top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Boosting : foundations and algorithms / / Robert E. Schapire and Yoav Freund
Boosting : foundations and algorithms / / Robert E. Schapire and Yoav Freund
Autore Schapire Robert E.
Pubbl/distr/stampa Cambridge, Massachusetts : , : MIT Press, , c2012
Descrizione fisica 1 online resource (544 p.)
Disciplina 006.3/1
Altri autori (Persone) FreundYoav
Collana Adaptive computation and machine learning series
Soggetto topico Boosting (Algorithms)
Supervised learning (Machine learning)
Soggetto genere / forma Electronic books.
ISBN 1-280-67835-6
9786613655288
0-262-30118-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foundations of machine learning -- Using AdaBoost to minimize training error -- Direct bounds on the generalization error -- The margins explanation for boosting's effectiveness -- Game theory, online learning, and boosting -- Loss minimization and generalizations of boosting -- Boosting, convex optimization, and information geometry -- Using confidence-rated weak predictions -- Multiclass classification problems -- Learning to rank -- Attaining the best possible accuracy -- Optimally efficient boosting -- Boosting in continuous time.
Record Nr. UNINA-9910260629203321
Schapire Robert E.  
Cambridge, Massachusetts : , : MIT Press, , c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Boosting : foundations and algorithms / / Robert E. Schapire and Yoav Freund
Boosting : foundations and algorithms / / Robert E. Schapire and Yoav Freund
Autore Schapire Robert E.
Pubbl/distr/stampa Cambridge, : The MIT Press, 2012
Descrizione fisica 1 online resource (544 p.)
Disciplina 006.3/1
Altri autori (Persone) FreundYoav
Collana Adaptive computation and machine learning series
Soggetto topico Boosting (Algorithms)
Supervised learning (Machine learning)
Soggetto non controllato Artificial intelligence
Algorithms and data structures
ISBN 0-262-30039-7
1-280-67835-6
9786613655288
0-262-30118-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foundations of machine learning -- Using AdaBoost to minimize training error -- Direct bounds on the generalization error -- The margins explanation for boosting's effectiveness -- Game theory, online learning, and boosting -- Loss minimization and generalizations of boosting -- Boosting, convex optimization, and information geometry -- Using confidence-rated weak predictions -- Multiclass classification problems -- Learning to rank -- Attaining the best possible accuracy -- Optimally efficient boosting -- Boosting in continuous time.
Record Nr. UNINA-9910529509803321
Schapire Robert E.  
Cambridge, : The MIT Press, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Continual semi-supervised learning : first International Workshop, CSSL 2021, Virtual event, August 19-20, 2021, Revised selected papers / / edited by Fabio Cuzzolin, Kevin Cannons, and Vincenzo Lomonaco
Continual semi-supervised learning : first International Workshop, CSSL 2021, Virtual event, August 19-20, 2021, Revised selected papers / / edited by Fabio Cuzzolin, Kevin Cannons, and Vincenzo Lomonaco
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (148 pages)
Disciplina 006.31
Collana Lecture Notes in Computer Science
Soggetto topico Supervised learning (Machine learning)
ISBN 3-031-17587-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996490356303316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Continual semi-supervised learning : first International Workshop, CSSL 2021, Virtual event, August 19-20, 2021, Revised selected papers / / edited by Fabio Cuzzolin, Kevin Cannons, and Vincenzo Lomonaco
Continual semi-supervised learning : first International Workshop, CSSL 2021, Virtual event, August 19-20, 2021, Revised selected papers / / edited by Fabio Cuzzolin, Kevin Cannons, and Vincenzo Lomonaco
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (148 pages)
Disciplina 006.31
Collana Lecture Notes in Computer Science
Soggetto topico Supervised learning (Machine learning)
ISBN 3-031-17587-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910616207403321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Semi-supervised learning / / [edited by] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien
Semi-supervised learning / / [edited by] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien
Pubbl/distr/stampa Cambridge, Mass., : MIT Press, ©2006
Descrizione fisica 1 online resource (528 p.)
Disciplina 006.3/1
Altri autori (Persone) ChapelleOlivier
SchölkopfBernhard
ZienAlexander
Collana Adaptive computation and machine learning
Soggetto topico Supervised learning (Machine learning)
Soggetto non controllato COMPUTER SCIENCE/Machine Learning & Neural Networks
ISBN 1-282-09618-4
0-262-25589-8
1-4294-1408-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Series Foreword; Preface; 1 - Introduction to Semi-Supervised Learning; 2 - A Taxonomy for Semi-Supervised Learning Methods; 3 - Semi-Supervised Text Classification Using EM; 4 - Risks of Semi-Supervised Learning: How Unlabeled Data Can Degrade Performance of Generative Classifiers; 5 - Probabilistic Semi-Supervised Clustering with Constraints; 6 - Transductive Support Vector Machines; 7 - Semi-Supervised Learning Using Semi- Definite Programming; 8 - Gaussian Processes and the Null-Category Noise Model; 9 - Entropy Regularization; 10 - Data-Dependent Regularization
11 - Label Propagation and Quadratic Criterion12 - The Geometric Basis of Semi-Supervised Learning; 13 - Discrete Regularization; 14 - Semi-Supervised Learning with Conditional Harmonic Mixing; 15 - Graph Kernels by Spectral Transforms; 16- Spectral Methods for Dimensionality Reduction; 17 - Modifying Distances; 18 - Large-Scale Algorithms; 19 - Semi-Supervised Protein Classification Using Cluster Kernels; 20 - Prediction of Protein Function from Networks; 21 - Analysis of Benchmarks; 22 - An Augmented PAC Model for Semi- Supervised Learning
23 - Metric-Based Approaches for Semi- Supervised Regression and Classification24 - Transductive Inference and Semi-Supervised Learning; 25 - A Discussion of Semi-Supervised Learning and Transduction; References; Notation and Symbols; Contributors; Index
Record Nr. UNINA-9910777620503321
Cambridge, Mass., : MIT Press, ©2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Semi-supervised learning / / [edited by] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien
Semi-supervised learning / / [edited by] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien
Edizione [1st ed.]
Pubbl/distr/stampa Cambridge, Mass., : MIT Press, c2006
Descrizione fisica 1 online resource (528 p.)
Disciplina 006.3/1
Altri autori (Persone) ChapelleOlivier
SchölkopfBernhard
ZienAlexander
Collana Adaptive computation and machine learning
Soggetto topico Supervised learning (Machine learning)
ISBN 1-282-09618-4
0-262-25589-8
1-4294-1408-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Series Foreword; Preface; 1 - Introduction to Semi-Supervised Learning; 2 - A Taxonomy for Semi-Supervised Learning Methods; 3 - Semi-Supervised Text Classification Using EM; 4 - Risks of Semi-Supervised Learning: How Unlabeled Data Can Degrade Performance of Generative Classifiers; 5 - Probabilistic Semi-Supervised Clustering with Constraints; 6 - Transductive Support Vector Machines; 7 - Semi-Supervised Learning Using Semi- Definite Programming; 8 - Gaussian Processes and the Null-Category Noise Model; 9 - Entropy Regularization; 10 - Data-Dependent Regularization
11 - Label Propagation and Quadratic Criterion12 - The Geometric Basis of Semi-Supervised Learning; 13 - Discrete Regularization; 14 - Semi-Supervised Learning with Conditional Harmonic Mixing; 15 - Graph Kernels by Spectral Transforms; 16- Spectral Methods for Dimensionality Reduction; 17 - Modifying Distances; 18 - Large-Scale Algorithms; 19 - Semi-Supervised Protein Classification Using Cluster Kernels; 20 - Prediction of Protein Function from Networks; 21 - Analysis of Benchmarks; 22 - An Augmented PAC Model for Semi- Supervised Learning
23 - Metric-Based Approaches for Semi- Supervised Regression and Classification24 - Transductive Inference and Semi-Supervised Learning; 25 - A Discussion of Semi-Supervised Learning and Transduction; References; Notation and Symbols; Contributors; Index
Record Nr. UNINA-9910963198603321
Cambridge, Mass., : MIT Press, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Supervised learning with complex-valued neural networks / / Sundaram Suresh, Narasimhan Sundararajan, and Ramasamy Savitha
Supervised learning with complex-valued neural networks / / Sundaram Suresh, Narasimhan Sundararajan, and Ramasamy Savitha
Autore Suresh Sundaram
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Heidelberg ; ; New York, : Springer, c2013
Descrizione fisica 1 online resource (XXII, 170 p.)
Disciplina 006.31
Altri autori (Persone) SundararajanNarasimhan
SavithaRamasamy
Collana Studies in computational intelligence
Soggetto topico Supervised learning (Machine learning)
Neural networks (Computer science)
ISBN 9783642294914
364229491X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Fully Complex-valued Multi Layer Perceptron Networks -- Fully Complex-valued Radial Basis Function Networks -- Performance Study on Complex-valued Function Approximation Problems -- Circular Complex-valued Extreme Learning Machine Classifier -- Performance Study on Real-valued Classification Problems -- Complex-valued Self-regulatory Resource Allocation Network -- Conclusions and Scope for FutureWorks (CSRAN).
Record Nr. UNINA-9910437919903321
Suresh Sundaram  
Heidelberg ; ; New York, : Springer, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Supervised machine learning : optimization framework and applications with SAS and R / / Tanya Kolosova and Samuel Berestizhevsky
Supervised machine learning : optimization framework and applications with SAS and R / / Tanya Kolosova and Samuel Berestizhevsky
Autore Kolosova Tanya
Pubbl/distr/stampa Boca Raton, Florida ; ; London ; ; New York : , : CRC Press, , [2021]
Descrizione fisica 1 online resource (xxiv, 160 pages)
Disciplina 006.31
Soggetto topico Supervised learning (Machine learning)
ISBN 0-429-29759-9
1-000-17681-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910794383403321
Kolosova Tanya  
Boca Raton, Florida ; ; London ; ; New York : , : CRC Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Supervised machine learning : optimization framework and applications with SAS and R / / Tanya Kolosova and Samuel Berestizhevsky
Supervised machine learning : optimization framework and applications with SAS and R / / Tanya Kolosova and Samuel Berestizhevsky
Autore Kolosova Tanya
Pubbl/distr/stampa Boca Raton, Florida ; ; London ; ; New York : , : CRC Press, , [2021]
Descrizione fisica 1 online resource (xxiv, 160 pages)
Disciplina 006.31
Soggetto topico Supervised learning (Machine learning)
ISBN 0-429-29759-9
1-000-17681-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910816356303321
Kolosova Tanya  
Boca Raton, Florida ; ; London ; ; New York : , : CRC Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui