top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Generalized Mercer kernels and reproducing kernel Banach spaces / / Yuesheng Xu, Qi Ye
Generalized Mercer kernels and reproducing kernel Banach spaces / / Yuesheng Xu, Qi Ye
Autore Xu Yuesheng
Pubbl/distr/stampa Providence, RI : , : American Mathematical Society, , [2019]
Descrizione fisica 1 online resource (134 pages)
Disciplina 515/.732
Collana Memoirs of the American Mathematical Society
Soggetto topico Kernel functions
Geometric function theory
Banach spaces
Functions of complex variables
Support vector machines
Soggetto genere / forma Electronic books.
ISBN 1-4704-5077-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910480159203321
Xu Yuesheng  
Providence, RI : , : American Mathematical Society, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Generalized Mercer kernels and reproducing kernel Banach spaces / / Yuesheng Xu, Qi Ye
Generalized Mercer kernels and reproducing kernel Banach spaces / / Yuesheng Xu, Qi Ye
Autore Xu Yuesheng
Pubbl/distr/stampa Providence, RI : , : American Mathematical Society, , [2019]
Descrizione fisica 1 online resource (134 pages)
Disciplina 515/.732
Collana Memoirs of the American Mathematical Society
Soggetto topico Kernel functions
Geometric function theory
Banach spaces
Functions of complex variables
Support vector machines
ISBN 1-4704-5077-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910793424703321
Xu Yuesheng  
Providence, RI : , : American Mathematical Society, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Generalized Mercer kernels and reproducing kernel Banach spaces / / Yuesheng Xu, Qi Ye
Generalized Mercer kernels and reproducing kernel Banach spaces / / Yuesheng Xu, Qi Ye
Autore Xu Yuesheng
Pubbl/distr/stampa Providence, RI : , : American Mathematical Society, , [2019]
Descrizione fisica 1 online resource (134 pages)
Disciplina 515/.732
Collana Memoirs of the American Mathematical Society
Soggetto topico Kernel functions
Geometric function theory
Banach spaces
Functions of complex variables
Support vector machines
ISBN 1-4704-5077-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910812390203321
Xu Yuesheng  
Providence, RI : , : American Mathematical Society, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Knowledge discovery with support vector machines / / Lutz Hamel
Knowledge discovery with support vector machines / / Lutz Hamel
Autore Hamel Lutz
Pubbl/distr/stampa Hoboken, NJ, : John Wiley & Sons, 2009
Descrizione fisica 1 online resource (266 p.)
Disciplina 005.1
Collana Wiley series on methods and applications in data mining
Soggetto topico Support vector machines
Data mining
Machine learning
Computer algorithms
ISBN 9786612345661
9781118211038
1118211030
9781282345669
1282345664
9780470503065
0470503068
9780470503041
0470503041
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto KNOWLEDGE DISCOVERY WITH SUPPORT VECTOR MACHINES; CONTENTS; PREFACE; PART I; 1 WHAT IS KNOWLEDGE DISCOVERY?; 2 KNOWLEDGE DISCOVERY ENVIRONMENTS; 3 DESCRIBING DATA MATHEMATICALLY; 4 LINEAR DECISION SURFACES AND FUNCTIONS; 5 PERCEPTRON LEARNING; 6 MAXIMUM-MARGIN CLASSIFIERS; PART II; 7 SUPPORT VECTOR MACHINES; 8 IMPLEMENTATION; 9 EVALUATING WHAT HAS BEEN LEARNED; 10 ELEMENTS OF STATISTICAL LEARNING THEORY; PART III; 11 MULTICLASS CLASSIFICATION; 12 REGRESSION WITH SUPPORT VECTOR MACHINES; 13 NOVELTY DETECTION; APPENDIX A NOTATION; APPENDIX B TUTORIAL INTRODUCTION TO R
B.1 Programming ConstructsB.2 Data Constructs; B.3 Basic Data Analysis; Bibliographic Notes; REFERENCES; INDEX
Record Nr. UNINA-9910139896403321
Hamel Lutz  
Hoboken, NJ, : John Wiley & Sons, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Proceedings of the 2018 International Conference on Signal Processing and Machine Learning / / Association for Computing Machinery
Proceedings of the 2018 International Conference on Signal Processing and Machine Learning / / Association for Computing Machinery
Pubbl/distr/stampa New York, NY, United States : , : Association for Computing Machinery, , 2018
Descrizione fisica 1 online resource (177 pages)
Disciplina 006.31
Soggetto topico Machine learning
Support vector machines
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910375774903321
New York, NY, United States : , : Association for Computing Machinery, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining / / Aidong Zhang, editor
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining / / Aidong Zhang, editor
Pubbl/distr/stampa New York, NY, United States : , : Association for Computing Machinery, , 2022
Descrizione fisica 1 online resource (5033 pages)
Disciplina 006.31
Collana ACM Conferences
Soggetto topico Machine learning
Support vector machines
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti KDD '22
Record Nr. UNINA-9910588792503321
New York, NY, United States : , : Association for Computing Machinery, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Support vector machines [[electronic resource] ] : data analysis, machine learning and applications / / Brandon H. Boyle, editor
Support vector machines [[electronic resource] ] : data analysis, machine learning and applications / / Brandon H. Boyle, editor
Pubbl/distr/stampa New York, : Nova Science Publishers, c2011
Descrizione fisica 1 online resource (214 p.)
Disciplina 006.4
Altri autori (Persone) BoyleBrandon H
Collana Computer science, technology, and applications
Soggetto topico Support vector machines
Soggetto genere / forma Electronic books.
ISBN 1-62257-078-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910453819603321
New York, : Nova Science Publishers, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Support vector machines [[electronic resource] ] : data analysis, machine learning and applications / / Brandon H. Boyle, editor
Support vector machines [[electronic resource] ] : data analysis, machine learning and applications / / Brandon H. Boyle, editor
Pubbl/distr/stampa New York, : Nova Science Publishers, c2011
Descrizione fisica 1 online resource (214 p.)
Disciplina 006.4
Altri autori (Persone) BoyleBrandon H
Collana Computer science, technology, and applications
Soggetto topico Support vector machines
ISBN 1-62257-078-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910779791603321
New York, : Nova Science Publishers, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Support vector machines : data analysis, machine learning and applications / / Brandon H. Boyle, editor
Support vector machines : data analysis, machine learning and applications / / Brandon H. Boyle, editor
Edizione [1st ed.]
Pubbl/distr/stampa New York, : Nova Science Publishers, c2011
Descrizione fisica 1 online resource (214 p.)
Disciplina 006.4
Altri autori (Persone) BoyleBrandon H
Collana Computer science, technology, and applications
Soggetto topico Support vector machines
ISBN 1-62257-078-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- SUPPORT VECTOR MACHINES: DATA ANALYSIS, MACHINE LEARNING AND APPLICATIONS -- SUPPORT VECTOR MACHINES: DATA ANALYSIS, MACHINE LEARNING AND APPLICATIONS -- CONTENTS -- PREFACE -- THE SUPPORT VECTOR MACHINE IN MEDICAL IMAGING -- ABSTRACT -- 1. INTRODUCTION -- 2. THE SUPPORT VECTOR MACHINE -- 3. THE SUPPORT VECTOR MACHINE'S USE IN MEDICAL IMAGING -- 3.1. Breast Cancer Imaging -- 3.2. Brain Imaging -- 3.3. Skin and Oral Imaging -- 3.4. Liver Imaging -- 3.5. Lung Imaging -- 3.6. Reproductive System Imaging -- 3.7. Eye Imaging -- 3.8. Other Imaging Applications -- 4. CASE STUDY: THE SUPPORT VECTOR MACHINE IN BREAST CANCER DETECTION FROM MAGNETIC RESONANCE IMAGING -- 4.1. Case Study - Introduction -- 4.2. Case Study - Methods -- Support Vector Machine Classification -- Proposed Vector Machine Formulations -- Breast MRI Database for Case Study -- Image Acquisition and Data Preprocessing -- Breast MR Lesion Measurements -- Feature Measurement #1: Average Slope -- Feature Measurement #2: Average Washout -- Feature Measurement #3: Sphericity / Irregularity -- Feature Measurement #4: Average Edge Diffuseness -- Receiver Operating Characteristic Curve Analysis and Validation -- 4.3. Case Study - Results -- 4.4. Case Study - Discussion -- 4.5. Case Study - Conclusions -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- A SVM-BASED REGRESSION MODEL TO STUDY THE AIR QUALITY IN THE URBAN AREA OF THE CITY OF OVIEDO (SPAIN) -- ABSTRACT -- 1. INTRODUCTION -- 2. SOURCES AND TYPES OF AIR POLLUTION -- 2.1. Primary Pollutants -- 2.2. Secondary Pollutants -- 2.3. Trends in Air Quality -- 3. MATHEMATICAL MODEL -- 3.1. Non-Linear Support Vector Machines -- 4. EXPERIMENTAL DATA SET -- 5. METHODOLOGY -- 6. RESULTS AND DISCUSSION -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- IMAGE INTERPOLATION USING SUPPORT VECTOR MACHINES -- ABSTRACT.
1. INTRODUCTION OF IMAGE INTERPOLATION -- 1.1. Linear and Cubic Image Interpolation -- 1.2. Support Vector Regression -- 2. SUPPORT VECTOR MACHINES BASED IMAGE INTERPOLATION -- 2.1. Data Fitting Image Interpolation Approach -- 2.2. Neighbor Pixel Image Interpolation Approach -- 2.3. Local Spatial Properties Image Interpolation Approach -- 2.4. Conclusion -- 3. SUPPORT VECTOR MACHINES BASED INTERPOLATION FOR COLOR FILTER ARRAY -- 3.1. Introduction to Color Filter Array Interpolation -- 3.2 Color Filter Array Interpolation Using SVR -- 3.3. Experiments -- ACKNOWLEDGMENT -- REFERENCES -- UTILIZATION OF SUPPORT VECTOR MACHINE (SVM) FOR PREDICTION OF ULTIMATE CAPACITY OF DRIVEN PILES IN COHESIONLESS SOILS -- ABSTRACT: -- INTRODUCTION -- DETAILS OF SVM MODEL -- RESULTS AND DISCUSSION -- CONCLUSION -- REFERENCES -- SUPPORT VECTOR MACHINES IN MEDICAL CLASSIFICATION TASKS -- 1.Introduction -- 2.SupportVectorMachines -- 3.Experimentation -- 3.1.BreastCancerDatabase -- 3.2.ParkinsonDatabase -- 3.3.UrologicalDatabase -- 3.3.1.DimensionalityReduction -- 3.3.2.ArchitectureoftheSVM -- 4.Conclusions -- Acknowledgment -- References -- KERNEL LATENT SEMANTIC ANALYSIS USING TERM FUSION KERNELS -- Abstract -- 1.Introduction -- 2.KernelCombinationforTextMiningTasks -- 3.Application:LatentSemanticClassExtractioninTextMining -- 3.1.Assigningprobabilitiesoftermstosemanticclasses -- 4.Experimentalwork -- 5.Conclusions -- Acknowledgments -- References -- SVR FOR TIME SERIES PREDICTION -- Abstract -- 1. INTRODUCTION -- 2. RELATED WORK -- 3. PREDICTION MODELS -- 3.1 Artificial Neural Networks -- 3.2 Support Vector Machines -- 3.3 Support Vector Predictors (SVP) -- 4. EXPERIMENTS -- 5. CONCLUSION -- REFERENCES -- APPLICATION OF NEURAL NETWORKS AND SUPPORT VECTOR MACHINES IN CODING THEORY AND PRACTICE -- Abstract -- 1. INTRODUCTION -- 2. RECURRENT NEURAL NETWORK DECODING.
2.1. Theoretical Model of the Encoder -- 2.2. Theoretical Model of the Decoder -- 2.3. Application of the Theoretical Model for One and Two-Input Encoders -- 2.3.1. One Input Encoder -- 2.3.2. Two Input Encoder -- 3. Support Vector Machine Decoding -- 3.1.1. SVM Decoder Analysis -- 3.1.2. The Training Stage -- 3.1.3. The Decoding Stage -- 3.2. Advantages of SVM Decoder -- 3.3. Complexity of SVM Decoder -- 3.4. SVM Decoder Design -- 3.5. Simulation Results -- 3.5.1 Effect of Training Size on SVM Decoder -- 3.5.2. Effect of Rayleigh's fading -- CONCLUSIONS -- REFERENCES -- PATTERN RECOGNITION FOR MACHINE FAULT DIAGNOSIS USING SUPPORT VECTOR MACHINE -- ABSTRACT -- 1. INTRODUCTION -- 2. PRELIMINARY KNOWLEDGE -- 2.1. Fault Diagnosis -- 2.2. Time Domain Analysis -- 2.3. Frequency Domain Analysis -- 3. FEATURE-BASED DIAGNOSIS SYSTEM -- 3.1. Data Preprocessing -- 3.1.1. Wavelet Transform -- 3.1.2. Averaging -- 3.1.3. Enveloping -- 3.1.4. Cepstrum -- 3.2. Statistical Feature Representation -- 3.2.1. Features in Time Domain -- 3.2.2. Features on Frequency Domain -- 3.2.3. Auto-regression Coefficient -- 3.3. Dimensionality Reduction Using Feature Extraction -- 3.3.1. Principal Component Analysis (PCA) -- 3.3.2. Independent Component Analysis (ICA) -- 3.3.3. Kernel PCA -- 3.3.4. Kernel ICA -- 4. SUPPORT VECTOR MACHINE (SVM) -- 4.1. Basic Theory: Binary Classification by SVM -- 4.2. SVM Solver -- 4.2.1. Quadratic Programming (QP) -- 4.2.2. Sequential Minimum Optimization (SMO) -- 4.3. Multi-class Classification -- 4.3.1. One-Against-All (OAA) -- 4.3.2. One-Against-One (OAO) -- 4.3.3. Direct Acyclic Graph (DAG) -- 4.4. Wavelet-Support Vector Machine (W-SVM) -- 5. APPLICATION FOR FAULT DIAGNOSIS OF INDUCTION MOTOR -- 5.1. Fault Diagnosis Method -- 5.2. Experiment and Data Acquisition -- 5.3. Feature Extraction and Reduction -- 5.4. Classification.
5.5. Results and Discussion -- CONCLUSION -- REFERENCES -- INDEX.
Record Nr. UNINA-9910970281503321
New York, : Nova Science Publishers, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui