top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2022 7th National Scientific Conference on Applying New Technology in Green Buildings (ATiGB) / / Institute of Electrical and Electronics Engineers
2022 7th National Scientific Conference on Applying New Technology in Green Buildings (ATiGB) / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, N.J. : , : IEEE, , 2022
Descrizione fisica 1 online resource : illustrations
Disciplina 720.47
Soggetto topico Sustainable buildings
ISBN 1-66547-285-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2022 7th National Scientific Conference on Applying New Technology in Green Buildings
Record Nr. UNISA-996575082603316
Piscataway, N.J. : , : IEEE, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced building technologies for sustainability [[electronic resource] /] / Asif Syed
Advanced building technologies for sustainability [[electronic resource] /] / Asif Syed
Autore Syed Asif
Pubbl/distr/stampa Hoboken, N.J., : John Wiley & Sons, Inc., c2012
Descrizione fisica 1 online resource (258 p.)
Disciplina 720.47
720/.47
Collana Sustainable Design
Soggetto topico Sustainable buildings
Sustainable design
Building - Technological innovations
Soggetto genere / forma Electronic books.
ISBN 1-118-25980-7
1-280-67878-X
9786613655714
1-118-26019-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advanced Building Technologies for Sustainability; Acknowledgments; Contents; Introduction; Chapter 1: Sustainability and Energy; Quality of Life Benefits; Finite Fossil Fuel Resources; Greenhouse Gases; Profits and Savings from Energy Efficiency; Site-to-Source Effect; New LEED Version 2009; Per Capita Energy Consumption; Building Energy End-Use Splits, People Use Energy; Carbon Footprint; Embodied Energy Versus Operational Energy; Funding Opportunities; Chapter 2: Radiant Cooling; History; Introduction; Why Radiant Cooling?; Applications; Public Spaces, Radiant Cooling Floors
Floor ConstructionOffice Buildings, Radiant Ceiling Panels; Laboratories: Radiant Ceiling Panels; Residential; College Dormitories; Hospitals; Radiant Cooling and Historic Preservation; Chapter 3: Displacement Ventilation; History; Introduction; Conventional or Mixed-Air Systems; Difference Between Displacement and Underfloor Air Distribution (UFAD); Applications; Large Public Spaces (Cafeterias, Dining Halls, Exhibit Spaces); Health-Care; Teaching Environment: Classroom; Performance Spaces and Theaters; Office Spaces; Chapter 4: Chilled Beams; Principle of Operation and Technology
Benefits of Chilled BeamsEnergy Savings; Comfort and Noise; Space Savings; Flexible System for High Churn; Low Maintenance; Types of Chilled Beams; Passive Chilled Beams; Active Chilled Beams; Multiservice Chilled Beams; Chilled Beam Applications; Commercial Offices; Chilled Beam Use with Underfloor Air Distribution (UFAD) Applications; Hospital and Patient Rooms; Laboratory Applications; Chapter 5: Underfloor Air Distribution (UFAD); Validation of UFAD Designs with CFD Analysis; Cost of UFAD Systems; Myths about UFAD Systems; Impact on Buildings; Floor-to-Floor Height
UFAD Impact on Building Core SpacesCritical Issues of UFAD Design; Chapter 6: Displacement Induction Units (DIU); Benefits of Displacement Induction Units; Low Energy Consumption; Thermal Comfort; Lower Noise Levels; Space Savings; Improved Indoor Environment; Lower Electrical Costs; Lower Maintenance; History of Induction Units; The Difference Between Induction Units and Displacement Induction Units; Applications; The Teaching Environment (Classrooms); Health Care: Patient Rooms (New Hospital); Health Care: Patient Rooms (Existing Hospital Renovations); Perimeter Buildings
Operable Windows in BuildingsChapter 7: High-Performance Envelope; Engaging and Nonengaging Envelopes; High-Performance Envelope Definition; Most Common Energy Codes: ANSI and ASHRAE 90.1; Climate Zones; Compliance with Energy Codes; Comcheck and Rescheck; Simulation by the Energy Cost Budget Method; Glazing Characteristics; U-Value: Heat Transmission Coefficient BTU/HR SQ.FT.F; Solar Heat Gain Coefficient (SHGC); Visible Light Transmittance (VLT); Light to Solar Gain Ratio (LSG); How to Exceed the Mandatory Code Performance; Operable Windows; External Shades and Overhangs
Solar-Responsive Blinds and Shades
Record Nr. UNINA-9910452040803321
Syed Asif  
Hoboken, N.J., : John Wiley & Sons, Inc., c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced building technologies for sustainability [[electronic resource] /] / Asif Syed
Advanced building technologies for sustainability [[electronic resource] /] / Asif Syed
Autore Syed Asif
Pubbl/distr/stampa Hoboken, N.J., : John Wiley & Sons, Inc., c2012
Descrizione fisica 1 online resource (258 p.)
Disciplina 720.47
720/.47
Collana Sustainable Design
Soggetto topico Sustainable buildings
Sustainable design
Building - Technological innovations
ISBN 1-118-25980-7
1-280-67878-X
9786613655714
1-118-26019-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advanced Building Technologies for Sustainability; Acknowledgments; Contents; Introduction; Chapter 1: Sustainability and Energy; Quality of Life Benefits; Finite Fossil Fuel Resources; Greenhouse Gases; Profits and Savings from Energy Efficiency; Site-to-Source Effect; New LEED Version 2009; Per Capita Energy Consumption; Building Energy End-Use Splits, People Use Energy; Carbon Footprint; Embodied Energy Versus Operational Energy; Funding Opportunities; Chapter 2: Radiant Cooling; History; Introduction; Why Radiant Cooling?; Applications; Public Spaces, Radiant Cooling Floors
Floor ConstructionOffice Buildings, Radiant Ceiling Panels; Laboratories: Radiant Ceiling Panels; Residential; College Dormitories; Hospitals; Radiant Cooling and Historic Preservation; Chapter 3: Displacement Ventilation; History; Introduction; Conventional or Mixed-Air Systems; Difference Between Displacement and Underfloor Air Distribution (UFAD); Applications; Large Public Spaces (Cafeterias, Dining Halls, Exhibit Spaces); Health-Care; Teaching Environment: Classroom; Performance Spaces and Theaters; Office Spaces; Chapter 4: Chilled Beams; Principle of Operation and Technology
Benefits of Chilled BeamsEnergy Savings; Comfort and Noise; Space Savings; Flexible System for High Churn; Low Maintenance; Types of Chilled Beams; Passive Chilled Beams; Active Chilled Beams; Multiservice Chilled Beams; Chilled Beam Applications; Commercial Offices; Chilled Beam Use with Underfloor Air Distribution (UFAD) Applications; Hospital and Patient Rooms; Laboratory Applications; Chapter 5: Underfloor Air Distribution (UFAD); Validation of UFAD Designs with CFD Analysis; Cost of UFAD Systems; Myths about UFAD Systems; Impact on Buildings; Floor-to-Floor Height
UFAD Impact on Building Core SpacesCritical Issues of UFAD Design; Chapter 6: Displacement Induction Units (DIU); Benefits of Displacement Induction Units; Low Energy Consumption; Thermal Comfort; Lower Noise Levels; Space Savings; Improved Indoor Environment; Lower Electrical Costs; Lower Maintenance; History of Induction Units; The Difference Between Induction Units and Displacement Induction Units; Applications; The Teaching Environment (Classrooms); Health Care: Patient Rooms (New Hospital); Health Care: Patient Rooms (Existing Hospital Renovations); Perimeter Buildings
Operable Windows in BuildingsChapter 7: High-Performance Envelope; Engaging and Nonengaging Envelopes; High-Performance Envelope Definition; Most Common Energy Codes: ANSI and ASHRAE 90.1; Climate Zones; Compliance with Energy Codes; Comcheck and Rescheck; Simulation by the Energy Cost Budget Method; Glazing Characteristics; U-Value: Heat Transmission Coefficient BTU/HR SQ.FT.F; Solar Heat Gain Coefficient (SHGC); Visible Light Transmittance (VLT); Light to Solar Gain Ratio (LSG); How to Exceed the Mandatory Code Performance; Operable Windows; External Shades and Overhangs
Solar-Responsive Blinds and Shades
Record Nr. UNINA-9910779150103321
Syed Asif  
Hoboken, N.J., : John Wiley & Sons, Inc., c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced building technologies for sustainability [[electronic resource] /] / Asif Syed
Advanced building technologies for sustainability [[electronic resource] /] / Asif Syed
Autore Syed Asif
Pubbl/distr/stampa Hoboken, N.J., : John Wiley & Sons, Inc., c2012
Descrizione fisica 1 online resource (258 p.)
Disciplina 720.47
720/.47
Collana Sustainable Design
Soggetto topico Sustainable buildings
Sustainable design
Building - Technological innovations
ISBN 1-118-25980-7
1-280-67878-X
9786613655714
1-118-26019-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advanced Building Technologies for Sustainability; Acknowledgments; Contents; Introduction; Chapter 1: Sustainability and Energy; Quality of Life Benefits; Finite Fossil Fuel Resources; Greenhouse Gases; Profits and Savings from Energy Efficiency; Site-to-Source Effect; New LEED Version 2009; Per Capita Energy Consumption; Building Energy End-Use Splits, People Use Energy; Carbon Footprint; Embodied Energy Versus Operational Energy; Funding Opportunities; Chapter 2: Radiant Cooling; History; Introduction; Why Radiant Cooling?; Applications; Public Spaces, Radiant Cooling Floors
Floor ConstructionOffice Buildings, Radiant Ceiling Panels; Laboratories: Radiant Ceiling Panels; Residential; College Dormitories; Hospitals; Radiant Cooling and Historic Preservation; Chapter 3: Displacement Ventilation; History; Introduction; Conventional or Mixed-Air Systems; Difference Between Displacement and Underfloor Air Distribution (UFAD); Applications; Large Public Spaces (Cafeterias, Dining Halls, Exhibit Spaces); Health-Care; Teaching Environment: Classroom; Performance Spaces and Theaters; Office Spaces; Chapter 4: Chilled Beams; Principle of Operation and Technology
Benefits of Chilled BeamsEnergy Savings; Comfort and Noise; Space Savings; Flexible System for High Churn; Low Maintenance; Types of Chilled Beams; Passive Chilled Beams; Active Chilled Beams; Multiservice Chilled Beams; Chilled Beam Applications; Commercial Offices; Chilled Beam Use with Underfloor Air Distribution (UFAD) Applications; Hospital and Patient Rooms; Laboratory Applications; Chapter 5: Underfloor Air Distribution (UFAD); Validation of UFAD Designs with CFD Analysis; Cost of UFAD Systems; Myths about UFAD Systems; Impact on Buildings; Floor-to-Floor Height
UFAD Impact on Building Core SpacesCritical Issues of UFAD Design; Chapter 6: Displacement Induction Units (DIU); Benefits of Displacement Induction Units; Low Energy Consumption; Thermal Comfort; Lower Noise Levels; Space Savings; Improved Indoor Environment; Lower Electrical Costs; Lower Maintenance; History of Induction Units; The Difference Between Induction Units and Displacement Induction Units; Applications; The Teaching Environment (Classrooms); Health Care: Patient Rooms (New Hospital); Health Care: Patient Rooms (Existing Hospital Renovations); Perimeter Buildings
Operable Windows in BuildingsChapter 7: High-Performance Envelope; Engaging and Nonengaging Envelopes; High-Performance Envelope Definition; Most Common Energy Codes: ANSI and ASHRAE 90.1; Climate Zones; Compliance with Energy Codes; Comcheck and Rescheck; Simulation by the Energy Cost Budget Method; Glazing Characteristics; U-Value: Heat Transmission Coefficient BTU/HR SQ.FT.F; Solar Heat Gain Coefficient (SHGC); Visible Light Transmittance (VLT); Light to Solar Gain Ratio (LSG); How to Exceed the Mandatory Code Performance; Operable Windows; External Shades and Overhangs
Solar-Responsive Blinds and Shades
Record Nr. UNINA-9910822823103321
Syed Asif  
Hoboken, N.J., : John Wiley & Sons, Inc., c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications of energy harvesting technologies in buildings / / Joseph W. Matiko, Stephen P. Beeby
Applications of energy harvesting technologies in buildings / / Joseph W. Matiko, Stephen P. Beeby
Autore Matiko Joseph W.
Pubbl/distr/stampa Norwood, Massachusetts : , : Artech House, , [2017]
Descrizione fisica 1 online resource (216 pages) : illustrations, charts, photographs
Disciplina 720.47
Collana Artech House integrated microsystems series
Soggetto topico Sustainable buildings
Sustainable architecture
Energy harvesting
Soggetto genere / forma Electronic books.
ISBN 1-63081-410-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Applications of Energy Harvesting Technologies in Buildings; Contents; 1 Introduction; 1.1 Background and Motivation; 1.2 Home and Building Automation ; 1.2.1 Wireless BAS; 1.2.2 Wireless Home Automation ; 1.3 The Scope of the Book; References; 2 Energy Harvesting in the Built Environments; 2.1 Introduction; 2.2 Energy-Harvesting Sources in Built Environments; 2.2.1 Energy Harvesting from Light Sources; 2.2.2 Energy Harvesting from Thermal Sources; 2.2.3 Energy Harvesting from Periodic Kinetic Sources; 2.2.4 Energy Harvesting from Intermittent Kinetic Sources
2.2.5 Energy Harvesting from Electromagnetic Waves2.2.6 Energy Harvesting from Inductive Power Transfer; 2.2.7 Energy Harvesting from Airflow; 2.2.8 Hybrid Energy Harvesting; 2.2.9 Summary of Energy Levels in Built Environments; 2.3 Empirical Energy Measurements in the Built Environments; 2.3.1 Energy Levels in Residential and Commercial Buildings; 2.3.2 Comparison of Power Levels Reported in the Literature and Those Obtained Imperially; 2.4 Energy-Harvesting Sources on the Human Body; 2.5 Conclusions; References
3 Solar Cell-Powered Sensor Node for Emotion Monitoring Systems in Ambient-Assisted Living Environment3.1 Introduction; 3.1.1 Overview of Ambient-Assisted Living; 3.1.2 Energy Harvesting-Powered Wearable EEG Devices; 3.1.3 Energy Harvesting in the Context of Ambient-Assisted Living; 3.2 Case Study: Wearable Emotion Sensor Node Powered by Energy Harvesting; 3.2.1 System Overview; 3.2.2 EEG Electrodes; 3.2.3 EEG Amplifier; 3.2.4 Wireless Microcontroller; 3.2.5 Energy Harvester Design; 3.2.6 Integration of Electrodes and Energy Harvester on the Headband; 3.3 Results and Discussion
3.3.1 Energy-Harvester Testing Results3.3.2 Real-Time Emotion Experiment Results; 3.4 Conclusions; References; 4 Thermoelectric Energy Harvesting and Power Management Circuit; 4.1 Introduction; 4.2 Thermoelectric Device; 4.3 Thermoelectric Energy-Harvesting Power Management; 4.3.1 Power Management System Structure; 4.3.2 Charge Pump Converter; 4.3.3 Step-Up DC-DC Switching Regulator; 4.4 Conclusions ; References; 5 Inductive Power Transfer and Case Study; 5.1 Introduction; 5.2 Inductive Link Theory ; 5.2.1 Principle of Operation of an Inductive WPT System
5.2.2 Modeling and Circuit Theory of Inductive Links5.2.3 Coil Construction and Quality Factor ; 5.2.4 Resonant Coupling; 5.3 Primary-Side Coil Drivers; 5.3.1 Introduction; 5.3.2 Definitions; 5.3.3 Class D Inverters; 5.3.4 Class E Inverters; 5.4 Secondary Coil Receivers ; 5.4.1 Introduction; 5.4.2 Half-Wave and Full-Wave Rectifiers; 5.4.3 Receiver Impedance Emulation ; 5.5 Safety Issues in IPT; 5.5.1 Human Exposure Limits; 5.6 Case Study: Long-Range Inductive Power Transfer ; 5.6.1 Magnetics Design and Measurement ; 5.6.2 Receiver Electronics; 5.6.3 Transmitter Power Control
Record Nr. UNINA-9910466026803321
Matiko Joseph W.  
Norwood, Massachusetts : , : Artech House, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications of energy harvesting technologies in buildings / / Joseph W. Matiko, Stephen P. Beeby
Applications of energy harvesting technologies in buildings / / Joseph W. Matiko, Stephen P. Beeby
Autore Matiko Joseph W.
Pubbl/distr/stampa Norwood, Massachusetts : , : Artech House, , [2017]
Descrizione fisica 1 online resource (216 pages) : illustrations, charts, photographs
Disciplina 720.47
Collana Artech House integrated microsystems series
Soggetto topico Sustainable buildings
Sustainable architecture
Energy harvesting
ISBN 1-5231-4620-6
1-63081-410-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Applications of Energy Harvesting Technologies in Buildings; Contents; 1 Introduction; 1.1 Background and Motivation; 1.2 Home and Building Automation ; 1.2.1 Wireless BAS; 1.2.2 Wireless Home Automation ; 1.3 The Scope of the Book; References; 2 Energy Harvesting in the Built Environments; 2.1 Introduction; 2.2 Energy-Harvesting Sources in Built Environments; 2.2.1 Energy Harvesting from Light Sources; 2.2.2 Energy Harvesting from Thermal Sources; 2.2.3 Energy Harvesting from Periodic Kinetic Sources; 2.2.4 Energy Harvesting from Intermittent Kinetic Sources
2.2.5 Energy Harvesting from Electromagnetic Waves2.2.6 Energy Harvesting from Inductive Power Transfer; 2.2.7 Energy Harvesting from Airflow; 2.2.8 Hybrid Energy Harvesting; 2.2.9 Summary of Energy Levels in Built Environments; 2.3 Empirical Energy Measurements in the Built Environments; 2.3.1 Energy Levels in Residential and Commercial Buildings; 2.3.2 Comparison of Power Levels Reported in the Literature and Those Obtained Imperially; 2.4 Energy-Harvesting Sources on the Human Body; 2.5 Conclusions; References
3 Solar Cell-Powered Sensor Node for Emotion Monitoring Systems in Ambient-Assisted Living Environment3.1 Introduction; 3.1.1 Overview of Ambient-Assisted Living; 3.1.2 Energy Harvesting-Powered Wearable EEG Devices; 3.1.3 Energy Harvesting in the Context of Ambient-Assisted Living; 3.2 Case Study: Wearable Emotion Sensor Node Powered by Energy Harvesting; 3.2.1 System Overview; 3.2.2 EEG Electrodes; 3.2.3 EEG Amplifier; 3.2.4 Wireless Microcontroller; 3.2.5 Energy Harvester Design; 3.2.6 Integration of Electrodes and Energy Harvester on the Headband; 3.3 Results and Discussion
3.3.1 Energy-Harvester Testing Results3.3.2 Real-Time Emotion Experiment Results; 3.4 Conclusions; References; 4 Thermoelectric Energy Harvesting and Power Management Circuit; 4.1 Introduction; 4.2 Thermoelectric Device; 4.3 Thermoelectric Energy-Harvesting Power Management; 4.3.1 Power Management System Structure; 4.3.2 Charge Pump Converter; 4.3.3 Step-Up DC-DC Switching Regulator; 4.4 Conclusions ; References; 5 Inductive Power Transfer and Case Study; 5.1 Introduction; 5.2 Inductive Link Theory ; 5.2.1 Principle of Operation of an Inductive WPT System
5.2.2 Modeling and Circuit Theory of Inductive Links5.2.3 Coil Construction and Quality Factor ; 5.2.4 Resonant Coupling; 5.3 Primary-Side Coil Drivers; 5.3.1 Introduction; 5.3.2 Definitions; 5.3.3 Class D Inverters; 5.3.4 Class E Inverters; 5.4 Secondary Coil Receivers ; 5.4.1 Introduction; 5.4.2 Half-Wave and Full-Wave Rectifiers; 5.4.3 Receiver Impedance Emulation ; 5.5 Safety Issues in IPT; 5.5.1 Human Exposure Limits; 5.6 Case Study: Long-Range Inductive Power Transfer ; 5.6.1 Magnetics Design and Measurement ; 5.6.2 Receiver Electronics; 5.6.3 Transmitter Power Control
Record Nr. UNINA-9910792712203321
Matiko Joseph W.  
Norwood, Massachusetts : , : Artech House, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications of energy harvesting technologies in buildings / / Joseph W. Matiko, Stephen P. Beeby
Applications of energy harvesting technologies in buildings / / Joseph W. Matiko, Stephen P. Beeby
Autore Matiko Joseph W.
Pubbl/distr/stampa Norwood, Massachusetts : , : Artech House, , [2017]
Descrizione fisica 1 online resource (216 pages) : illustrations, charts, photographs
Disciplina 720.47
Collana Artech House integrated microsystems series
Soggetto topico Sustainable buildings
Sustainable architecture
Energy harvesting
ISBN 1-5231-4620-6
1-63081-410-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Applications of Energy Harvesting Technologies in Buildings; Contents; 1 Introduction; 1.1 Background and Motivation; 1.2 Home and Building Automation ; 1.2.1 Wireless BAS; 1.2.2 Wireless Home Automation ; 1.3 The Scope of the Book; References; 2 Energy Harvesting in the Built Environments; 2.1 Introduction; 2.2 Energy-Harvesting Sources in Built Environments; 2.2.1 Energy Harvesting from Light Sources; 2.2.2 Energy Harvesting from Thermal Sources; 2.2.3 Energy Harvesting from Periodic Kinetic Sources; 2.2.4 Energy Harvesting from Intermittent Kinetic Sources
2.2.5 Energy Harvesting from Electromagnetic Waves2.2.6 Energy Harvesting from Inductive Power Transfer; 2.2.7 Energy Harvesting from Airflow; 2.2.8 Hybrid Energy Harvesting; 2.2.9 Summary of Energy Levels in Built Environments; 2.3 Empirical Energy Measurements in the Built Environments; 2.3.1 Energy Levels in Residential and Commercial Buildings; 2.3.2 Comparison of Power Levels Reported in the Literature and Those Obtained Imperially; 2.4 Energy-Harvesting Sources on the Human Body; 2.5 Conclusions; References
3 Solar Cell-Powered Sensor Node for Emotion Monitoring Systems in Ambient-Assisted Living Environment3.1 Introduction; 3.1.1 Overview of Ambient-Assisted Living; 3.1.2 Energy Harvesting-Powered Wearable EEG Devices; 3.1.3 Energy Harvesting in the Context of Ambient-Assisted Living; 3.2 Case Study: Wearable Emotion Sensor Node Powered by Energy Harvesting; 3.2.1 System Overview; 3.2.2 EEG Electrodes; 3.2.3 EEG Amplifier; 3.2.4 Wireless Microcontroller; 3.2.5 Energy Harvester Design; 3.2.6 Integration of Electrodes and Energy Harvester on the Headband; 3.3 Results and Discussion
3.3.1 Energy-Harvester Testing Results3.3.2 Real-Time Emotion Experiment Results; 3.4 Conclusions; References; 4 Thermoelectric Energy Harvesting and Power Management Circuit; 4.1 Introduction; 4.2 Thermoelectric Device; 4.3 Thermoelectric Energy-Harvesting Power Management; 4.3.1 Power Management System Structure; 4.3.2 Charge Pump Converter; 4.3.3 Step-Up DC-DC Switching Regulator; 4.4 Conclusions ; References; 5 Inductive Power Transfer and Case Study; 5.1 Introduction; 5.2 Inductive Link Theory ; 5.2.1 Principle of Operation of an Inductive WPT System
5.2.2 Modeling and Circuit Theory of Inductive Links5.2.3 Coil Construction and Quality Factor ; 5.2.4 Resonant Coupling; 5.3 Primary-Side Coil Drivers; 5.3.1 Introduction; 5.3.2 Definitions; 5.3.3 Class D Inverters; 5.3.4 Class E Inverters; 5.4 Secondary Coil Receivers ; 5.4.1 Introduction; 5.4.2 Half-Wave and Full-Wave Rectifiers; 5.4.3 Receiver Impedance Emulation ; 5.5 Safety Issues in IPT; 5.5.1 Human Exposure Limits; 5.6 Case Study: Long-Range Inductive Power Transfer ; 5.6.1 Magnetics Design and Measurement ; 5.6.2 Receiver Electronics; 5.6.3 Transmitter Power Control
Record Nr. UNINA-9910815078303321
Matiko Joseph W.  
Norwood, Massachusetts : , : Artech House, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Assessing green building performance: a post occupancy evaluation of 12 GSA buildings
Assessing green building performance: a post occupancy evaluation of 12 GSA buildings
Pubbl/distr/stampa Washington, DC : , : GSA Public Buildings Service, Office of Applied Science, Applied Research, , 2008
Descrizione fisica 1 online resource (19 pages) : color illustrations
Soggetto topico Sustainable buildings - United States
Sustainable buildings - Economic aspects - United States
Buildings - Energy conservation - United States
Buildings - Energy conservation
Sustainable buildings
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Assessing green building performance
Record Nr. UNINA-9910703998503321
Washington, DC : , : GSA Public Buildings Service, Office of Applied Science, Applied Research, , 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Assessment of energy-efficient building details for seismic regions / / Boris Azinović, Vojko Kilar, David Koren
Assessment of energy-efficient building details for seismic regions / / Boris Azinović, Vojko Kilar, David Koren
Autore Azinović Boris
Pubbl/distr/stampa Cham, : Springer International Publishing AG, 2022
Descrizione fisica 1 online resource (214 p.) : illustrations (chiefly color)
Altri autori (Persone) KilarVojko
KorenDavid
Collana Springer tracts in civil engineering
Soggetto topico Architecture and energy conservation
Buildings - Earthquake effects
Earthquake resistant design
Sustainable buildings
Soggetto non controllato energy-efficient buildings
earthquake engineering
structural design
energy-efficiency
earthquake-resistant construction
ISBN 3-030-97556-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566452703321
Azinović Boris  
Cham, : Springer International Publishing AG, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Assessment, diagnosis and service life prediction / / Ana Silva, editor
Assessment, diagnosis and service life prediction / / Ana Silva, editor
Pubbl/distr/stampa [Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , [2023]
Descrizione fisica 1 online resource (202 pages)
Disciplina 696
Soggetto topico Buildings - Environmental engineering
Sustainable buildings
ISBN 3-0365-6236-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Editor -- Assessment, Diagnosis and Service Life Prediction -- Moisture Accumulation in Building Fac¸ades Exposed to Accelerated Artificial Climatic Ageing-A Complementary Analysis to NT Build 495 -- Improvement of the Inspection Interval of Highway Bridges through Predictive Models of Deterioration -- How Long Can a Wood Flooring System Last? -- Degradation Assessment of Natural Stone Claddings over Their Service Life: Comparison between Tehran (Iran) and Lisbon (Portugal) -- Most Frequent Problems of Building Structures of Urban Apartment Buildings from 2nd Half of 19th Century and the Start of 20th Century -- Critical Analysis about Emerging Technologies for Building's Fac¸ade Inspection -- Microclimate of Air Cavities in Ventilated Roof and Fac¸ade Systems in Nordic Climates -- Structural Performance Assessment of Innovative Hollow Cellular Panels for Modular Flooring System -- Insurance Policies for Condition-Based Maintenance Plans of ETICS -- Integrated Building Maintenance and Safety Framework: Educational and Public Facilities Case Study.
Record Nr. UNINA-9910647242103321
[Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui