2022 7th National Scientific Conference on Applying New Technology in Green Buildings (ATiGB) / / Institute of Electrical and Electronics Engineers
| 2022 7th National Scientific Conference on Applying New Technology in Green Buildings (ATiGB) / / Institute of Electrical and Electronics Engineers |
| Pubbl/distr/stampa | Piscataway, N.J. : , : IEEE, , 2022 |
| Descrizione fisica | 1 online resource : illustrations |
| Disciplina | 720.47 |
| Soggetto topico | Sustainable buildings |
| ISBN | 1-66547-285-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | 2022 7th National Scientific Conference on Applying New Technology in Green Buildings |
| Record Nr. | UNISA-996575082603316 |
| Piscataway, N.J. : , : IEEE, , 2022 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Achieving sustainability in construction : proceedings of the international conference held at the University of Dundee, Scotland, UK on 5-6 July 2005 / / edited by Ravindra K. Dhir, Tom D. Dyer and Moray D. Newlands
| Achieving sustainability in construction : proceedings of the international conference held at the University of Dundee, Scotland, UK on 5-6 July 2005 / / edited by Ravindra K. Dhir, Tom D. Dyer and Moray D. Newlands |
| Pubbl/distr/stampa | London : , : Thomas Telford, , 2005 |
| Descrizione fisica | 1 online resource (459 p.) |
| Disciplina | 693/.5 |
| Altri autori (Persone) |
DhirRavindra K
DyerThomas D NewlandsMoray D |
| Soggetto topico |
Concrete construction - Environmental aspects
Sustainable buildings |
| ISBN |
1-68015-037-5
1-281-99155-4 9786611991555 0-7277-3998-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9911006628903321 |
| London : , : Thomas Telford, , 2005 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced building technologies for sustainability [[electronic resource] /] / Asif Syed
| Advanced building technologies for sustainability [[electronic resource] /] / Asif Syed |
| Autore | Syed Asif |
| Pubbl/distr/stampa | Hoboken, N.J., : John Wiley & Sons, Inc., c2012 |
| Descrizione fisica | 1 online resource (258 p.) |
| Disciplina |
720.47
720/.47 |
| Collana | Sustainable Design |
| Soggetto topico |
Sustainable buildings
Sustainable design Building - Technological innovations |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-118-25980-7
1-280-67878-X 9786613655714 1-118-26019-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Advanced Building Technologies for Sustainability; Acknowledgments; Contents; Introduction; Chapter 1: Sustainability and Energy; Quality of Life Benefits; Finite Fossil Fuel Resources; Greenhouse Gases; Profits and Savings from Energy Efficiency; Site-to-Source Effect; New LEED Version 2009; Per Capita Energy Consumption; Building Energy End-Use Splits, People Use Energy; Carbon Footprint; Embodied Energy Versus Operational Energy; Funding Opportunities; Chapter 2: Radiant Cooling; History; Introduction; Why Radiant Cooling?; Applications; Public Spaces, Radiant Cooling Floors
Floor ConstructionOffice Buildings, Radiant Ceiling Panels; Laboratories: Radiant Ceiling Panels; Residential; College Dormitories; Hospitals; Radiant Cooling and Historic Preservation; Chapter 3: Displacement Ventilation; History; Introduction; Conventional or Mixed-Air Systems; Difference Between Displacement and Underfloor Air Distribution (UFAD); Applications; Large Public Spaces (Cafeterias, Dining Halls, Exhibit Spaces); Health-Care; Teaching Environment: Classroom; Performance Spaces and Theaters; Office Spaces; Chapter 4: Chilled Beams; Principle of Operation and Technology Benefits of Chilled BeamsEnergy Savings; Comfort and Noise; Space Savings; Flexible System for High Churn; Low Maintenance; Types of Chilled Beams; Passive Chilled Beams; Active Chilled Beams; Multiservice Chilled Beams; Chilled Beam Applications; Commercial Offices; Chilled Beam Use with Underfloor Air Distribution (UFAD) Applications; Hospital and Patient Rooms; Laboratory Applications; Chapter 5: Underfloor Air Distribution (UFAD); Validation of UFAD Designs with CFD Analysis; Cost of UFAD Systems; Myths about UFAD Systems; Impact on Buildings; Floor-to-Floor Height UFAD Impact on Building Core SpacesCritical Issues of UFAD Design; Chapter 6: Displacement Induction Units (DIU); Benefits of Displacement Induction Units; Low Energy Consumption; Thermal Comfort; Lower Noise Levels; Space Savings; Improved Indoor Environment; Lower Electrical Costs; Lower Maintenance; History of Induction Units; The Difference Between Induction Units and Displacement Induction Units; Applications; The Teaching Environment (Classrooms); Health Care: Patient Rooms (New Hospital); Health Care: Patient Rooms (Existing Hospital Renovations); Perimeter Buildings Operable Windows in BuildingsChapter 7: High-Performance Envelope; Engaging and Nonengaging Envelopes; High-Performance Envelope Definition; Most Common Energy Codes: ANSI and ASHRAE 90.1; Climate Zones; Compliance with Energy Codes; Comcheck and Rescheck; Simulation by the Energy Cost Budget Method; Glazing Characteristics; U-Value: Heat Transmission Coefficient BTU/HR SQ.FT.F; Solar Heat Gain Coefficient (SHGC); Visible Light Transmittance (VLT); Light to Solar Gain Ratio (LSG); How to Exceed the Mandatory Code Performance; Operable Windows; External Shades and Overhangs Solar-Responsive Blinds and Shades |
| Record Nr. | UNINA-9910452040803321 |
Syed Asif
|
||
| Hoboken, N.J., : John Wiley & Sons, Inc., c2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced building technologies for sustainability [[electronic resource] /] / Asif Syed
| Advanced building technologies for sustainability [[electronic resource] /] / Asif Syed |
| Autore | Syed Asif |
| Pubbl/distr/stampa | Hoboken, N.J., : John Wiley & Sons, Inc., c2012 |
| Descrizione fisica | 1 online resource (258 p.) |
| Disciplina |
720.47
720/.47 |
| Collana | Sustainable Design |
| Soggetto topico |
Sustainable buildings
Sustainable design Building - Technological innovations |
| ISBN |
1-118-25980-7
1-280-67878-X 9786613655714 1-118-26019-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Advanced Building Technologies for Sustainability; Acknowledgments; Contents; Introduction; Chapter 1: Sustainability and Energy; Quality of Life Benefits; Finite Fossil Fuel Resources; Greenhouse Gases; Profits and Savings from Energy Efficiency; Site-to-Source Effect; New LEED Version 2009; Per Capita Energy Consumption; Building Energy End-Use Splits, People Use Energy; Carbon Footprint; Embodied Energy Versus Operational Energy; Funding Opportunities; Chapter 2: Radiant Cooling; History; Introduction; Why Radiant Cooling?; Applications; Public Spaces, Radiant Cooling Floors
Floor ConstructionOffice Buildings, Radiant Ceiling Panels; Laboratories: Radiant Ceiling Panels; Residential; College Dormitories; Hospitals; Radiant Cooling and Historic Preservation; Chapter 3: Displacement Ventilation; History; Introduction; Conventional or Mixed-Air Systems; Difference Between Displacement and Underfloor Air Distribution (UFAD); Applications; Large Public Spaces (Cafeterias, Dining Halls, Exhibit Spaces); Health-Care; Teaching Environment: Classroom; Performance Spaces and Theaters; Office Spaces; Chapter 4: Chilled Beams; Principle of Operation and Technology Benefits of Chilled BeamsEnergy Savings; Comfort and Noise; Space Savings; Flexible System for High Churn; Low Maintenance; Types of Chilled Beams; Passive Chilled Beams; Active Chilled Beams; Multiservice Chilled Beams; Chilled Beam Applications; Commercial Offices; Chilled Beam Use with Underfloor Air Distribution (UFAD) Applications; Hospital and Patient Rooms; Laboratory Applications; Chapter 5: Underfloor Air Distribution (UFAD); Validation of UFAD Designs with CFD Analysis; Cost of UFAD Systems; Myths about UFAD Systems; Impact on Buildings; Floor-to-Floor Height UFAD Impact on Building Core SpacesCritical Issues of UFAD Design; Chapter 6: Displacement Induction Units (DIU); Benefits of Displacement Induction Units; Low Energy Consumption; Thermal Comfort; Lower Noise Levels; Space Savings; Improved Indoor Environment; Lower Electrical Costs; Lower Maintenance; History of Induction Units; The Difference Between Induction Units and Displacement Induction Units; Applications; The Teaching Environment (Classrooms); Health Care: Patient Rooms (New Hospital); Health Care: Patient Rooms (Existing Hospital Renovations); Perimeter Buildings Operable Windows in BuildingsChapter 7: High-Performance Envelope; Engaging and Nonengaging Envelopes; High-Performance Envelope Definition; Most Common Energy Codes: ANSI and ASHRAE 90.1; Climate Zones; Compliance with Energy Codes; Comcheck and Rescheck; Simulation by the Energy Cost Budget Method; Glazing Characteristics; U-Value: Heat Transmission Coefficient BTU/HR SQ.FT.F; Solar Heat Gain Coefficient (SHGC); Visible Light Transmittance (VLT); Light to Solar Gain Ratio (LSG); How to Exceed the Mandatory Code Performance; Operable Windows; External Shades and Overhangs Solar-Responsive Blinds and Shades |
| Record Nr. | UNINA-9910779150103321 |
Syed Asif
|
||
| Hoboken, N.J., : John Wiley & Sons, Inc., c2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced building technologies for sustainability / / Asif Syed
| Advanced building technologies for sustainability / / Asif Syed |
| Autore | Syed Asif |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Hoboken, N.J., : John Wiley & Sons, Inc., c2012 |
| Descrizione fisica | 1 online resource (258 p.) |
| Disciplina |
720.47
720/.47 |
| Collana | Sustainable Design |
| Soggetto topico |
Sustainable buildings
Sustainable design Building - Technological innovations |
| ISBN |
9786613655714
9781118259801 1118259807 9781280678783 128067878X 9781118260197 1118260198 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Advanced Building Technologies for Sustainability; Acknowledgments; Contents; Introduction; Chapter 1: Sustainability and Energy; Quality of Life Benefits; Finite Fossil Fuel Resources; Greenhouse Gases; Profits and Savings from Energy Efficiency; Site-to-Source Effect; New LEED Version 2009; Per Capita Energy Consumption; Building Energy End-Use Splits, People Use Energy; Carbon Footprint; Embodied Energy Versus Operational Energy; Funding Opportunities; Chapter 2: Radiant Cooling; History; Introduction; Why Radiant Cooling?; Applications; Public Spaces, Radiant Cooling Floors
Floor ConstructionOffice Buildings, Radiant Ceiling Panels; Laboratories: Radiant Ceiling Panels; Residential; College Dormitories; Hospitals; Radiant Cooling and Historic Preservation; Chapter 3: Displacement Ventilation; History; Introduction; Conventional or Mixed-Air Systems; Difference Between Displacement and Underfloor Air Distribution (UFAD); Applications; Large Public Spaces (Cafeterias, Dining Halls, Exhibit Spaces); Health-Care; Teaching Environment: Classroom; Performance Spaces and Theaters; Office Spaces; Chapter 4: Chilled Beams; Principle of Operation and Technology Benefits of Chilled BeamsEnergy Savings; Comfort and Noise; Space Savings; Flexible System for High Churn; Low Maintenance; Types of Chilled Beams; Passive Chilled Beams; Active Chilled Beams; Multiservice Chilled Beams; Chilled Beam Applications; Commercial Offices; Chilled Beam Use with Underfloor Air Distribution (UFAD) Applications; Hospital and Patient Rooms; Laboratory Applications; Chapter 5: Underfloor Air Distribution (UFAD); Validation of UFAD Designs with CFD Analysis; Cost of UFAD Systems; Myths about UFAD Systems; Impact on Buildings; Floor-to-Floor Height UFAD Impact on Building Core SpacesCritical Issues of UFAD Design; Chapter 6: Displacement Induction Units (DIU); Benefits of Displacement Induction Units; Low Energy Consumption; Thermal Comfort; Lower Noise Levels; Space Savings; Improved Indoor Environment; Lower Electrical Costs; Lower Maintenance; History of Induction Units; The Difference Between Induction Units and Displacement Induction Units; Applications; The Teaching Environment (Classrooms); Health Care: Patient Rooms (New Hospital); Health Care: Patient Rooms (Existing Hospital Renovations); Perimeter Buildings Operable Windows in BuildingsChapter 7: High-Performance Envelope; Engaging and Nonengaging Envelopes; High-Performance Envelope Definition; Most Common Energy Codes: ANSI and ASHRAE 90.1; Climate Zones; Compliance with Energy Codes; Comcheck and Rescheck; Simulation by the Energy Cost Budget Method; Glazing Characteristics; U-Value: Heat Transmission Coefficient BTU/HR SQ.FT.F; Solar Heat Gain Coefficient (SHGC); Visible Light Transmittance (VLT); Light to Solar Gain Ratio (LSG); How to Exceed the Mandatory Code Performance; Operable Windows; External Shades and Overhangs Solar-Responsive Blinds and Shades |
| Record Nr. | UNINA-9910974484103321 |
Syed Asif
|
||
| Hoboken, N.J., : John Wiley & Sons, Inc., c2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applications of energy harvesting technologies in buildings / / Joseph W. Matiko, Stephen P. Beeby
| Applications of energy harvesting technologies in buildings / / Joseph W. Matiko, Stephen P. Beeby |
| Autore | Matiko Joseph W. |
| Pubbl/distr/stampa | Norwood, Massachusetts : , : Artech House, , [2017] |
| Descrizione fisica | 1 online resource (216 pages) : illustrations, charts, photographs |
| Disciplina | 720.47 |
| Collana | Artech House integrated microsystems series |
| Soggetto topico |
Sustainable buildings
Sustainable architecture Energy harvesting |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-63081-410-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Applications of Energy Harvesting Technologies in Buildings; Contents; 1 Introduction; 1.1 Background and Motivation; 1.2 Home and Building Automation ; 1.2.1 Wireless BAS; 1.2.2 Wireless Home Automation ; 1.3 The Scope of the Book; References; 2 Energy Harvesting in the Built Environments; 2.1 Introduction; 2.2 Energy-Harvesting Sources in Built Environments; 2.2.1 Energy Harvesting from Light Sources; 2.2.2 Energy Harvesting from Thermal Sources; 2.2.3 Energy Harvesting from Periodic Kinetic Sources; 2.2.4 Energy Harvesting from Intermittent Kinetic Sources
2.2.5 Energy Harvesting from Electromagnetic Waves2.2.6 Energy Harvesting from Inductive Power Transfer; 2.2.7 Energy Harvesting from Airflow; 2.2.8 Hybrid Energy Harvesting; 2.2.9 Summary of Energy Levels in Built Environments; 2.3 Empirical Energy Measurements in the Built Environments; 2.3.1 Energy Levels in Residential and Commercial Buildings; 2.3.2 Comparison of Power Levels Reported in the Literature and Those Obtained Imperially; 2.4 Energy-Harvesting Sources on the Human Body; 2.5 Conclusions; References 3 Solar Cell-Powered Sensor Node for Emotion Monitoring Systems in Ambient-Assisted Living Environment3.1 Introduction; 3.1.1 Overview of Ambient-Assisted Living; 3.1.2 Energy Harvesting-Powered Wearable EEG Devices; 3.1.3 Energy Harvesting in the Context of Ambient-Assisted Living; 3.2 Case Study: Wearable Emotion Sensor Node Powered by Energy Harvesting; 3.2.1 System Overview; 3.2.2 EEG Electrodes; 3.2.3 EEG Amplifier; 3.2.4 Wireless Microcontroller; 3.2.5 Energy Harvester Design; 3.2.6 Integration of Electrodes and Energy Harvester on the Headband; 3.3 Results and Discussion 3.3.1 Energy-Harvester Testing Results3.3.2 Real-Time Emotion Experiment Results; 3.4 Conclusions; References; 4 Thermoelectric Energy Harvesting and Power Management Circuit; 4.1 Introduction; 4.2 Thermoelectric Device; 4.3 Thermoelectric Energy-Harvesting Power Management; 4.3.1 Power Management System Structure; 4.3.2 Charge Pump Converter; 4.3.3 Step-Up DC-DC Switching Regulator; 4.4 Conclusions ; References; 5 Inductive Power Transfer and Case Study; 5.1 Introduction; 5.2 Inductive Link Theory ; 5.2.1 Principle of Operation of an Inductive WPT System 5.2.2 Modeling and Circuit Theory of Inductive Links5.2.3 Coil Construction and Quality Factor ; 5.2.4 Resonant Coupling; 5.3 Primary-Side Coil Drivers; 5.3.1 Introduction; 5.3.2 Definitions; 5.3.3 Class D Inverters; 5.3.4 Class E Inverters; 5.4 Secondary Coil Receivers ; 5.4.1 Introduction; 5.4.2 Half-Wave and Full-Wave Rectifiers; 5.4.3 Receiver Impedance Emulation ; 5.5 Safety Issues in IPT; 5.5.1 Human Exposure Limits; 5.6 Case Study: Long-Range Inductive Power Transfer ; 5.6.1 Magnetics Design and Measurement ; 5.6.2 Receiver Electronics; 5.6.3 Transmitter Power Control |
| Record Nr. | UNINA-9910466026803321 |
Matiko Joseph W.
|
||
| Norwood, Massachusetts : , : Artech House, , [2017] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applications of energy harvesting technologies in buildings / / Joseph W. Matiko, Stephen P. Beeby
| Applications of energy harvesting technologies in buildings / / Joseph W. Matiko, Stephen P. Beeby |
| Autore | Matiko Joseph W. |
| Pubbl/distr/stampa | Norwood, Massachusetts : , : Artech House, , [2017] |
| Descrizione fisica | 1 online resource (216 pages) : illustrations, charts, photographs |
| Disciplina | 720.47 |
| Collana | Artech House integrated microsystems series |
| Soggetto topico |
Sustainable buildings
Sustainable architecture Energy harvesting |
| ISBN |
1-5231-4620-6
1-63081-410-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Applications of Energy Harvesting Technologies in Buildings; Contents; 1 Introduction; 1.1 Background and Motivation; 1.2 Home and Building Automation ; 1.2.1 Wireless BAS; 1.2.2 Wireless Home Automation ; 1.3 The Scope of the Book; References; 2 Energy Harvesting in the Built Environments; 2.1 Introduction; 2.2 Energy-Harvesting Sources in Built Environments; 2.2.1 Energy Harvesting from Light Sources; 2.2.2 Energy Harvesting from Thermal Sources; 2.2.3 Energy Harvesting from Periodic Kinetic Sources; 2.2.4 Energy Harvesting from Intermittent Kinetic Sources
2.2.5 Energy Harvesting from Electromagnetic Waves2.2.6 Energy Harvesting from Inductive Power Transfer; 2.2.7 Energy Harvesting from Airflow; 2.2.8 Hybrid Energy Harvesting; 2.2.9 Summary of Energy Levels in Built Environments; 2.3 Empirical Energy Measurements in the Built Environments; 2.3.1 Energy Levels in Residential and Commercial Buildings; 2.3.2 Comparison of Power Levels Reported in the Literature and Those Obtained Imperially; 2.4 Energy-Harvesting Sources on the Human Body; 2.5 Conclusions; References 3 Solar Cell-Powered Sensor Node for Emotion Monitoring Systems in Ambient-Assisted Living Environment3.1 Introduction; 3.1.1 Overview of Ambient-Assisted Living; 3.1.2 Energy Harvesting-Powered Wearable EEG Devices; 3.1.3 Energy Harvesting in the Context of Ambient-Assisted Living; 3.2 Case Study: Wearable Emotion Sensor Node Powered by Energy Harvesting; 3.2.1 System Overview; 3.2.2 EEG Electrodes; 3.2.3 EEG Amplifier; 3.2.4 Wireless Microcontroller; 3.2.5 Energy Harvester Design; 3.2.6 Integration of Electrodes and Energy Harvester on the Headband; 3.3 Results and Discussion 3.3.1 Energy-Harvester Testing Results3.3.2 Real-Time Emotion Experiment Results; 3.4 Conclusions; References; 4 Thermoelectric Energy Harvesting and Power Management Circuit; 4.1 Introduction; 4.2 Thermoelectric Device; 4.3 Thermoelectric Energy-Harvesting Power Management; 4.3.1 Power Management System Structure; 4.3.2 Charge Pump Converter; 4.3.3 Step-Up DC-DC Switching Regulator; 4.4 Conclusions ; References; 5 Inductive Power Transfer and Case Study; 5.1 Introduction; 5.2 Inductive Link Theory ; 5.2.1 Principle of Operation of an Inductive WPT System 5.2.2 Modeling and Circuit Theory of Inductive Links5.2.3 Coil Construction and Quality Factor ; 5.2.4 Resonant Coupling; 5.3 Primary-Side Coil Drivers; 5.3.1 Introduction; 5.3.2 Definitions; 5.3.3 Class D Inverters; 5.3.4 Class E Inverters; 5.4 Secondary Coil Receivers ; 5.4.1 Introduction; 5.4.2 Half-Wave and Full-Wave Rectifiers; 5.4.3 Receiver Impedance Emulation ; 5.5 Safety Issues in IPT; 5.5.1 Human Exposure Limits; 5.6 Case Study: Long-Range Inductive Power Transfer ; 5.6.1 Magnetics Design and Measurement ; 5.6.2 Receiver Electronics; 5.6.3 Transmitter Power Control |
| Record Nr. | UNINA-9910792712203321 |
Matiko Joseph W.
|
||
| Norwood, Massachusetts : , : Artech House, , [2017] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applications of energy harvesting technologies in buildings / / Joseph W. Matiko, Stephen P. Beeby
| Applications of energy harvesting technologies in buildings / / Joseph W. Matiko, Stephen P. Beeby |
| Autore | Matiko Joseph W. |
| Pubbl/distr/stampa | Norwood, Massachusetts : , : Artech House, , [2017] |
| Descrizione fisica | 1 online resource (216 pages) : illustrations, charts, photographs |
| Disciplina | 720.47 |
| Collana | Artech House integrated microsystems series |
| Soggetto topico |
Sustainable buildings
Sustainable architecture Energy harvesting |
| ISBN |
1-5231-4620-6
1-63081-410-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Applications of Energy Harvesting Technologies in Buildings; Contents; 1 Introduction; 1.1 Background and Motivation; 1.2 Home and Building Automation ; 1.2.1 Wireless BAS; 1.2.2 Wireless Home Automation ; 1.3 The Scope of the Book; References; 2 Energy Harvesting in the Built Environments; 2.1 Introduction; 2.2 Energy-Harvesting Sources in Built Environments; 2.2.1 Energy Harvesting from Light Sources; 2.2.2 Energy Harvesting from Thermal Sources; 2.2.3 Energy Harvesting from Periodic Kinetic Sources; 2.2.4 Energy Harvesting from Intermittent Kinetic Sources
2.2.5 Energy Harvesting from Electromagnetic Waves2.2.6 Energy Harvesting from Inductive Power Transfer; 2.2.7 Energy Harvesting from Airflow; 2.2.8 Hybrid Energy Harvesting; 2.2.9 Summary of Energy Levels in Built Environments; 2.3 Empirical Energy Measurements in the Built Environments; 2.3.1 Energy Levels in Residential and Commercial Buildings; 2.3.2 Comparison of Power Levels Reported in the Literature and Those Obtained Imperially; 2.4 Energy-Harvesting Sources on the Human Body; 2.5 Conclusions; References 3 Solar Cell-Powered Sensor Node for Emotion Monitoring Systems in Ambient-Assisted Living Environment3.1 Introduction; 3.1.1 Overview of Ambient-Assisted Living; 3.1.2 Energy Harvesting-Powered Wearable EEG Devices; 3.1.3 Energy Harvesting in the Context of Ambient-Assisted Living; 3.2 Case Study: Wearable Emotion Sensor Node Powered by Energy Harvesting; 3.2.1 System Overview; 3.2.2 EEG Electrodes; 3.2.3 EEG Amplifier; 3.2.4 Wireless Microcontroller; 3.2.5 Energy Harvester Design; 3.2.6 Integration of Electrodes and Energy Harvester on the Headband; 3.3 Results and Discussion 3.3.1 Energy-Harvester Testing Results3.3.2 Real-Time Emotion Experiment Results; 3.4 Conclusions; References; 4 Thermoelectric Energy Harvesting and Power Management Circuit; 4.1 Introduction; 4.2 Thermoelectric Device; 4.3 Thermoelectric Energy-Harvesting Power Management; 4.3.1 Power Management System Structure; 4.3.2 Charge Pump Converter; 4.3.3 Step-Up DC-DC Switching Regulator; 4.4 Conclusions ; References; 5 Inductive Power Transfer and Case Study; 5.1 Introduction; 5.2 Inductive Link Theory ; 5.2.1 Principle of Operation of an Inductive WPT System 5.2.2 Modeling and Circuit Theory of Inductive Links5.2.3 Coil Construction and Quality Factor ; 5.2.4 Resonant Coupling; 5.3 Primary-Side Coil Drivers; 5.3.1 Introduction; 5.3.2 Definitions; 5.3.3 Class D Inverters; 5.3.4 Class E Inverters; 5.4 Secondary Coil Receivers ; 5.4.1 Introduction; 5.4.2 Half-Wave and Full-Wave Rectifiers; 5.4.3 Receiver Impedance Emulation ; 5.5 Safety Issues in IPT; 5.5.1 Human Exposure Limits; 5.6 Case Study: Long-Range Inductive Power Transfer ; 5.6.1 Magnetics Design and Measurement ; 5.6.2 Receiver Electronics; 5.6.3 Transmitter Power Control |
| Record Nr. | UNINA-9910815078303321 |
Matiko Joseph W.
|
||
| Norwood, Massachusetts : , : Artech House, , [2017] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applied Building Performance Simulation
| Applied Building Performance Simulation |
| Autore | Clarke Joe |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Stevenage : , : Institution of Engineering & Technology, , 2024 |
| Descrizione fisica | 1 online resource (543 pages) |
| Altri autori (Persone) |
CockroftJeremy
HandJon McGheeRaheal |
| Collana | Built Environment Series |
| Soggetto topico |
Simulation methods
Sustainable buildings |
| ISBN |
1-83724-338-7
1-83953-166-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Contents -- Foreword -- Preface -- Acknowledgements -- Acronyms and abbreviations -- About the authors -- 1. Sustainable energy systems challenge -- 2. Building performance simulation -- 3. Performance assessment requirements -- 4. Application in practice -- 5. High-resolution modelling and simulation -- 6. Example applications -- 7. Urban energy schemes -- 8. Regional/national scale energy action -- 9. Smart grids with active demand management -- 10. Urban energy systems deployment -- 11. Tackling the performance gap -- 12. Virtual world to reality -- 13. Strategic renewables -- 14. Conclusions and future perspectives -- Appendix A: Theoretical basis of ESP-r -- Appendix B: Model file organisation and data quality assurance -- Appendix C: Example ESP-r automation script -- Appendix D: Material properties -- Appendix E: Knowledge-based user interfaces -- Index |
| Record Nr. | UNINA-9911006717703321 |
Clarke Joe
|
||
| Stevenage : , : Institution of Engineering & Technology, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Assessing green building performance: a post occupancy evaluation of 12 GSA buildings
| Assessing green building performance: a post occupancy evaluation of 12 GSA buildings |
| Pubbl/distr/stampa | Washington, DC : , : GSA Public Buildings Service, Office of Applied Science, Applied Research, , 2008 |
| Descrizione fisica | 1 online resource (19 pages) : color illustrations |
| Soggetto topico |
Sustainable buildings - United States
Sustainable buildings - Economic aspects - United States Buildings - Energy conservation - United States Buildings - Energy conservation Sustainable buildings |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Assessing green building performance |
| Record Nr. | UNINA-9910703998503321 |
| Washington, DC : , : GSA Public Buildings Service, Office of Applied Science, Applied Research, , 2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||