2022 7th National Scientific Conference on Applying New Technology in Green Buildings (ATiGB) / / Institute of Electrical and Electronics Engineers |
Pubbl/distr/stampa | Piscataway, N.J. : , : IEEE, , 2022 |
Descrizione fisica | 1 online resource : illustrations |
Disciplina | 720.47 |
Soggetto topico | Sustainable buildings |
ISBN | 1-66547-285-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | 2022 7th National Scientific Conference on Applying New Technology in Green Buildings |
Record Nr. | UNISA-996575082603316 |
Piscataway, N.J. : , : IEEE, , 2022 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advanced building technologies for sustainability [[electronic resource] /] / Asif Syed |
Autore | Syed Asif |
Pubbl/distr/stampa | Hoboken, N.J., : John Wiley & Sons, Inc., c2012 |
Descrizione fisica | 1 online resource (258 p.) |
Disciplina |
720.47
720/.47 |
Collana | Sustainable Design |
Soggetto topico |
Sustainable buildings
Sustainable design Building - Technological innovations |
Soggetto genere / forma | Electronic books. |
ISBN |
1-118-25980-7
1-280-67878-X 9786613655714 1-118-26019-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Advanced Building Technologies for Sustainability; Acknowledgments; Contents; Introduction; Chapter 1: Sustainability and Energy; Quality of Life Benefits; Finite Fossil Fuel Resources; Greenhouse Gases; Profits and Savings from Energy Efficiency; Site-to-Source Effect; New LEED Version 2009; Per Capita Energy Consumption; Building Energy End-Use Splits, People Use Energy; Carbon Footprint; Embodied Energy Versus Operational Energy; Funding Opportunities; Chapter 2: Radiant Cooling; History; Introduction; Why Radiant Cooling?; Applications; Public Spaces, Radiant Cooling Floors
Floor ConstructionOffice Buildings, Radiant Ceiling Panels; Laboratories: Radiant Ceiling Panels; Residential; College Dormitories; Hospitals; Radiant Cooling and Historic Preservation; Chapter 3: Displacement Ventilation; History; Introduction; Conventional or Mixed-Air Systems; Difference Between Displacement and Underfloor Air Distribution (UFAD); Applications; Large Public Spaces (Cafeterias, Dining Halls, Exhibit Spaces); Health-Care; Teaching Environment: Classroom; Performance Spaces and Theaters; Office Spaces; Chapter 4: Chilled Beams; Principle of Operation and Technology Benefits of Chilled BeamsEnergy Savings; Comfort and Noise; Space Savings; Flexible System for High Churn; Low Maintenance; Types of Chilled Beams; Passive Chilled Beams; Active Chilled Beams; Multiservice Chilled Beams; Chilled Beam Applications; Commercial Offices; Chilled Beam Use with Underfloor Air Distribution (UFAD) Applications; Hospital and Patient Rooms; Laboratory Applications; Chapter 5: Underfloor Air Distribution (UFAD); Validation of UFAD Designs with CFD Analysis; Cost of UFAD Systems; Myths about UFAD Systems; Impact on Buildings; Floor-to-Floor Height UFAD Impact on Building Core SpacesCritical Issues of UFAD Design; Chapter 6: Displacement Induction Units (DIU); Benefits of Displacement Induction Units; Low Energy Consumption; Thermal Comfort; Lower Noise Levels; Space Savings; Improved Indoor Environment; Lower Electrical Costs; Lower Maintenance; History of Induction Units; The Difference Between Induction Units and Displacement Induction Units; Applications; The Teaching Environment (Classrooms); Health Care: Patient Rooms (New Hospital); Health Care: Patient Rooms (Existing Hospital Renovations); Perimeter Buildings Operable Windows in BuildingsChapter 7: High-Performance Envelope; Engaging and Nonengaging Envelopes; High-Performance Envelope Definition; Most Common Energy Codes: ANSI and ASHRAE 90.1; Climate Zones; Compliance with Energy Codes; Comcheck and Rescheck; Simulation by the Energy Cost Budget Method; Glazing Characteristics; U-Value: Heat Transmission Coefficient BTU/HR SQ.FT.F; Solar Heat Gain Coefficient (SHGC); Visible Light Transmittance (VLT); Light to Solar Gain Ratio (LSG); How to Exceed the Mandatory Code Performance; Operable Windows; External Shades and Overhangs Solar-Responsive Blinds and Shades |
Record Nr. | UNINA-9910452040803321 |
Syed Asif
![]() |
||
Hoboken, N.J., : John Wiley & Sons, Inc., c2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced building technologies for sustainability [[electronic resource] /] / Asif Syed |
Autore | Syed Asif |
Pubbl/distr/stampa | Hoboken, N.J., : John Wiley & Sons, Inc., c2012 |
Descrizione fisica | 1 online resource (258 p.) |
Disciplina |
720.47
720/.47 |
Collana | Sustainable Design |
Soggetto topico |
Sustainable buildings
Sustainable design Building - Technological innovations |
ISBN |
1-118-25980-7
1-280-67878-X 9786613655714 1-118-26019-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Advanced Building Technologies for Sustainability; Acknowledgments; Contents; Introduction; Chapter 1: Sustainability and Energy; Quality of Life Benefits; Finite Fossil Fuel Resources; Greenhouse Gases; Profits and Savings from Energy Efficiency; Site-to-Source Effect; New LEED Version 2009; Per Capita Energy Consumption; Building Energy End-Use Splits, People Use Energy; Carbon Footprint; Embodied Energy Versus Operational Energy; Funding Opportunities; Chapter 2: Radiant Cooling; History; Introduction; Why Radiant Cooling?; Applications; Public Spaces, Radiant Cooling Floors
Floor ConstructionOffice Buildings, Radiant Ceiling Panels; Laboratories: Radiant Ceiling Panels; Residential; College Dormitories; Hospitals; Radiant Cooling and Historic Preservation; Chapter 3: Displacement Ventilation; History; Introduction; Conventional or Mixed-Air Systems; Difference Between Displacement and Underfloor Air Distribution (UFAD); Applications; Large Public Spaces (Cafeterias, Dining Halls, Exhibit Spaces); Health-Care; Teaching Environment: Classroom; Performance Spaces and Theaters; Office Spaces; Chapter 4: Chilled Beams; Principle of Operation and Technology Benefits of Chilled BeamsEnergy Savings; Comfort and Noise; Space Savings; Flexible System for High Churn; Low Maintenance; Types of Chilled Beams; Passive Chilled Beams; Active Chilled Beams; Multiservice Chilled Beams; Chilled Beam Applications; Commercial Offices; Chilled Beam Use with Underfloor Air Distribution (UFAD) Applications; Hospital and Patient Rooms; Laboratory Applications; Chapter 5: Underfloor Air Distribution (UFAD); Validation of UFAD Designs with CFD Analysis; Cost of UFAD Systems; Myths about UFAD Systems; Impact on Buildings; Floor-to-Floor Height UFAD Impact on Building Core SpacesCritical Issues of UFAD Design; Chapter 6: Displacement Induction Units (DIU); Benefits of Displacement Induction Units; Low Energy Consumption; Thermal Comfort; Lower Noise Levels; Space Savings; Improved Indoor Environment; Lower Electrical Costs; Lower Maintenance; History of Induction Units; The Difference Between Induction Units and Displacement Induction Units; Applications; The Teaching Environment (Classrooms); Health Care: Patient Rooms (New Hospital); Health Care: Patient Rooms (Existing Hospital Renovations); Perimeter Buildings Operable Windows in BuildingsChapter 7: High-Performance Envelope; Engaging and Nonengaging Envelopes; High-Performance Envelope Definition; Most Common Energy Codes: ANSI and ASHRAE 90.1; Climate Zones; Compliance with Energy Codes; Comcheck and Rescheck; Simulation by the Energy Cost Budget Method; Glazing Characteristics; U-Value: Heat Transmission Coefficient BTU/HR SQ.FT.F; Solar Heat Gain Coefficient (SHGC); Visible Light Transmittance (VLT); Light to Solar Gain Ratio (LSG); How to Exceed the Mandatory Code Performance; Operable Windows; External Shades and Overhangs Solar-Responsive Blinds and Shades |
Record Nr. | UNINA-9910779150103321 |
Syed Asif
![]() |
||
Hoboken, N.J., : John Wiley & Sons, Inc., c2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Applications of energy harvesting technologies in buildings / / Joseph W. Matiko, Stephen P. Beeby |
Autore | Matiko Joseph W. |
Pubbl/distr/stampa | Norwood, Massachusetts : , : Artech House, , [2017] |
Descrizione fisica | 1 online resource (216 pages) : illustrations, charts, photographs |
Disciplina | 720.47 |
Collana | Artech House integrated microsystems series |
Soggetto topico |
Sustainable buildings
Sustainable architecture Energy harvesting |
Soggetto genere / forma | Electronic books. |
ISBN | 1-63081-410-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Applications of Energy Harvesting Technologies in Buildings; Contents; 1 Introduction; 1.1 Background and Motivation; 1.2 Home and Building Automation ; 1.2.1 Wireless BAS; 1.2.2 Wireless Home Automation ; 1.3 The Scope of the Book; References; 2 Energy Harvesting in the Built Environments; 2.1 Introduction; 2.2 Energy-Harvesting Sources in Built Environments; 2.2.1 Energy Harvesting from Light Sources; 2.2.2 Energy Harvesting from Thermal Sources; 2.2.3 Energy Harvesting from Periodic Kinetic Sources; 2.2.4 Energy Harvesting from Intermittent Kinetic Sources
2.2.5 Energy Harvesting from Electromagnetic Waves2.2.6 Energy Harvesting from Inductive Power Transfer; 2.2.7 Energy Harvesting from Airflow; 2.2.8 Hybrid Energy Harvesting; 2.2.9 Summary of Energy Levels in Built Environments; 2.3 Empirical Energy Measurements in the Built Environments; 2.3.1 Energy Levels in Residential and Commercial Buildings; 2.3.2 Comparison of Power Levels Reported in the Literature and Those Obtained Imperially; 2.4 Energy-Harvesting Sources on the Human Body; 2.5 Conclusions; References 3 Solar Cell-Powered Sensor Node for Emotion Monitoring Systems in Ambient-Assisted Living Environment3.1 Introduction; 3.1.1 Overview of Ambient-Assisted Living; 3.1.2 Energy Harvesting-Powered Wearable EEG Devices; 3.1.3 Energy Harvesting in the Context of Ambient-Assisted Living; 3.2 Case Study: Wearable Emotion Sensor Node Powered by Energy Harvesting; 3.2.1 System Overview; 3.2.2 EEG Electrodes; 3.2.3 EEG Amplifier; 3.2.4 Wireless Microcontroller; 3.2.5 Energy Harvester Design; 3.2.6 Integration of Electrodes and Energy Harvester on the Headband; 3.3 Results and Discussion 3.3.1 Energy-Harvester Testing Results3.3.2 Real-Time Emotion Experiment Results; 3.4 Conclusions; References; 4 Thermoelectric Energy Harvesting and Power Management Circuit; 4.1 Introduction; 4.2 Thermoelectric Device; 4.3 Thermoelectric Energy-Harvesting Power Management; 4.3.1 Power Management System Structure; 4.3.2 Charge Pump Converter; 4.3.3 Step-Up DC-DC Switching Regulator; 4.4 Conclusions ; References; 5 Inductive Power Transfer and Case Study; 5.1 Introduction; 5.2 Inductive Link Theory ; 5.2.1 Principle of Operation of an Inductive WPT System 5.2.2 Modeling and Circuit Theory of Inductive Links5.2.3 Coil Construction and Quality Factor ; 5.2.4 Resonant Coupling; 5.3 Primary-Side Coil Drivers; 5.3.1 Introduction; 5.3.2 Definitions; 5.3.3 Class D Inverters; 5.3.4 Class E Inverters; 5.4 Secondary Coil Receivers ; 5.4.1 Introduction; 5.4.2 Half-Wave and Full-Wave Rectifiers; 5.4.3 Receiver Impedance Emulation ; 5.5 Safety Issues in IPT; 5.5.1 Human Exposure Limits; 5.6 Case Study: Long-Range Inductive Power Transfer ; 5.6.1 Magnetics Design and Measurement ; 5.6.2 Receiver Electronics; 5.6.3 Transmitter Power Control |
Record Nr. | UNINA-9910466026803321 |
Matiko Joseph W.
![]() |
||
Norwood, Massachusetts : , : Artech House, , [2017] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Applications of energy harvesting technologies in buildings / / Joseph W. Matiko, Stephen P. Beeby |
Autore | Matiko Joseph W. |
Pubbl/distr/stampa | Norwood, Massachusetts : , : Artech House, , [2017] |
Descrizione fisica | 1 online resource (216 pages) : illustrations, charts, photographs |
Disciplina | 720.47 |
Collana | Artech House integrated microsystems series |
Soggetto topico |
Sustainable buildings
Sustainable architecture Energy harvesting |
ISBN |
1-5231-4620-6
1-63081-410-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Applications of Energy Harvesting Technologies in Buildings; Contents; 1 Introduction; 1.1 Background and Motivation; 1.2 Home and Building Automation ; 1.2.1 Wireless BAS; 1.2.2 Wireless Home Automation ; 1.3 The Scope of the Book; References; 2 Energy Harvesting in the Built Environments; 2.1 Introduction; 2.2 Energy-Harvesting Sources in Built Environments; 2.2.1 Energy Harvesting from Light Sources; 2.2.2 Energy Harvesting from Thermal Sources; 2.2.3 Energy Harvesting from Periodic Kinetic Sources; 2.2.4 Energy Harvesting from Intermittent Kinetic Sources
2.2.5 Energy Harvesting from Electromagnetic Waves2.2.6 Energy Harvesting from Inductive Power Transfer; 2.2.7 Energy Harvesting from Airflow; 2.2.8 Hybrid Energy Harvesting; 2.2.9 Summary of Energy Levels in Built Environments; 2.3 Empirical Energy Measurements in the Built Environments; 2.3.1 Energy Levels in Residential and Commercial Buildings; 2.3.2 Comparison of Power Levels Reported in the Literature and Those Obtained Imperially; 2.4 Energy-Harvesting Sources on the Human Body; 2.5 Conclusions; References 3 Solar Cell-Powered Sensor Node for Emotion Monitoring Systems in Ambient-Assisted Living Environment3.1 Introduction; 3.1.1 Overview of Ambient-Assisted Living; 3.1.2 Energy Harvesting-Powered Wearable EEG Devices; 3.1.3 Energy Harvesting in the Context of Ambient-Assisted Living; 3.2 Case Study: Wearable Emotion Sensor Node Powered by Energy Harvesting; 3.2.1 System Overview; 3.2.2 EEG Electrodes; 3.2.3 EEG Amplifier; 3.2.4 Wireless Microcontroller; 3.2.5 Energy Harvester Design; 3.2.6 Integration of Electrodes and Energy Harvester on the Headband; 3.3 Results and Discussion 3.3.1 Energy-Harvester Testing Results3.3.2 Real-Time Emotion Experiment Results; 3.4 Conclusions; References; 4 Thermoelectric Energy Harvesting and Power Management Circuit; 4.1 Introduction; 4.2 Thermoelectric Device; 4.3 Thermoelectric Energy-Harvesting Power Management; 4.3.1 Power Management System Structure; 4.3.2 Charge Pump Converter; 4.3.3 Step-Up DC-DC Switching Regulator; 4.4 Conclusions ; References; 5 Inductive Power Transfer and Case Study; 5.1 Introduction; 5.2 Inductive Link Theory ; 5.2.1 Principle of Operation of an Inductive WPT System 5.2.2 Modeling and Circuit Theory of Inductive Links5.2.3 Coil Construction and Quality Factor ; 5.2.4 Resonant Coupling; 5.3 Primary-Side Coil Drivers; 5.3.1 Introduction; 5.3.2 Definitions; 5.3.3 Class D Inverters; 5.3.4 Class E Inverters; 5.4 Secondary Coil Receivers ; 5.4.1 Introduction; 5.4.2 Half-Wave and Full-Wave Rectifiers; 5.4.3 Receiver Impedance Emulation ; 5.5 Safety Issues in IPT; 5.5.1 Human Exposure Limits; 5.6 Case Study: Long-Range Inductive Power Transfer ; 5.6.1 Magnetics Design and Measurement ; 5.6.2 Receiver Electronics; 5.6.3 Transmitter Power Control |
Record Nr. | UNINA-9910792712203321 |
Matiko Joseph W.
![]() |
||
Norwood, Massachusetts : , : Artech House, , [2017] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Applications of energy harvesting technologies in buildings / / Joseph W. Matiko, Stephen P. Beeby |
Autore | Matiko Joseph W. |
Pubbl/distr/stampa | Norwood, Massachusetts : , : Artech House, , [2017] |
Descrizione fisica | 1 online resource (216 pages) : illustrations, charts, photographs |
Disciplina | 720.47 |
Collana | Artech House integrated microsystems series |
Soggetto topico |
Sustainable buildings
Sustainable architecture Energy harvesting |
ISBN |
1-5231-4620-6
1-63081-410-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Applications of Energy Harvesting Technologies in Buildings; Contents; 1 Introduction; 1.1 Background and Motivation; 1.2 Home and Building Automation ; 1.2.1 Wireless BAS; 1.2.2 Wireless Home Automation ; 1.3 The Scope of the Book; References; 2 Energy Harvesting in the Built Environments; 2.1 Introduction; 2.2 Energy-Harvesting Sources in Built Environments; 2.2.1 Energy Harvesting from Light Sources; 2.2.2 Energy Harvesting from Thermal Sources; 2.2.3 Energy Harvesting from Periodic Kinetic Sources; 2.2.4 Energy Harvesting from Intermittent Kinetic Sources
2.2.5 Energy Harvesting from Electromagnetic Waves2.2.6 Energy Harvesting from Inductive Power Transfer; 2.2.7 Energy Harvesting from Airflow; 2.2.8 Hybrid Energy Harvesting; 2.2.9 Summary of Energy Levels in Built Environments; 2.3 Empirical Energy Measurements in the Built Environments; 2.3.1 Energy Levels in Residential and Commercial Buildings; 2.3.2 Comparison of Power Levels Reported in the Literature and Those Obtained Imperially; 2.4 Energy-Harvesting Sources on the Human Body; 2.5 Conclusions; References 3 Solar Cell-Powered Sensor Node for Emotion Monitoring Systems in Ambient-Assisted Living Environment3.1 Introduction; 3.1.1 Overview of Ambient-Assisted Living; 3.1.2 Energy Harvesting-Powered Wearable EEG Devices; 3.1.3 Energy Harvesting in the Context of Ambient-Assisted Living; 3.2 Case Study: Wearable Emotion Sensor Node Powered by Energy Harvesting; 3.2.1 System Overview; 3.2.2 EEG Electrodes; 3.2.3 EEG Amplifier; 3.2.4 Wireless Microcontroller; 3.2.5 Energy Harvester Design; 3.2.6 Integration of Electrodes and Energy Harvester on the Headband; 3.3 Results and Discussion 3.3.1 Energy-Harvester Testing Results3.3.2 Real-Time Emotion Experiment Results; 3.4 Conclusions; References; 4 Thermoelectric Energy Harvesting and Power Management Circuit; 4.1 Introduction; 4.2 Thermoelectric Device; 4.3 Thermoelectric Energy-Harvesting Power Management; 4.3.1 Power Management System Structure; 4.3.2 Charge Pump Converter; 4.3.3 Step-Up DC-DC Switching Regulator; 4.4 Conclusions ; References; 5 Inductive Power Transfer and Case Study; 5.1 Introduction; 5.2 Inductive Link Theory ; 5.2.1 Principle of Operation of an Inductive WPT System 5.2.2 Modeling and Circuit Theory of Inductive Links5.2.3 Coil Construction and Quality Factor ; 5.2.4 Resonant Coupling; 5.3 Primary-Side Coil Drivers; 5.3.1 Introduction; 5.3.2 Definitions; 5.3.3 Class D Inverters; 5.3.4 Class E Inverters; 5.4 Secondary Coil Receivers ; 5.4.1 Introduction; 5.4.2 Half-Wave and Full-Wave Rectifiers; 5.4.3 Receiver Impedance Emulation ; 5.5 Safety Issues in IPT; 5.5.1 Human Exposure Limits; 5.6 Case Study: Long-Range Inductive Power Transfer ; 5.6.1 Magnetics Design and Measurement ; 5.6.2 Receiver Electronics; 5.6.3 Transmitter Power Control |
Record Nr. | UNINA-9910815078303321 |
Matiko Joseph W.
![]() |
||
Norwood, Massachusetts : , : Artech House, , [2017] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Assessing green building performance: a post occupancy evaluation of 12 GSA buildings |
Pubbl/distr/stampa | Washington, DC : , : GSA Public Buildings Service, Office of Applied Science, Applied Research, , 2008 |
Descrizione fisica | 1 online resource (19 pages) : color illustrations |
Soggetto topico |
Sustainable buildings - United States
Sustainable buildings - Economic aspects - United States Buildings - Energy conservation - United States Buildings - Energy conservation Sustainable buildings |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Assessing green building performance |
Record Nr. | UNINA-9910703998503321 |
Washington, DC : , : GSA Public Buildings Service, Office of Applied Science, Applied Research, , 2008 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Assessment of energy-efficient building details for seismic regions / / Boris Azinović, Vojko Kilar, David Koren |
Autore | Azinović Boris |
Pubbl/distr/stampa | Cham, : Springer International Publishing AG, 2022 |
Descrizione fisica | 1 online resource (214 p.) : illustrations (chiefly color) |
Altri autori (Persone) |
KilarVojko
KorenDavid |
Collana | Springer tracts in civil engineering |
Soggetto topico |
Architecture and energy conservation
Buildings - Earthquake effects Earthquake resistant design Sustainable buildings |
Soggetto non controllato |
energy-efficient buildings
earthquake engineering structural design energy-efficiency earthquake-resistant construction |
ISBN | 3-030-97556-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910566452703321 |
Azinović Boris
![]() |
||
Cham, : Springer International Publishing AG, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Assessment, diagnosis and service life prediction / / Ana Silva, editor |
Pubbl/distr/stampa | [Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , [2023] |
Descrizione fisica | 1 online resource (202 pages) |
Disciplina | 696 |
Soggetto topico |
Buildings - Environmental engineering
Sustainable buildings |
ISBN | 3-0365-6236-2 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | About the Editor -- Assessment, Diagnosis and Service Life Prediction -- Moisture Accumulation in Building Fac¸ades Exposed to Accelerated Artificial Climatic Ageing-A Complementary Analysis to NT Build 495 -- Improvement of the Inspection Interval of Highway Bridges through Predictive Models of Deterioration -- How Long Can a Wood Flooring System Last? -- Degradation Assessment of Natural Stone Claddings over Their Service Life: Comparison between Tehran (Iran) and Lisbon (Portugal) -- Most Frequent Problems of Building Structures of Urban Apartment Buildings from 2nd Half of 19th Century and the Start of 20th Century -- Critical Analysis about Emerging Technologies for Building's Fac¸ade Inspection -- Microclimate of Air Cavities in Ventilated Roof and Fac¸ade Systems in Nordic Climates -- Structural Performance Assessment of Innovative Hollow Cellular Panels for Modular Flooring System -- Insurance Policies for Condition-Based Maintenance Plans of ETICS -- Integrated Building Maintenance and Safety Framework: Educational and Public Facilities Case Study. |
Record Nr. | UNINA-9910647242103321 |
[Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , [2023] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Bauphysik-Kalender 2023 : Schwerpunkt: Nachhaltigkeit |
Autore | Fouad Nabil A |
Pubbl/distr/stampa | Newark : , : Wilhelm Ernst & Sohn Verlag fur Architektur und Technische, , 2023 |
Descrizione fisica | 1 online resource (767 pages) |
Disciplina | 720.47 |
Collana | Bauphysik-Kalender |
Soggetto topico |
Sustainable buildings - Design and construction
Sustainable buildings |
ISBN |
3-433-61128-9
3-433-61127-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ger |
Nota di contenuto |
Cover -- Vorwort -- Inhaltsübersicht -- Inhaltsverzeichnis -- Autor:innenverzeichnis -- A Allgemeines und Normung -- A1 Nachhaltigkeit und Klimaschutz im Hochbau - vom Energieverbrauch in der Nutzung zur Lebenszyklusanalyse -- 1 Einführung - jetzt handeln -- 1.1 Hintergrund -- 1.2 Klimaschutz und Ressourcenschonung -- 2 Nachhaltigkeitsbewertung im Hochbau -- 2.1 Begriffsdefinition und Entwicklung des Begriffs -- 2.2 Nachhaltigkeitszertifizierung -- 2.3 Zertifizierungssysteme der zweiten Generation DGNB, NaWoh, BNB, BNK -- 3 Klimaschutzaspekte in der Nachhaltigkeitsbewertung -- 3.1 Bewertung der ökologischen Qualität im Rahmen der Nachhaltigkeitsbewertung -- 3.2 Kernthema Lebenszyklusbetrachtung (LCA) -- 3.3 Aktuelle Trends -- 4 Beispielhafte Bewertung im Wohnungsbau -- 4.1 Rahmenbedingungen -- 4.2 Gebäudeübersicht -- 4.3 Einbezug von Nutzerstrom und Einbezug/Bewertung der Photovoltaikanlage -- 4.4 Sonderthema „Gebäude mit Kellergeschoss" -- 5 Ergebnisse -- 5.1 LCA-Ergebnisse GWP -- 5.2 LCA-Ergebnisse PENRT -- 5.3 Sensitivitätsanalyse zum Energieverbrauch im Betrieb einschließlich Modul B6.3 -- 5.4 Ergebnisse Sonderthema „Gebäude mit Kellergeschoss" -- 6 Diskussion und Schlussfolgerung -- 7 Fazit -- Literatur -- A2 Lebenszyklus von Gebäuden - die Zukunft des Bauens -- 1 Einleitung -- 2 Regulierung zur Energieeinsparung von Gebäuden -- 2.1 Wärmeschutzverordnung -- 2.2 Heizungsanlagen- und Heizungsbetriebs-Verordnung -- 2.3 Energieeinsparverordnung -- 2.4 Erneuerbare-Energien-Wärmegesetz -- 2.5 Gebäudeenergiegesetz -- 2.6 Auswirkungen von Energiestandards in der Nutzungsphase eines Gebäudes -- 3 Umweltwirkung im Lebenszyklus von Gebäuden -- 3.1 Grundlagen der Gebäude-Ökobilanzierung -- 3.2 Ökobilanz im Rahmen der Nachhaltigkeitszertifizierung -- 3.3 Eingabedaten für die Ökobilanz -- 3.4 Relevanz der Grauen Emissionen -- 4 Ausblick -- Literatur.
A3 Klimagerechtes Bauen -- 1 Einleitung -- 2 Grundlagen des klimagerechten Bauens -- 2.1 Klimafaktoren -- 2.2 Klimazonen und bauliche Anforderungen -- 3 Klimagerechte Nullemissionsgebäude -- 3.1 Baustoffe und Komponenten -- 3.2 Gebäudebetrieb -- 4 Informationen und Planungswerkzeuge -- 4.1 Nichtklimatische Informationen -- 4.2 Klimadaten -- 4.3 Planungsinstrumente -- Literatur -- A4 Die Ermittlung der Ressourceneffizienz und der Klimabelastung von Bauwerken -- 1 Einleitung -- 2 Ökologische Bewertung von Gebäuden mit Ressourcen- und Klimafußabdrücken -- 2.1 Ressourcennutzung in Bewertungssystemen für Nachhaltigkeit im Baubereich -- 2.2 Ökobilanzielle Bestimmung von Fußabdrücken -- 2.3 Ressourcenfußabdrücke -- 2.4 Klimafußabdruck -- 3 Anwendungsbeispiele -- 3.1 Beton -- 3.2 Außenwandaufbauten -- 3.3 Technologievergleich Heizungssysteme -- 3.4 Maßnahmen der Kreislaufwirtschaft: Betonrecycling -- 3.5 Fußabdruckanalyse mit Building Information Modeling (BIM) -- 4 Zusammenfassung und Ausblick -- Literatur -- B Dämmstoffe -- B1 Dämmstoffe im Bauwesen -- 1 Physikalische Grundlagen -- 1.1 Wärmeschutz -- 1.2 Feuchteschutz -- 1.3 Schallschutz -- 1.4 Brandschutz -- 1.5 Rohdichte -- 2 Dämmstoffe im Bauwesen -- 2.1 Dämmstoffübersicht -- 2.2 Aspekte für die Auswahl von Dämmstoffen -- 2.3 Zusatzstoffe -- 2.4 Entwicklung der Dämmschichtdicken in Dach und Wand in den europäischen Ländern -- 3 Beschreibung von Dämmstoffen -- 3.1 Aerogel -- 3.2 Baumwolle -- 3.3 Blähglas -- 3.4 Blähton -- 3.5 Flachs -- 3.6 Getreidegranulat -- 3.7 Hanf -- 3.8 Holzfaser -- 3.9 Holzwolle-Leichtbauplatten und Holzwolle-Mehrschichtplatten -- 3.10 Kalziumsilikat -- 3.11 Kokos -- 3.12 Kork -- 3.13 Melaminharzschaum -- 3.14 Mineralschaum -- 3.15 Mineralwolle -- 3.16 Perlite -- 3.17 Phenolharz -- 3.18 Polyesterfaser -- 3.19 Polystyrol, expandiert (EPS) -- 3.20 Polystyrol, extrudiert (XPS). 3.21 Polyurethan (PUR, Hartschaum und Ortschaum) -- 3.22 Pyrogene Kieselsäure -- 3.23 Schafwolle -- 3.24 Schaumglas -- 3.25 Schilfrohr -- 3.26 Seegras -- 3.27 Stroh -- 3.28 Transparente Wärmedämmung -- 3.29 Vacuum Insulating Sandwich (VIS) -- 3.30 Vakuumisolationspaneele (VIP) -- 3.31 Vermiculite -- 3.32 Zellelastomere -- 3.33 Zellulose -- Literatur -- B2 Nachhaltige Dämmstoffe aus nachwachsenden Rohstoffen im Bauwesen -- 1 Einleitung -- 2 Eigenschaften nachhaltiger Dämmstoffe -- 2.1 Marktanteile -- 2.2 Primärenergieinhalt, CO2-Emissionen -- 2.3 Rohstoffe, Transport -- 2.4 Schädliche Inhaltsstoffe -- 2.5 Entsorgung, Rückführung in die natürlichen Stoffkreisläufe, Wiederverwertung -- 2.6 Zertifizierung und Gütesiegel -- 2.7 Vor- und Nachteile -- 2.8 Anwendungsgebiete -- 3 Anforderungen und Regelwerke -- 3.1 Anforderungen an den Wärmeschutz und äquivalente Dämmschichtdicken -- 3.2 Anwendungsbezogene Anforderungen, Produktnormen und bauaufsichtliche Zulassungen -- 3.3 Anforderungen an den Brandschutz -- 4 Physikalische Grundlagen und Kennwerte -- 4.1 Rohdichte -- 4.2 Wärmeschutztechnische Kennwerte -- 4.3 Feuchteschutztechnische Kennwerte -- 4.4 Brandschutztechnische Eigenschaften -- 4.5 Schallschutztechnische Eigenschaften -- 4.6 Sonstige Eigenschaften -- 5 Nachhaltige Dämmstoffe -- 5.1 Dämmstoffe aus Flachsfasern -- 5.2 Dämmstoffe aus Hanffasern -- 5.3 Holzfaserdämmplatten -- 5.4 Holzwolle-Leichtbauplatten -- 5.5 Kokosfaserplatten -- 5.6 Korkplatten -- 5.7 Schafwolle -- 5.8 Schilfrohrplatten -- 5.9 Strohplatten -- 5.10 Zellulose -- 6 Zusammenfassung -- Literatur -- B3 Recycling von Wärmedämmstoffen -- 1 Einführung -- 2 Rahmenbedingungen -- 2.1 Politische Ziele -- 2.2 Europäische Ebene -- 2.3 Nationale Gesetze und Verordnungen -- 3 Recyclingquote und Kreislaufwirtschaft am Bau -- 3.1 Abfallaufkommen Bau -- 3.2 Verarbeitungsmenge Kunststoffe am Bau. 3.3 Recycling der Kunststoffabfälle aus Bau- und Abbruchabfällen -- 4 Dämmstoffmarkt -- 5 Recycling von Dämmstoffen -- 5.1 Steinwolle -- 5.2 Glaswolle -- 5.3 Expandierte Polystyrol (EPS)-Dämmstoffe -- 5.4 Extrudiertes Polystyrol (XPS) -- 5.5 Polyurethan-Hartschaum (PU) -- 5.6 Phenolharz-Hartschaum (PF) -- 5.7 Holzfaserdämmstoffe (WF) -- 5.8 Mineralische Dämmplatten -- 6 Weitere Entwicklung und Ausblick -- Literatur -- C Konstruktionen und Baustoffe -- C1 Aufstockung versus Abriss und Neubau - Vergleich von ökologischen und ökonomischen Auswirkungen -- 1 Aufstockungen aus Sicht des nachhaltigen Bauens -- 1.1 Flächeninanspruchnahme -- 1.2 Energetische Sanierung des Bestandes -- 1.3 Weiternutzung von bestehenden Strukturen -- 2 Wohnraumpotenziale von Aufstockungen -- 3 Problemstellung Abriss-Neubau gegenüber Aufstockung -- 4 Ökologische Bilanzierung von Aufstockungsmaßnahmen -- 5 Lebenszykluskostenrechnung von Aufstockungsmaßnahmen -- 6 Beschreibung der Vergleichsvarianten -- 6.1 Beschreibung der Aufstockungsmaßnahme -- 6.2 Beschreibung der Neubaumaßnahme -- 7 Vergleich der Ökobilanzergebnisse -- 7.1 Ökobilanzergebnisse Aufstockung -- 7.2 Ökobilanzergebnisse Abriss-Neubau -- 8 Vergleich der Lebenszykluskosten -- 8.1 Lebenszykluskostenergebnisse Aufstockung -- 8.2 Lebenszykluskostenergebnisse Abriss-Neubau -- 9 Zusammenfassende Bewertung -- Literatur -- C2 Nachhaltiger Betonbau -- 1 Einführung -- 2 Nachhaltigkeitsbewertung -- 2.1 Ökobilanzierung von Baustoffen und Bauwerken -- 2.2 Nachhaltigkeitszertifizierungssysteme -- 2.3 Umweltverträglichkeit -- 2.4 Bauphysikalische Aspekte der Nachhaltigkeitsbewertung -- 3 Nachhaltigkeit auf der Baustoffebene -- 3.1 Einführung -- 3.2 Beton -- 3.3 Bewehrung -- 3.4 Einflüsse aus Herstellung, Transport und Einbau des Betons -- 4 Nachhaltigkeit auf der Bauteil- und Bauwerksebene -- 4.1 Einführung. 4.2 Optimierungsgestütztes Entwerfen und Bemessen -- 4.3 Aspekte der Herstellung und Bauverfahren materialeffizienter Bauteile -- 4.4 Materialeffiziente Bauteile aus Carbonbeton -- 4.5 Bauphysikalische Eigenschaften und bauphysikalische Bemessung von Betonbauteilen -- 5 CO2-Bilanzierung über den Bauwerkslebenszyklus -- 5.1 Nutzungsdauer eines Bauwerks -- 5.2 Ermittlung des GWP über den Bauwerkslebenszyklus -- 5.3 Beispiel: Autobahnbrücke -- 6 Zusammenfassung -- Literatur -- C3 Ganzheitliche Ökobilanzierung von Wohnquartieren in Holzbauweise -- 1 Hintergrund -- 2 Charakterisierung der Untersuchungsvarianten -- 2.1 Architekturkonzepte -- 2.2 Konstruktionsvarianten -- 2.3 Versorgungsvarianten der untersuchten Bauvorhaben -- 2.4 Übersicht der Untersuchungsvarianten -- 3 Ökobilanzierung -- 3.1 Methodik -- 3.2 Ergebnisse der Ökobilanzierung -- 4 Einfluss von Forstwirtschaft und Regionalität auf das Treibhauspotenzial -- 4.1 Einfluss forstwirtschaftlicher Produktionsvarianten -- 4.2 Einfluss der Regionalität -- 4.3 Potenziale und Auswirkungen einer verstärkten Holznutzung im mehrgeschossigen Wohnungsbau auf die Strukturen des ländlichen Raumes -- 5 Wirtschaftlichkeitsuntersuchung -- 5.1 Methodik -- 5.2 Ergebnisse der Wirtschaftlichkeitsuntersuchung -- 6 Fazit -- Literatur -- C4 Bewertung von Bauelementen und Baustoffen für nachhaltiges Bauen -- 1 Klimawandel fordert energetisch optimierte Gebäude -- 2 Die Zukunft fordert eine nachhaltige und kreislauffähige Wirtschaft -- 2.1 Nationale Regelwerke -- 2.2 Vorgaben und Strategien der EU (Green Deal) -- 3 Nachhaltigkeitszertifizierung von Gebäuden -- 3.1 BNB - Bewertungssystem Nachhaltiges Bauen -- 3.2 DGNB - Deutsches Gütesiegel Nachhaltiges Bauen -- 3.3 LEED - Leadership in Energy und Environmental Design -- 3.4 BREEAM - BRE Environmental Assessment Method -- 4 Anforderungen und Nachweise an Bauprodukte. 4.1 Product Category Rules (PCR). |
Record Nr. | UNINA-9910830962303321 |
Fouad Nabil A
![]() |
||
Newark : , : Wilhelm Ernst & Sohn Verlag fur Architektur und Technische, , 2023 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|