials
Symmetry groups |
ISBN | 3-642-11172-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Line Groups Structure -- Symmetrical Compounds -- Irreducible Representations -- Tensors -- Magnetic Line Groups -- Vibrational Analysis -- Applications -- Nanotubes. |
Record Nr. | UNINA-9910139473903321 |
Damnjanovic M (Milan), <1953->
![]() |
||
Heidelberg, : Springer, c2010 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Modular branching rules for projective representations of symmetric groups and lowering operators for the supergroup Q(n) / / Alexander Kleshchev, Vladimir Shchigolev |
Autore | Kleshchëv A. S (Aleksandr Sergeevich) |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2012 |
Descrizione fisica | 1 online resource (123 p.) |
Disciplina | 515/.724 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Symmetry groups
Modules (Algebra) Operator theory |
Soggetto genere / forma | Electronic books. |
ISBN | 0-8218-9205-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""Contents""; ""Abstract""; ""Introduction""; ""Set up""; ""Projective representations and Sergeev algebra""; ""Crystal graph approach""; ""Schur functor approach""; ""Modular branching rules""; ""Connecting the two approaches""; ""Some tensor products over ( )""; ""Strategy of the proof and organization of the paper""; ""Chapter 1. Preliminaries""; ""1.1. General Notation""; ""1.2. The supergroup ( ) and its hyperalgebra""; ""1.3. Highest weight theory""; ""Chapter 2. Lowering operators""; ""2.1. Definitions""; ""2.2. Properties of ^{ }_{ , }({ }) and ^{ }_{ , }({ })"" |
Record Nr. | UNINA-9910480946703321 |
Kleshchëv A. S (Aleksandr Sergeevich)
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|