Artificial intelligence for a sustainable industry 4.0 / / Shashank Awasthi [and three others], editors
| Artificial intelligence for a sustainable industry 4.0 / / Shashank Awasthi [and three others], editors |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (311 pages) |
| Disciplina | 628 |
| Soggetto topico |
Sustainable engineering - Data processing
Artificial intelligence |
| ISBN | 3-030-77070-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Acknowledgement -- Contents -- About the Authors -- Possibilities of Industrial Trends and Business Benefits with Industry 4.0 Technology: A Survey -- 1 Introduction -- 2 How the Concept of Supply and Demand Applies to the Overall Economy? -- 3 Technology Road Map for Industry 4.0 -- 3.1 Smart Factory -- 3.2 Cargo Loading and Unloading -- 3.2.1 Formal integration platform -- 3.2.2 Technological Challenges and Accompanying Ranging of Data -- 3.2.3 Vertical Incorporation of Intelligent Development -- 3.3 A New Wave of Corporate Supply Chains -- 3.4 All the Way Through the Supply Chain -- 4 Aspects for IT Management to Consider -- 5 Concepts of Creativity -- 6 The Effective Administration of Creativity -- 7 Encompasses Every Facet of Our Lives from Social Media to E-Commerce -- 7.1 Collecting Data -- 7.2 Looking out Opportunities -- 7.3 Consistency -- 8 Conclusion -- References -- Impact of Internet of Things on Logistics Management: A Framework for Logistics Information System -- 1 Introduction -- 2 IoT Emergence and the Internet -- 3 Interaction of IoT and Human -- 4 Information Sharing in Logistics and Supply Chain -- 5 IoT for Logistics Information System -- 6 Benefits of IoT for Logistics -- 7 Innovation of Logistics in IoT Context -- 8 IoT Framework for Logistics Information System -- 9 IoT for Logistics Information System in Future -- 10 Conclusion -- References -- Green Internet of Things (G-IoT): An Exposition for Sustainable Technological Development -- 1 Overview -- 2 Internet of Things -- 2.1 The Technology Stack of IoT -- 2.2 IoT Stack: Connectivity Options -- 2.3 Empowering Technology for IoT -- 2.4 IoT Features -- 2.5 Architecture of IoT -- 2.6 Ecosystem of IoT -- 3 Green IoT -- 3.1 Key Technologies of Green IoT -- 3.2 Application of Green IoT -- 4 IoT Big 7: IoT-Challenges and Problems -- 4.1 IoT Scalability.
4.2 Interoperability of IoT -- 4.3 IoT Reliability -- 4.4 IoT Efficiency -- 4.5 IoT Availability -- 4.6 IoT Software -- 4.7 IoT Security -- 5 Incorporating IoT and Cloud Computing for Addressing Intrinsic Challenges of IoT -- 5.1 Scalability Via Cloud Computing -- 5.2 Interoperability Through Cloud Computing -- 5.3 Functionality Via Cloud Infrastructure -- 5.4 Efficiency Through Cloud Computing -- 5.5 Availability -- 6 Summary and Conclusions -- References -- Quantitative Analysis of Industrial IoT System -- 1 Introduction -- 2 A Calculus for Probabilistic Wireless Network (PBL) -- 3 A Stochastic Routing Calculus -- 4 Syntax -- 5 Structural Equivalence -- 6 Reduction Semantics -- 7 Well-Formed Configurations -- 8 Equivalence of GR with Its Specification -- 9 Conclusion -- References -- Formal Verification of Industrial IoT System: A Behavioural Equivalence -- 1 Introduction -- 2 A Stochastic Routing Calculus -- 3 GR: A Behavioural Equivalence -- 4 Probabilistic Reduction Barbed Pre-congruence -- 5 A Labeled Transition System -- 6 Probabilistic Efficiency Pre-Bisimulation -- 7 An Observational Lts -- 8 Justifying Asynchronous Probabilistic Efficiency Pre-bisimulation Contextually -- 9 Conclusions -- References -- Steganography: Camouflaging Sensitive and Vulnerable Data -- 1 Introduction -- 1.1 Beginning of the Era of Steganography: The Prisoners Problem -- 1.2 A Generalized Framework of Steganography -- 1.3 Categorization in Steganography -- 1.4 Criteria for a Good Steganographic Approach -- 2 Case Studies in Literature -- 2.1 Spatial Domain Techniques -- 2.2 Transform Domain Techniques -- 3 Conclusion -- References -- Technologies for the Rehabilitation of People Affected with CVM: A State-of-the-Art Report -- 1 Introduction -- 2 Rehabilitation for People Affected by CVM -- 3 Available Technological Resources -- 3.1 Rehabilitative Technologies. 3.2 Assistive Technologies -- 4 Conclusions -- References -- Machine Learning Application: Sarcasm Detection Model -- 1 Introduction -- 2 Research Methodology -- 2.1 Parsing Dataset into DataFrames -- 2.2 Checking Null Values -- 2.3 Data Cleaning -- 2.4 Feature and Label Extraction -- 2.5 Stemming -- 2.6 TF-IDF Vectorization -- 2.7 Training and Testing of Data -- 2.8 Training and Testing of the Model -- 2.9 Setting up GUI Application Using Tkinter -- 3 Results and Discussion -- 4 Conclusion -- References -- Modern Technology on Building Marketing 4.0: Impact on Customer Engagement -- 1 Introduction -- 1.1 About Digital and Social Media Emergence -- 1.2 Emergence of Marketing 4.0 -- 2 About the Topic -- 3 The Conceptual Model: Design, Direct, Develop, Interventions, Innovation, and Capabilities (D3I2C) -- 4 Objectives -- 5 Literature Review -- 6 Research Methodology -- 7 Findings -- 7.1 Introduction to Questionnaire -- 7.2 Millennials' Attitude Toward Social Media -- 7.3 Awareness Toward Digital Marketing -- 7.4 Technology on Building Marketing 4.0 -- 8 Interpretation -- 9 Conclusion -- References -- Smart and Intelligent Chatbot Assistance for Future Industry 4.0 -- 1 Introduction -- 2 Related Work -- 2.1 Product Perspective -- 2.1.1 System Interfaces -- 2.1.2 Interfaces -- 2.1.3 Communication Interfaces -- 2.1.4 Site Adaptation Requirements -- 2.2 Product Functions -- 2.3 Assumptions and Dependencies -- 3 Architectural Design -- 3.1 Class Diagrams -- 3.2 Pizza Ordering Agent (Class Diagram) -- 3.3 Hotel Booking Agent (Class Diagram) -- 3.4 Data Flow Diagram -- 4 Implementation and Results -- 4.1 Results -- 5 Conclusion -- References -- Analyzing Subspace Clustering Approaches for High Dimensional Data -- 1 Introduction -- 2 Challenges in Subspace Clustering -- 3 Classification of Subspace Clustering Approaches. 4 Evaluation Measures for Subspace Clustering Algorithms -- 5 Literature -- 6 Empirical Assessment -- 7 Applications and Future Prospects -- 8 Conclusion -- References -- Ant Colony Optimization Technique in Soft Computational Data Research for NP-Hard Problems -- 1 Introduction -- 2 Soft Computing -- 3 Applications of Soft Computing -- 4 Ant Colony Optimization Technique (ACO) -- 4.1 Mathematical Model of ACO -- 5 Variations in ACO -- 6 Some Common Computational Problems Solved Using ACO -- 6.1 Travelling Salesman Problem -- 6.2 Job-Shop Scheduling Problem (JSP) -- 6.3 Quadratic Assignment Problem -- 7 Conclusion -- References -- Use of Kalman Filter and Its Variants in State Estimation: A Review -- 1 Introduction -- 2 Background -- 3 Mathematical Foundation of Kalman Filter -- 3.1 Extended Kalman Filter -- 3.2 Unscented Kalman Filter -- 3.3 Ensemble Kalman Filter -- 3.4 Particle Kalman Filter -- 3.5 Cubature Kalman Filter -- 3.6 Further Types of Kalman Filter -- 4 Discussion -- 5 Conclusion -- References -- Precoder and Combiner Optimization in mmWave Hybrid Beamforming Systems -- 1 Introduction -- 1.1 Multi-user MIMO Downlink System Model -- 1.2 mmWave MIMO Channel Model -- 1.3 Problem Formulation -- 2 Extended Orthogonal Matching Pursuit Method -- 3 Results and Discussions -- 4 Conclusion -- References -- Biometric Identification System: Security and Privacy Concern -- 1 Introduction -- 2 Biometric Modalities -- 2.1 Fingerprint Scan -- 2.2 Human Face -- 2.3 Hand Measurement -- 2.4 Palm Scan -- 2.5 IRIS Scan -- 2.6 Voice -- 3 Use of Software for Biometric Security -- 4 Various Issues in Biometric System -- 4.1 The Algorithm (Encryption) Used in Biometrics Is Weak -- 4.2 Size of Biometric Database Increases with Time -- 4.3 Size of Storage and Key Size -- 4.4 Cyber/Criminal Attacks -- 4.5 Factors Related with Environment -- 4.6 Foreign Particles. 4.7 Attack on Comparator -- 4.8 Template Got Attack by Virus -- 4.9 Medium of Communication -- 4.10 Decision May Be Altered -- 5 Methods of Dealing with Issues in Biometric System -- 5.1 Multimodal Biometrics -- 5.2 Touchless Fingerprint -- 5.3 Using Special Algorithm Having Enhanced Security Specification -- 5.4 Using Second Storage -- 5.5 Security of Database -- 5.6 Biometrics with a Password/OTP/Card Access/Pin -- 6 How Addition of Biometrics Enhance the Security -- 6.1 Fast and Reliable Verification System -- 6.2 Accountability of the Individual -- 6.3 High Efficiency -- 6.4 Convenient -- 6.5 Adoptability of Future Growth of the Organization -- 7 Middleware and Software's Used in Biometrics -- 7.1 FSI -- 7.2 Healthcare -- 7.3 Manufacturing Industry -- 7.4 Service Industry -- 7.5 Government Authorities -- 8 Future Biometric Technologies -- 8.1 On-Spot DNA Test -- 8.2 Brain Wave Scanning -- 9 Advantages of Biometric -- 9.1 Safety and Security -- 9.2 Accuracy -- 9.3 ROI -- 9.4 Scalability -- 9.5 Screening -- 10 Disadvantages of Biometric -- 10.1 Recognition of Physical Traits -- 10.2 Rate of Error -- 10.3 Cost -- 10.4 Delay -- 10.5 Complexity -- 11 Conclusion -- References -- Enabling Technologies: A Transforming Action on Healthcare with IoT a Possible Revolutionizing -- 1 Introduction -- 1.1 The IoT Is Growing Everywhere -- 1.2 Smart Home Dares to Make Sense -- 1.3 Improving IoT in Healthcare -- 1.4 Why Would the Industry Benefit from Using IoT? -- 1.5 Applied Internet of Things in Healthcare -- 2 The Advantages of IoT in Healthcare -- 2.1 Cancer Therapy -- 2.2 Diabetes Management -- 3 Challenges for IoT in Healthcare -- 4 Conclusion -- References -- Automated and Curated Sack Count Leveraging Video Analysis on Moving Objects -- 1 Introduction -- 2 Problem Statement -- 2.1 Related Work -- 3 Proposed Approach -- 3.1 Model Development. 3.1.1 Step 1: Problem Definition. |
| Record Nr. | UNINA-9910506384903321 |
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Artificial intelligence for a sustainable industry 4.0 / / Shashank Awasthi [and three others], editors
| Artificial intelligence for a sustainable industry 4.0 / / Shashank Awasthi [and three others], editors |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (311 pages) |
| Disciplina | 628 |
| Soggetto topico |
Sustainable engineering - Data processing
Artificial intelligence |
| ISBN | 3-030-77070-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Acknowledgement -- Contents -- About the Authors -- Possibilities of Industrial Trends and Business Benefits with Industry 4.0 Technology: A Survey -- 1 Introduction -- 2 How the Concept of Supply and Demand Applies to the Overall Economy? -- 3 Technology Road Map for Industry 4.0 -- 3.1 Smart Factory -- 3.2 Cargo Loading and Unloading -- 3.2.1 Formal integration platform -- 3.2.2 Technological Challenges and Accompanying Ranging of Data -- 3.2.3 Vertical Incorporation of Intelligent Development -- 3.3 A New Wave of Corporate Supply Chains -- 3.4 All the Way Through the Supply Chain -- 4 Aspects for IT Management to Consider -- 5 Concepts of Creativity -- 6 The Effective Administration of Creativity -- 7 Encompasses Every Facet of Our Lives from Social Media to E-Commerce -- 7.1 Collecting Data -- 7.2 Looking out Opportunities -- 7.3 Consistency -- 8 Conclusion -- References -- Impact of Internet of Things on Logistics Management: A Framework for Logistics Information System -- 1 Introduction -- 2 IoT Emergence and the Internet -- 3 Interaction of IoT and Human -- 4 Information Sharing in Logistics and Supply Chain -- 5 IoT for Logistics Information System -- 6 Benefits of IoT for Logistics -- 7 Innovation of Logistics in IoT Context -- 8 IoT Framework for Logistics Information System -- 9 IoT for Logistics Information System in Future -- 10 Conclusion -- References -- Green Internet of Things (G-IoT): An Exposition for Sustainable Technological Development -- 1 Overview -- 2 Internet of Things -- 2.1 The Technology Stack of IoT -- 2.2 IoT Stack: Connectivity Options -- 2.3 Empowering Technology for IoT -- 2.4 IoT Features -- 2.5 Architecture of IoT -- 2.6 Ecosystem of IoT -- 3 Green IoT -- 3.1 Key Technologies of Green IoT -- 3.2 Application of Green IoT -- 4 IoT Big 7: IoT-Challenges and Problems -- 4.1 IoT Scalability.
4.2 Interoperability of IoT -- 4.3 IoT Reliability -- 4.4 IoT Efficiency -- 4.5 IoT Availability -- 4.6 IoT Software -- 4.7 IoT Security -- 5 Incorporating IoT and Cloud Computing for Addressing Intrinsic Challenges of IoT -- 5.1 Scalability Via Cloud Computing -- 5.2 Interoperability Through Cloud Computing -- 5.3 Functionality Via Cloud Infrastructure -- 5.4 Efficiency Through Cloud Computing -- 5.5 Availability -- 6 Summary and Conclusions -- References -- Quantitative Analysis of Industrial IoT System -- 1 Introduction -- 2 A Calculus for Probabilistic Wireless Network (PBL) -- 3 A Stochastic Routing Calculus -- 4 Syntax -- 5 Structural Equivalence -- 6 Reduction Semantics -- 7 Well-Formed Configurations -- 8 Equivalence of GR with Its Specification -- 9 Conclusion -- References -- Formal Verification of Industrial IoT System: A Behavioural Equivalence -- 1 Introduction -- 2 A Stochastic Routing Calculus -- 3 GR: A Behavioural Equivalence -- 4 Probabilistic Reduction Barbed Pre-congruence -- 5 A Labeled Transition System -- 6 Probabilistic Efficiency Pre-Bisimulation -- 7 An Observational Lts -- 8 Justifying Asynchronous Probabilistic Efficiency Pre-bisimulation Contextually -- 9 Conclusions -- References -- Steganography: Camouflaging Sensitive and Vulnerable Data -- 1 Introduction -- 1.1 Beginning of the Era of Steganography: The Prisoners Problem -- 1.2 A Generalized Framework of Steganography -- 1.3 Categorization in Steganography -- 1.4 Criteria for a Good Steganographic Approach -- 2 Case Studies in Literature -- 2.1 Spatial Domain Techniques -- 2.2 Transform Domain Techniques -- 3 Conclusion -- References -- Technologies for the Rehabilitation of People Affected with CVM: A State-of-the-Art Report -- 1 Introduction -- 2 Rehabilitation for People Affected by CVM -- 3 Available Technological Resources -- 3.1 Rehabilitative Technologies. 3.2 Assistive Technologies -- 4 Conclusions -- References -- Machine Learning Application: Sarcasm Detection Model -- 1 Introduction -- 2 Research Methodology -- 2.1 Parsing Dataset into DataFrames -- 2.2 Checking Null Values -- 2.3 Data Cleaning -- 2.4 Feature and Label Extraction -- 2.5 Stemming -- 2.6 TF-IDF Vectorization -- 2.7 Training and Testing of Data -- 2.8 Training and Testing of the Model -- 2.9 Setting up GUI Application Using Tkinter -- 3 Results and Discussion -- 4 Conclusion -- References -- Modern Technology on Building Marketing 4.0: Impact on Customer Engagement -- 1 Introduction -- 1.1 About Digital and Social Media Emergence -- 1.2 Emergence of Marketing 4.0 -- 2 About the Topic -- 3 The Conceptual Model: Design, Direct, Develop, Interventions, Innovation, and Capabilities (D3I2C) -- 4 Objectives -- 5 Literature Review -- 6 Research Methodology -- 7 Findings -- 7.1 Introduction to Questionnaire -- 7.2 Millennials' Attitude Toward Social Media -- 7.3 Awareness Toward Digital Marketing -- 7.4 Technology on Building Marketing 4.0 -- 8 Interpretation -- 9 Conclusion -- References -- Smart and Intelligent Chatbot Assistance for Future Industry 4.0 -- 1 Introduction -- 2 Related Work -- 2.1 Product Perspective -- 2.1.1 System Interfaces -- 2.1.2 Interfaces -- 2.1.3 Communication Interfaces -- 2.1.4 Site Adaptation Requirements -- 2.2 Product Functions -- 2.3 Assumptions and Dependencies -- 3 Architectural Design -- 3.1 Class Diagrams -- 3.2 Pizza Ordering Agent (Class Diagram) -- 3.3 Hotel Booking Agent (Class Diagram) -- 3.4 Data Flow Diagram -- 4 Implementation and Results -- 4.1 Results -- 5 Conclusion -- References -- Analyzing Subspace Clustering Approaches for High Dimensional Data -- 1 Introduction -- 2 Challenges in Subspace Clustering -- 3 Classification of Subspace Clustering Approaches. 4 Evaluation Measures for Subspace Clustering Algorithms -- 5 Literature -- 6 Empirical Assessment -- 7 Applications and Future Prospects -- 8 Conclusion -- References -- Ant Colony Optimization Technique in Soft Computational Data Research for NP-Hard Problems -- 1 Introduction -- 2 Soft Computing -- 3 Applications of Soft Computing -- 4 Ant Colony Optimization Technique (ACO) -- 4.1 Mathematical Model of ACO -- 5 Variations in ACO -- 6 Some Common Computational Problems Solved Using ACO -- 6.1 Travelling Salesman Problem -- 6.2 Job-Shop Scheduling Problem (JSP) -- 6.3 Quadratic Assignment Problem -- 7 Conclusion -- References -- Use of Kalman Filter and Its Variants in State Estimation: A Review -- 1 Introduction -- 2 Background -- 3 Mathematical Foundation of Kalman Filter -- 3.1 Extended Kalman Filter -- 3.2 Unscented Kalman Filter -- 3.3 Ensemble Kalman Filter -- 3.4 Particle Kalman Filter -- 3.5 Cubature Kalman Filter -- 3.6 Further Types of Kalman Filter -- 4 Discussion -- 5 Conclusion -- References -- Precoder and Combiner Optimization in mmWave Hybrid Beamforming Systems -- 1 Introduction -- 1.1 Multi-user MIMO Downlink System Model -- 1.2 mmWave MIMO Channel Model -- 1.3 Problem Formulation -- 2 Extended Orthogonal Matching Pursuit Method -- 3 Results and Discussions -- 4 Conclusion -- References -- Biometric Identification System: Security and Privacy Concern -- 1 Introduction -- 2 Biometric Modalities -- 2.1 Fingerprint Scan -- 2.2 Human Face -- 2.3 Hand Measurement -- 2.4 Palm Scan -- 2.5 IRIS Scan -- 2.6 Voice -- 3 Use of Software for Biometric Security -- 4 Various Issues in Biometric System -- 4.1 The Algorithm (Encryption) Used in Biometrics Is Weak -- 4.2 Size of Biometric Database Increases with Time -- 4.3 Size of Storage and Key Size -- 4.4 Cyber/Criminal Attacks -- 4.5 Factors Related with Environment -- 4.6 Foreign Particles. 4.7 Attack on Comparator -- 4.8 Template Got Attack by Virus -- 4.9 Medium of Communication -- 4.10 Decision May Be Altered -- 5 Methods of Dealing with Issues in Biometric System -- 5.1 Multimodal Biometrics -- 5.2 Touchless Fingerprint -- 5.3 Using Special Algorithm Having Enhanced Security Specification -- 5.4 Using Second Storage -- 5.5 Security of Database -- 5.6 Biometrics with a Password/OTP/Card Access/Pin -- 6 How Addition of Biometrics Enhance the Security -- 6.1 Fast and Reliable Verification System -- 6.2 Accountability of the Individual -- 6.3 High Efficiency -- 6.4 Convenient -- 6.5 Adoptability of Future Growth of the Organization -- 7 Middleware and Software's Used in Biometrics -- 7.1 FSI -- 7.2 Healthcare -- 7.3 Manufacturing Industry -- 7.4 Service Industry -- 7.5 Government Authorities -- 8 Future Biometric Technologies -- 8.1 On-Spot DNA Test -- 8.2 Brain Wave Scanning -- 9 Advantages of Biometric -- 9.1 Safety and Security -- 9.2 Accuracy -- 9.3 ROI -- 9.4 Scalability -- 9.5 Screening -- 10 Disadvantages of Biometric -- 10.1 Recognition of Physical Traits -- 10.2 Rate of Error -- 10.3 Cost -- 10.4 Delay -- 10.5 Complexity -- 11 Conclusion -- References -- Enabling Technologies: A Transforming Action on Healthcare with IoT a Possible Revolutionizing -- 1 Introduction -- 1.1 The IoT Is Growing Everywhere -- 1.2 Smart Home Dares to Make Sense -- 1.3 Improving IoT in Healthcare -- 1.4 Why Would the Industry Benefit from Using IoT? -- 1.5 Applied Internet of Things in Healthcare -- 2 The Advantages of IoT in Healthcare -- 2.1 Cancer Therapy -- 2.2 Diabetes Management -- 3 Challenges for IoT in Healthcare -- 4 Conclusion -- References -- Automated and Curated Sack Count Leveraging Video Analysis on Moving Objects -- 1 Introduction -- 2 Problem Statement -- 2.1 Related Work -- 3 Proposed Approach -- 3.1 Model Development. 3.1.1 Step 1: Problem Definition. |
| Record Nr. | UNISA-996464424503316 |
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||