Hybrid simulation to assess performance of seismic isolation in nuclear power plants. / / International Atomic Energy Agency |
Pubbl/distr/stampa | Vienna : , : International Atomic Energy Agency, , [2019] |
Descrizione fisica | 1 online resource (221 pages) |
Disciplina | 621.48 |
Collana | IAEA-TECDOC |
Soggetto topico |
Nuclear power plants - Earthquake effects
Nuclear power plants - Safety measures Seismic waves - Damping Hybrid computer simulation Earthquake resistant design Structural engineering - Computer simulation |
ISBN | 92-0-162819-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910794052803321 |
Vienna : , : International Atomic Energy Agency, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Hybrid simulation to assess performance of seismic isolation in nuclear power plants. / / International Atomic Energy Agency |
Pubbl/distr/stampa | Vienna : , : International Atomic Energy Agency, , [2019] |
Descrizione fisica | 1 online resource (221 pages) |
Disciplina | 621.48 |
Collana | IAEA-TECDOC |
Soggetto topico |
Nuclear power plants - Earthquake effects
Nuclear power plants - Safety measures Seismic waves - Damping Hybrid computer simulation Earthquake resistant design Structural engineering - Computer simulation |
ISBN | 92-0-162819-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910818669303321 |
Vienna : , : International Atomic Energy Agency, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Prediction of accidental actions likely to occur on building structures : an approach based on stochastic simulation / / Egidijus R. Vaidogas ; Vilnius Gediminas Technical University |
Autore | Vaidogas Egidijus Rytas |
Pubbl/distr/stampa | Vilnius : , : VGTU leidykla TECHNIKA, , 2007 |
Descrizione fisica | 1 online resource (249 p.) |
Soggetto topico |
Structural engineering - Computer simulation
Structural engineering - Data processing Stochastic analysis Simulation methods |
Soggetto genere / forma | Electronic books. |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; Part I. The problem of accidental actions; 1. Current practice of description and prediction; 1.1 Industrial accidents & accidental actions; 1.2 Accidental actions: definition and classification; 1.3 Current practice of deterministic modelling accidental actions; 1.4 Knowledge available for selecting action models; 1.5 Principal probabilistic model of accidental action; 1.6 Classical statistical approach to modelling accidental actions; 1.7 Conclusion: the need of risk analysis for predicting accidental actions
2. A brief overview of the situation of data related to accidental actions2.1 The need for diverse information; 2.2 Accident data; 2.3 Data on human reliability; 2.4 Concluding remarks; Part II. Prediction by means of stochastic accident simulation; 3. Classical bayesien approach to predicting accidental actions; 3.1 Introduction; 3.2 Form of action model; 3.3 Selection of action model; 3.4 Case study; 3.5 Expert judgment in Bayesian predicting accidental actions; 3.6 How to apply classical Bayesian action models to damage assessment? 3.7 Conclusion: pros and cons of the classical Bayesian approach4. Predictive, epistemic approach to forecasting accidental actions; 4.1 Introduction; 4.2 Principles of application to accidental actions; 4.3 Form of action model; 4.4 Specifying the action model by a stochastic accident simulation; 4.5 Case study; 4.6 Quantifying epistemic uncertainties related to problem input; 4.7 Application to damage assessment; 4.8 Conclusion: pros and cons of the predictive epistemic approach; Part III. Utilising direct data on accidental actions; 5. Resampling direct data within frequentist's approach 5.1 Introduction5.2 Risk of damage due to accidental action; 5.3 Damage assessment: frequentist's approach or Bayesian updating?; 5.4 Use of bootstrap resampling to estimating damage probabilities; 5.5 Case study; 5.6 Concluding remarks; 6. Bayesian resampling of direct data on an accidental action; 6.1 Introduction; 6.2 Basic ideas; 6.3 Knowledge available for estimating damage probability; 6.4 Application of Bayesian bootstrap; 6.5 Case study; 6.6 Concluding remarks; Postscript; Appendix A. Abbreviations; Appendix B. Novation; Appendix C. Compiuter programs Appendix D. Selected bibliographyReferences; Index |
Record Nr. | UNINA-9910462867103321 |
Vaidogas Egidijus Rytas | ||
Vilnius : , : VGTU leidykla TECHNIKA, , 2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Prediction of accidental actions likely to occur on building structures : an approach based on stochastic simulation / / Egidijus R. Vaidogas ; Vilnius Gediminas Technical University |
Autore | Vaidogas Egidijus Rytas |
Pubbl/distr/stampa | Vilnius : , : VGTU leidykla TECHNIKA, , 2007 |
Descrizione fisica | 1 online resource (249 p.) |
Soggetto topico |
Structural engineering - Computer simulation
Structural engineering - Data processing Stochastic analysis Simulation methods |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; Part I. The problem of accidental actions; 1. Current practice of description and prediction; 1.1 Industrial accidents & accidental actions; 1.2 Accidental actions: definition and classification; 1.3 Current practice of deterministic modelling accidental actions; 1.4 Knowledge available for selecting action models; 1.5 Principal probabilistic model of accidental action; 1.6 Classical statistical approach to modelling accidental actions; 1.7 Conclusion: the need of risk analysis for predicting accidental actions
2. A brief overview of the situation of data related to accidental actions2.1 The need for diverse information; 2.2 Accident data; 2.3 Data on human reliability; 2.4 Concluding remarks; Part II. Prediction by means of stochastic accident simulation; 3. Classical bayesien approach to predicting accidental actions; 3.1 Introduction; 3.2 Form of action model; 3.3 Selection of action model; 3.4 Case study; 3.5 Expert judgment in Bayesian predicting accidental actions; 3.6 How to apply classical Bayesian action models to damage assessment? 3.7 Conclusion: pros and cons of the classical Bayesian approach4. Predictive, epistemic approach to forecasting accidental actions; 4.1 Introduction; 4.2 Principles of application to accidental actions; 4.3 Form of action model; 4.4 Specifying the action model by a stochastic accident simulation; 4.5 Case study; 4.6 Quantifying epistemic uncertainties related to problem input; 4.7 Application to damage assessment; 4.8 Conclusion: pros and cons of the predictive epistemic approach; Part III. Utilising direct data on accidental actions; 5. Resampling direct data within frequentist's approach 5.1 Introduction5.2 Risk of damage due to accidental action; 5.3 Damage assessment: frequentist's approach or Bayesian updating?; 5.4 Use of bootstrap resampling to estimating damage probabilities; 5.5 Case study; 5.6 Concluding remarks; 6. Bayesian resampling of direct data on an accidental action; 6.1 Introduction; 6.2 Basic ideas; 6.3 Knowledge available for estimating damage probability; 6.4 Application of Bayesian bootstrap; 6.5 Case study; 6.6 Concluding remarks; Postscript; Appendix A. Abbreviations; Appendix B. Novation; Appendix C. Compiuter programs Appendix D. Selected bibliographyReferences; Index |
Record Nr. | UNINA-9910786313703321 |
Vaidogas Egidijus Rytas | ||
Vilnius : , : VGTU leidykla TECHNIKA, , 2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Prediction of accidental actions likely to occur on building structures : an approach based on stochastic simulation / / Egidijus R. Vaidogas ; Vilnius Gediminas Technical University |
Autore | Vaidogas Egidijus Rytas |
Pubbl/distr/stampa | Vilnius : , : VGTU leidykla TECHNIKA, , 2007 |
Descrizione fisica | 1 online resource (249 p.) |
Soggetto topico |
Structural engineering - Computer simulation
Structural engineering - Data processing Stochastic analysis Simulation methods |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; Part I. The problem of accidental actions; 1. Current practice of description and prediction; 1.1 Industrial accidents & accidental actions; 1.2 Accidental actions: definition and classification; 1.3 Current practice of deterministic modelling accidental actions; 1.4 Knowledge available for selecting action models; 1.5 Principal probabilistic model of accidental action; 1.6 Classical statistical approach to modelling accidental actions; 1.7 Conclusion: the need of risk analysis for predicting accidental actions
2. A brief overview of the situation of data related to accidental actions2.1 The need for diverse information; 2.2 Accident data; 2.3 Data on human reliability; 2.4 Concluding remarks; Part II. Prediction by means of stochastic accident simulation; 3. Classical bayesien approach to predicting accidental actions; 3.1 Introduction; 3.2 Form of action model; 3.3 Selection of action model; 3.4 Case study; 3.5 Expert judgment in Bayesian predicting accidental actions; 3.6 How to apply classical Bayesian action models to damage assessment? 3.7 Conclusion: pros and cons of the classical Bayesian approach4. Predictive, epistemic approach to forecasting accidental actions; 4.1 Introduction; 4.2 Principles of application to accidental actions; 4.3 Form of action model; 4.4 Specifying the action model by a stochastic accident simulation; 4.5 Case study; 4.6 Quantifying epistemic uncertainties related to problem input; 4.7 Application to damage assessment; 4.8 Conclusion: pros and cons of the predictive epistemic approach; Part III. Utilising direct data on accidental actions; 5. Resampling direct data within frequentist's approach 5.1 Introduction5.2 Risk of damage due to accidental action; 5.3 Damage assessment: frequentist's approach or Bayesian updating?; 5.4 Use of bootstrap resampling to estimating damage probabilities; 5.5 Case study; 5.6 Concluding remarks; 6. Bayesian resampling of direct data on an accidental action; 6.1 Introduction; 6.2 Basic ideas; 6.3 Knowledge available for estimating damage probability; 6.4 Application of Bayesian bootstrap; 6.5 Case study; 6.6 Concluding remarks; Postscript; Appendix A. Abbreviations; Appendix B. Novation; Appendix C. Compiuter programs Appendix D. Selected bibliographyReferences; Index |
Record Nr. | UNINA-9910809217603321 |
Vaidogas Egidijus Rytas | ||
Vilnius : , : VGTU leidykla TECHNIKA, , 2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Progressive collapse analysis of structures : numerical codes and applications / / Daigoro Isobe |
Autore | Isobe Daigoro |
Pubbl/distr/stampa | Oxford, [England] ; ; Cambridge, [Massachusetts] : , : Butterworth-Heinemann, , 2018 |
Descrizione fisica | 1 online resource (226 pages) : color illustrations, photographs |
Disciplina | 690.21 |
Soggetto topico |
Building failures
Structural engineering - Computer simulation |
ISBN |
0-12-813042-3
0-12-812975-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910583387103321 |
Isobe Daigoro | ||
Oxford, [England] ; ; Cambridge, [Massachusetts] : , : Butterworth-Heinemann, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|