top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Boosting : foundations and algorithms / / Robert E. Schapire and Yoav Freund
Boosting : foundations and algorithms / / Robert E. Schapire and Yoav Freund
Autore Schapire Robert E.
Pubbl/distr/stampa Cambridge, Massachusetts : , : MIT Press, , c2012
Descrizione fisica 1 online resource (544 p.)
Disciplina 006.3/1
Altri autori (Persone) FreundYoav
Collana Adaptive computation and machine learning series
Soggetto topico Boosting (Algorithms)
Supervised learning (Machine learning)
Soggetto genere / forma Electronic books.
ISBN 1-280-67835-6
9786613655288
0-262-30118-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foundations of machine learning -- Using AdaBoost to minimize training error -- Direct bounds on the generalization error -- The margins explanation for boosting's effectiveness -- Game theory, online learning, and boosting -- Loss minimization and generalizations of boosting -- Boosting, convex optimization, and information geometry -- Using confidence-rated weak predictions -- Multiclass classification problems -- Learning to rank -- Attaining the best possible accuracy -- Optimally efficient boosting -- Boosting in continuous time.
Record Nr. UNINA-9910260629203321
Schapire Robert E.  
Cambridge, Massachusetts : , : MIT Press, , c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Boosting : foundations and algorithms / / Robert E. Schapire and Yoav Freund
Boosting : foundations and algorithms / / Robert E. Schapire and Yoav Freund
Autore Schapire Robert E.
Pubbl/distr/stampa Cambridge, : The MIT Press, 2012
Descrizione fisica 1 online resource (544 p.)
Disciplina 006.3/1
Altri autori (Persone) FreundYoav
Collana Adaptive computation and machine learning series
Soggetto topico Boosting (Algorithms)
Supervised learning (Machine learning)
Soggetto non controllato Artificial intelligence
Algorithms and data structures
ISBN 0-262-30039-7
1-280-67835-6
9786613655288
0-262-30118-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foundations of machine learning -- Using AdaBoost to minimize training error -- Direct bounds on the generalization error -- The margins explanation for boosting's effectiveness -- Game theory, online learning, and boosting -- Loss minimization and generalizations of boosting -- Boosting, convex optimization, and information geometry -- Using confidence-rated weak predictions -- Multiclass classification problems -- Learning to rank -- Attaining the best possible accuracy -- Optimally efficient boosting -- Boosting in continuous time.
Record Nr. UNINA-9910529509803321
Schapire Robert E.  
Cambridge, : The MIT Press, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Continual semi-supervised learning : first International Workshop, CSSL 2021, Virtual event, August 19-20, 2021, Revised selected papers / / edited by Fabio Cuzzolin, Kevin Cannons, and Vincenzo Lomonaco
Continual semi-supervised learning : first International Workshop, CSSL 2021, Virtual event, August 19-20, 2021, Revised selected papers / / edited by Fabio Cuzzolin, Kevin Cannons, and Vincenzo Lomonaco
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (148 pages)
Disciplina 006.31
Collana Lecture Notes in Computer Science
Soggetto topico Supervised learning (Machine learning)
ISBN 3-031-17587-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996490356303316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Continual semi-supervised learning : first International Workshop, CSSL 2021, Virtual event, August 19-20, 2021, Revised selected papers / / edited by Fabio Cuzzolin, Kevin Cannons, and Vincenzo Lomonaco
Continual semi-supervised learning : first International Workshop, CSSL 2021, Virtual event, August 19-20, 2021, Revised selected papers / / edited by Fabio Cuzzolin, Kevin Cannons, and Vincenzo Lomonaco
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (148 pages)
Disciplina 006.31
Collana Lecture Notes in Computer Science
Soggetto topico Supervised learning (Machine learning)
ISBN 3-031-17587-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910616207403321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Semi-supervised learning / / [edited by] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien
Semi-supervised learning / / [edited by] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien
Pubbl/distr/stampa Cambridge, Mass., : MIT Press, ©2006
Descrizione fisica 1 online resource (528 p.)
Disciplina 006.3/1
Altri autori (Persone) ChapelleOlivier
SchölkopfBernhard
ZienAlexander
Collana Adaptive computation and machine learning
Soggetto topico Supervised learning (Machine learning)
Soggetto non controllato COMPUTER SCIENCE/Machine Learning & Neural Networks
ISBN 1-282-09618-4
0-262-25589-8
1-4294-1408-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Series Foreword; Preface; 1 - Introduction to Semi-Supervised Learning; 2 - A Taxonomy for Semi-Supervised Learning Methods; 3 - Semi-Supervised Text Classification Using EM; 4 - Risks of Semi-Supervised Learning: How Unlabeled Data Can Degrade Performance of Generative Classifiers; 5 - Probabilistic Semi-Supervised Clustering with Constraints; 6 - Transductive Support Vector Machines; 7 - Semi-Supervised Learning Using Semi- Definite Programming; 8 - Gaussian Processes and the Null-Category Noise Model; 9 - Entropy Regularization; 10 - Data-Dependent Regularization
11 - Label Propagation and Quadratic Criterion12 - The Geometric Basis of Semi-Supervised Learning; 13 - Discrete Regularization; 14 - Semi-Supervised Learning with Conditional Harmonic Mixing; 15 - Graph Kernels by Spectral Transforms; 16- Spectral Methods for Dimensionality Reduction; 17 - Modifying Distances; 18 - Large-Scale Algorithms; 19 - Semi-Supervised Protein Classification Using Cluster Kernels; 20 - Prediction of Protein Function from Networks; 21 - Analysis of Benchmarks; 22 - An Augmented PAC Model for Semi- Supervised Learning
23 - Metric-Based Approaches for Semi- Supervised Regression and Classification24 - Transductive Inference and Semi-Supervised Learning; 25 - A Discussion of Semi-Supervised Learning and Transduction; References; Notation and Symbols; Contributors; Index
Record Nr. UNINA-9910777620503321
Cambridge, Mass., : MIT Press, ©2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Semi-supervised learning / / [edited by] Olivier Chapelle, Bernhard Sch?olkopf, Alexander Zien
Semi-supervised learning / / [edited by] Olivier Chapelle, Bernhard Sch?olkopf, Alexander Zien
Edizione [1st ed.]
Pubbl/distr/stampa Cambridge, Mass., : MIT Press, c2006
Descrizione fisica 1 online resource (528 p.)
Disciplina 006.3/1
Altri autori (Persone) ChapelleOlivier
Sch?olkopfBernhard
ZienAlexander
Collana Adaptive computation and machine learning
Soggetto topico Supervised learning (Machine learning)
ISBN 1-282-09618-4
0-262-25589-8
1-4294-1408-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Series Foreword; Preface; 1 - Introduction to Semi-Supervised Learning; 2 - A Taxonomy for Semi-Supervised Learning Methods; 3 - Semi-Supervised Text Classification Using EM; 4 - Risks of Semi-Supervised Learning: How Unlabeled Data Can Degrade Performance of Generative Classifiers; 5 - Probabilistic Semi-Supervised Clustering with Constraints; 6 - Transductive Support Vector Machines; 7 - Semi-Supervised Learning Using Semi- Definite Programming; 8 - Gaussian Processes and the Null-Category Noise Model; 9 - Entropy Regularization; 10 - Data-Dependent Regularization
11 - Label Propagation and Quadratic Criterion12 - The Geometric Basis of Semi-Supervised Learning; 13 - Discrete Regularization; 14 - Semi-Supervised Learning with Conditional Harmonic Mixing; 15 - Graph Kernels by Spectral Transforms; 16- Spectral Methods for Dimensionality Reduction; 17 - Modifying Distances; 18 - Large-Scale Algorithms; 19 - Semi-Supervised Protein Classification Using Cluster Kernels; 20 - Prediction of Protein Function from Networks; 21 - Analysis of Benchmarks; 22 - An Augmented PAC Model for Semi- Supervised Learning
23 - Metric-Based Approaches for Semi- Supervised Regression and Classification24 - Transductive Inference and Semi-Supervised Learning; 25 - A Discussion of Semi-Supervised Learning and Transduction; References; Notation and Symbols; Contributors; Index
Record Nr. UNINA-9910809030503321
Cambridge, Mass., : MIT Press, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Supervised learning with complex-valued neural networks / / Sundaram Suresh, Narasimhan Sundararajan, and Ramasamy Savitha
Supervised learning with complex-valued neural networks / / Sundaram Suresh, Narasimhan Sundararajan, and Ramasamy Savitha
Autore Suresh Sundaram
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Heidelberg ; ; New York, : Springer, c2013
Descrizione fisica 1 online resource (XXII, 170 p.)
Disciplina 006.31
Altri autori (Persone) SundararajanNarasimhan
SavithaRamasamy
Collana Studies in computational intelligence
Soggetto topico Supervised learning (Machine learning)
Neural networks (Computer science)
ISBN 3-642-29491-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Fully Complex-valued Multi Layer Perceptron Networks -- Fully Complex-valued Radial Basis Function Networks -- Performance Study on Complex-valued Function Approximation Problems -- Circular Complex-valued Extreme Learning Machine Classifier -- Performance Study on Real-valued Classification Problems -- Complex-valued Self-regulatory Resource Allocation Network -- Conclusions and Scope for FutureWorks (CSRAN).
Record Nr. UNINA-9910437919903321
Suresh Sundaram  
Heidelberg ; ; New York, : Springer, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Supervised machine learning : optimization framework and applications with SAS and R / / Tanya Kolosova and Samuel Berestizhevsky
Supervised machine learning : optimization framework and applications with SAS and R / / Tanya Kolosova and Samuel Berestizhevsky
Autore Kolosova Tanya
Pubbl/distr/stampa Boca Raton, Florida ; ; London ; ; New York : , : CRC Press, , [2021]
Descrizione fisica 1 online resource (xxiv, 160 pages)
Disciplina 006.31
Soggetto topico Supervised learning (Machine learning)
ISBN 0-429-29759-9
1-000-17681-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910794383403321
Kolosova Tanya  
Boca Raton, Florida ; ; London ; ; New York : , : CRC Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Supervised machine learning : optimization framework and applications with SAS and R / / Tanya Kolosova and Samuel Berestizhevsky
Supervised machine learning : optimization framework and applications with SAS and R / / Tanya Kolosova and Samuel Berestizhevsky
Autore Kolosova Tanya
Pubbl/distr/stampa Boca Raton, Florida ; ; London ; ; New York : , : CRC Press, , [2021]
Descrizione fisica 1 online resource (xxiv, 160 pages)
Disciplina 006.31
Soggetto topico Supervised learning (Machine learning)
ISBN 0-429-29759-9
1-000-17681-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910816356303321
Kolosova Tanya  
Boca Raton, Florida ; ; London ; ; New York : , : CRC Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui