top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
DiQuMASPAB : differential quadrature for mechanics of anisotropic shells, plates, arches and beams / Francesco Tornabene, Nicholas Fantuzzi, Michele Bacciocchi
DiQuMASPAB : differential quadrature for mechanics of anisotropic shells, plates, arches and beams / Francesco Tornabene, Nicholas Fantuzzi, Michele Bacciocchi
Autore Tornabene, Francesco
Pubbl/distr/stampa Bologna : Esculapio, 2018
Descrizione fisica 95 p. : ill. ; 24 cm
Disciplina 624.1
Altri autori (Persone) Fantuzzi, Nicholas
Bacciocchi, Michele
Collana Structural and computational mechanics book series
Soggetto topico Computer-aided engineering - Mathematics
Structural dynamics - Mathematics
ISBN 9788893850636
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991004029199707536
Tornabene, Francesco  
Bologna : Esculapio, 2018
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Meccanica delle strutture a guscio in materiale composito : il metodo generalizzato di quadratura differenziale / Francesco Tornabene
Meccanica delle strutture a guscio in materiale composito : il metodo generalizzato di quadratura differenziale / Francesco Tornabene
Autore Tornabene, Francesco Tornabene <1978- >
Pubbl/distr/stampa Bologna : Esculapio, 2012
Descrizione fisica XIV, 621 p. ; 24 cm
Disciplina 624.1
Soggetto topico Computer-aided engineering - Mathematics
Structural dynamics - Mathematics
ISBN 9788874885275
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ita
Record Nr. UNISALENTO-991004402229207536
Tornabene, Francesco Tornabene <1978- >  
Bologna : Esculapio, 2012
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Spectral element method in structural dynamics [[electronic resource] /] / Usik Lee
Spectral element method in structural dynamics [[electronic resource] /] / Usik Lee
Autore Lee Usik
Pubbl/distr/stampa Singapore ; ; Hoboken, NJ, : J. Wiley & Sons Asia, c2009
Descrizione fisica 1 online resource (470 p.)
Disciplina 624.171
Soggetto topico Structural dynamics - Mathematics
Structural frames - Mathematical models
Spectral theory (Mathematics)
ISBN 1-282-37142-8
9786612371424
0-470-82376-3
0-470-82375-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto SPECTRAL ELEMENT METHOD IN STRUCTURAL DYNAMICS; Contents; Preface; Part One: Introduction to the Spectral Element Method and Spectral Analysis of Signals; 1 Introduction; 1.1 Theoretical Background; 1.1.1 Finite Element Method; 1.1.2 Dynamic Stiffness Method; 1.1.3 Spectral Analysis Method; 1.1.4 Spectral Element Method; 1.1.5 Advantages and Disadvantages of SEM; 1.2 Historical Background; 2 Spectral Analysis of Signals; 2.1 Fourier Series; 2.2 Discrete Fourier Transform and the FFT; 2.2.1 Discrete Fourier Transform (DFT); 2.2.2 Fast Fourier Transform (FFT); 2.3 Aliasing; 2.3.1 Aliasing Error
2.3.2 Remedy for Aliasing2.4 Leakage; 2.4.1 Leakage Error; 2.4.2 Artificial Damping; 2.5 Picket-Fence Effect; 2.6 Zero Padding; 2.6.1 Improving Interpolation in the Transformed Domain; 2.6.2 Remedy for Wraparound Error; 2.7 Gibbs Phenomenon; 2.8 General Procedure of DFT Processing; 2.9 DFTs of Typical Functions; 2.9.1 Product of Two Functions; 2.9.2 Derivative of a Function; 2.9.3 Other Typical Functions; Part Two: Theory of Spectral Element Method; 3 Methods of Spectral Element Formulation; 3.1 Force-Displacement Relation Method; 3.2 Variational Method; 3.3 State-Vector Equation Method
3.4 Reduction from the Finite Models4 Spectral Element Analysis Method; 4.1 Formulation of Spectral Element Equation; 4.1.1 Computation of Wavenumbers and Wavemodes; 4.1.2 Computation of Spectral Nodal Forces; 4.2 Assembly and the Imposition of Boundary Conditions; 4.3 Eigenvalue Problem and Eigensolutions; 4.4 Dynamic Responses with Null Initial Conditions; 4.4.1 Frequency-Domain and Time-Domain Responses; 4.4.2 Equivalence between Spectral Element Equation and Convolution Integral; 4.5 Dynamic Responses with Arbitrary Initial Conditions
4.5.1 Discrete Systems with Arbitrary Initial Conditions4.5.2 Continuous Systems with Arbitrary Initial Conditions; 4.6 Dynamic Responses of Nonlinear Systems; 4.6.1 Discrete Systems with Arbitrary Initial Conditions; 4.6.2 Continuous Systems with Arbitrary Initial Conditions; Part Three: Applications of Spectral Element Method; 5 Dynamics of Beams and Plates; 5.1 Beams; 5.1.1 Spectral Element Equation; 5.1.2 Two-Element Method; 5.2 Levy-Type Plates; 5.2.1 Equation of Motion; 5.2.2 Spectral Element Modeling; 5.2.3 Equivalent 1-D Structure Representation; 5.2.4 Computation of Dynamic Responses
Appendix 5.A: Finite Element Model of Bernoulli-Euler Beam6 Flow-Induced Vibrations of Pipelines; 6.1 Theory of Pipe Dynamics; 6.1.1 Equations of Motion of the Pipeline; 6.1.2 Fluid-Dynamics Equations; 6.1.3 Governing Equations for Pipe Dynamics; 6.2 Pipelines Conveying Internal Steady Fluid; 6.2.1 Governing Equations; 6.2.2 Spectral Element Modeling; 6.2.3 Finite Element Model; 6.3 Pipelines Conveying Internal Unsteady Fluid; 6.3.1 Governing Equations; 6.3.2 Spectral Element Modeling; 6.3.3 Finite Element Model; Appendix 6.A: Finite Element Matrices: Steady Fluid
Appendix 6.B: Finite Element Matrices: Unsteady Fluid
Record Nr. UNINA-9910139927103321
Lee Usik  
Singapore ; ; Hoboken, NJ, : J. Wiley & Sons Asia, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Spectral element method in structural dynamics [[electronic resource] /] / Usik Lee
Spectral element method in structural dynamics [[electronic resource] /] / Usik Lee
Autore Lee Usik
Pubbl/distr/stampa Singapore ; ; Hoboken, NJ, : J. Wiley & Sons Asia, c2009
Descrizione fisica 1 online resource (470 p.)
Disciplina 624.171
Soggetto topico Structural dynamics - Mathematics
Structural frames - Mathematical models
Spectral theory (Mathematics)
ISBN 1-282-37142-8
9786612371424
0-470-82376-3
0-470-82375-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto SPECTRAL ELEMENT METHOD IN STRUCTURAL DYNAMICS; Contents; Preface; Part One: Introduction to the Spectral Element Method and Spectral Analysis of Signals; 1 Introduction; 1.1 Theoretical Background; 1.1.1 Finite Element Method; 1.1.2 Dynamic Stiffness Method; 1.1.3 Spectral Analysis Method; 1.1.4 Spectral Element Method; 1.1.5 Advantages and Disadvantages of SEM; 1.2 Historical Background; 2 Spectral Analysis of Signals; 2.1 Fourier Series; 2.2 Discrete Fourier Transform and the FFT; 2.2.1 Discrete Fourier Transform (DFT); 2.2.2 Fast Fourier Transform (FFT); 2.3 Aliasing; 2.3.1 Aliasing Error
2.3.2 Remedy for Aliasing2.4 Leakage; 2.4.1 Leakage Error; 2.4.2 Artificial Damping; 2.5 Picket-Fence Effect; 2.6 Zero Padding; 2.6.1 Improving Interpolation in the Transformed Domain; 2.6.2 Remedy for Wraparound Error; 2.7 Gibbs Phenomenon; 2.8 General Procedure of DFT Processing; 2.9 DFTs of Typical Functions; 2.9.1 Product of Two Functions; 2.9.2 Derivative of a Function; 2.9.3 Other Typical Functions; Part Two: Theory of Spectral Element Method; 3 Methods of Spectral Element Formulation; 3.1 Force-Displacement Relation Method; 3.2 Variational Method; 3.3 State-Vector Equation Method
3.4 Reduction from the Finite Models4 Spectral Element Analysis Method; 4.1 Formulation of Spectral Element Equation; 4.1.1 Computation of Wavenumbers and Wavemodes; 4.1.2 Computation of Spectral Nodal Forces; 4.2 Assembly and the Imposition of Boundary Conditions; 4.3 Eigenvalue Problem and Eigensolutions; 4.4 Dynamic Responses with Null Initial Conditions; 4.4.1 Frequency-Domain and Time-Domain Responses; 4.4.2 Equivalence between Spectral Element Equation and Convolution Integral; 4.5 Dynamic Responses with Arbitrary Initial Conditions
4.5.1 Discrete Systems with Arbitrary Initial Conditions4.5.2 Continuous Systems with Arbitrary Initial Conditions; 4.6 Dynamic Responses of Nonlinear Systems; 4.6.1 Discrete Systems with Arbitrary Initial Conditions; 4.6.2 Continuous Systems with Arbitrary Initial Conditions; Part Three: Applications of Spectral Element Method; 5 Dynamics of Beams and Plates; 5.1 Beams; 5.1.1 Spectral Element Equation; 5.1.2 Two-Element Method; 5.2 Levy-Type Plates; 5.2.1 Equation of Motion; 5.2.2 Spectral Element Modeling; 5.2.3 Equivalent 1-D Structure Representation; 5.2.4 Computation of Dynamic Responses
Appendix 5.A: Finite Element Model of Bernoulli-Euler Beam6 Flow-Induced Vibrations of Pipelines; 6.1 Theory of Pipe Dynamics; 6.1.1 Equations of Motion of the Pipeline; 6.1.2 Fluid-Dynamics Equations; 6.1.3 Governing Equations for Pipe Dynamics; 6.2 Pipelines Conveying Internal Steady Fluid; 6.2.1 Governing Equations; 6.2.2 Spectral Element Modeling; 6.2.3 Finite Element Model; 6.3 Pipelines Conveying Internal Unsteady Fluid; 6.3.1 Governing Equations; 6.3.2 Spectral Element Modeling; 6.3.3 Finite Element Model; Appendix 6.A: Finite Element Matrices: Steady Fluid
Appendix 6.B: Finite Element Matrices: Unsteady Fluid
Record Nr. UNINA-9910830809203321
Lee Usik  
Singapore ; ; Hoboken, NJ, : J. Wiley & Sons Asia, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Spectral element method in structural dynamics / / Usik Lee
Spectral element method in structural dynamics / / Usik Lee
Autore Lee Usik
Pubbl/distr/stampa Singapore ; ; Hoboken, NJ, : J. Wiley & Sons Asia, c2009
Descrizione fisica 1 online resource (470 p.)
Disciplina 624.171
Soggetto topico Structural dynamics - Mathematics
Structural frames - Mathematical models
Spectral theory (Mathematics)
ISBN 9786612371424
9781282371422
1282371428
9780470823767
0470823763
9780470823750
0470823755
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto SPECTRAL ELEMENT METHOD IN STRUCTURAL DYNAMICS; Contents; Preface; Part One: Introduction to the Spectral Element Method and Spectral Analysis of Signals; 1 Introduction; 1.1 Theoretical Background; 1.1.1 Finite Element Method; 1.1.2 Dynamic Stiffness Method; 1.1.3 Spectral Analysis Method; 1.1.4 Spectral Element Method; 1.1.5 Advantages and Disadvantages of SEM; 1.2 Historical Background; 2 Spectral Analysis of Signals; 2.1 Fourier Series; 2.2 Discrete Fourier Transform and the FFT; 2.2.1 Discrete Fourier Transform (DFT); 2.2.2 Fast Fourier Transform (FFT); 2.3 Aliasing; 2.3.1 Aliasing Error
2.3.2 Remedy for Aliasing2.4 Leakage; 2.4.1 Leakage Error; 2.4.2 Artificial Damping; 2.5 Picket-Fence Effect; 2.6 Zero Padding; 2.6.1 Improving Interpolation in the Transformed Domain; 2.6.2 Remedy for Wraparound Error; 2.7 Gibbs Phenomenon; 2.8 General Procedure of DFT Processing; 2.9 DFTs of Typical Functions; 2.9.1 Product of Two Functions; 2.9.2 Derivative of a Function; 2.9.3 Other Typical Functions; Part Two: Theory of Spectral Element Method; 3 Methods of Spectral Element Formulation; 3.1 Force-Displacement Relation Method; 3.2 Variational Method; 3.3 State-Vector Equation Method
3.4 Reduction from the Finite Models4 Spectral Element Analysis Method; 4.1 Formulation of Spectral Element Equation; 4.1.1 Computation of Wavenumbers and Wavemodes; 4.1.2 Computation of Spectral Nodal Forces; 4.2 Assembly and the Imposition of Boundary Conditions; 4.3 Eigenvalue Problem and Eigensolutions; 4.4 Dynamic Responses with Null Initial Conditions; 4.4.1 Frequency-Domain and Time-Domain Responses; 4.4.2 Equivalence between Spectral Element Equation and Convolution Integral; 4.5 Dynamic Responses with Arbitrary Initial Conditions
4.5.1 Discrete Systems with Arbitrary Initial Conditions4.5.2 Continuous Systems with Arbitrary Initial Conditions; 4.6 Dynamic Responses of Nonlinear Systems; 4.6.1 Discrete Systems with Arbitrary Initial Conditions; 4.6.2 Continuous Systems with Arbitrary Initial Conditions; Part Three: Applications of Spectral Element Method; 5 Dynamics of Beams and Plates; 5.1 Beams; 5.1.1 Spectral Element Equation; 5.1.2 Two-Element Method; 5.2 Levy-Type Plates; 5.2.1 Equation of Motion; 5.2.2 Spectral Element Modeling; 5.2.3 Equivalent 1-D Structure Representation; 5.2.4 Computation of Dynamic Responses
Appendix 5.A: Finite Element Model of Bernoulli-Euler Beam6 Flow-Induced Vibrations of Pipelines; 6.1 Theory of Pipe Dynamics; 6.1.1 Equations of Motion of the Pipeline; 6.1.2 Fluid-Dynamics Equations; 6.1.3 Governing Equations for Pipe Dynamics; 6.2 Pipelines Conveying Internal Steady Fluid; 6.2.1 Governing Equations; 6.2.2 Spectral Element Modeling; 6.2.3 Finite Element Model; 6.3 Pipelines Conveying Internal Unsteady Fluid; 6.3.1 Governing Equations; 6.3.2 Spectral Element Modeling; 6.3.3 Finite Element Model; Appendix 6.A: Finite Element Matrices: Steady Fluid
Appendix 6.B: Finite Element Matrices: Unsteady Fluid
Record Nr. UNINA-9911020228003321
Lee Usik  
Singapore ; ; Hoboken, NJ, : J. Wiley & Sons Asia, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic dynamics of structures [[electronic resource] /] / Jie Li and Jianbing Chen
Stochastic dynamics of structures [[electronic resource] /] / Jie Li and Jianbing Chen
Autore Li Jie <1957 October->
Pubbl/distr/stampa Singapore ; ; Hoboken, NJ, : Wiley, c2009
Descrizione fisica 1 online resource
Disciplina 624.1/71
624.171
Altri autori (Persone) ChenJianbing
Soggetto topico Structural dynamics - Mathematics
Stochastic processes
ISBN 1-282-38216-0
9786612382161
0-470-82426-3
0-470-82425-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910139932803321
Li Jie <1957 October->  
Singapore ; ; Hoboken, NJ, : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic dynamics of structures [[electronic resource] /] / Jie Li and Jianbing Chen
Stochastic dynamics of structures [[electronic resource] /] / Jie Li and Jianbing Chen
Autore Li Jie <1957 October->
Pubbl/distr/stampa Singapore ; ; Hoboken, NJ, : Wiley, c2009
Descrizione fisica 1 online resource
Disciplina 624.1/71
624.171
Altri autori (Persone) ChenJianbing
Soggetto topico Structural dynamics - Mathematics
Stochastic processes
ISBN 1-282-38216-0
9786612382161
0-470-82426-3
0-470-82425-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830762103321
Li Jie <1957 October->  
Singapore ; ; Hoboken, NJ, : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic dynamics of structures / / Jie Li and Jianbing Chen
Stochastic dynamics of structures / / Jie Li and Jianbing Chen
Autore Li Jie <1957 Oct.->
Pubbl/distr/stampa Singapore ; ; Hoboken, NJ, : Wiley, c2009
Descrizione fisica 1 online resource
Disciplina 624.1/71
624.171
Altri autori (Persone) ChenJianbing
Soggetto topico Structural dynamics - Mathematics
Stochastic processes
ISBN 1-282-38216-0
9786612382161
0-470-82426-3
0-470-82425-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911020028503321
Li Jie <1957 Oct.->  
Singapore ; ; Hoboken, NJ, : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic structural dynamics : application of finite element methods / / Cho W. S. To
Stochastic structural dynamics : application of finite element methods / / Cho W. S. To
Autore To Cho W. S
Edizione [First edition.]
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2014
Descrizione fisica 1 online resource (352 p.)
Disciplina 624.1/70151922
Soggetto topico Structural dynamics - Mathematics
Finite element method
Stochastic analysis
ISBN 1-118-40272-3
1-118-40275-8
1-118-40274-X
Classificazione MAT034000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Dedication xi Preface xiii Acknowledgements xv 1. Introduction 1 1.1 Displacement Formulation Based Finite Element Method 2 1.1.1 Derivation of element equation of motion 2 1.1.2 Mass and stiffness matrices of uniform beam element 7 1.1.3 Mass and stiffness matrices of tapered beam element 9 1.2 Element Equations of Motion for Temporally and Spatially Stochastic Systems 13 1.3 Hybrid Stress Based Element Equations of Motion 14 1.3.1 Derivation of element equation of motion 15 1.3.2 Mass and stiffness matrices of uniform beam element 16 1.4 Incremental Variational Principle and Mixed Formulation Based Nonlinear Element Matrices 18 1.4.1 Incremental variational principle and linearization 19 1.4.2 Linear and nonlinear element stiffness matrices 23 1.5 Constitutive Relations and Updating of Configurations and Stresses 36 1.5.1 Elastic materials 36 1.5.2 Elasto-plastic materials with isotropic strain hardening 39 1.5.3 Configuration and stress updatings 45 1.6 Concluding Remarks 48 References 49 2. Spectral Analysis and Response Statistics of Linear Structural Systems 53 2.1 Spectral Analysis 53 2.1.1 Theory of spectral analysis 54 2.1.2 Remarks 56 2.2 Evolutionary Spectral Analysis 56 2.2.1 Theory of evolutionary spectra 56 2.2.2 Modal analysis and evolutionary spectra 57 2.3 Evolutionary Spectra of Engineering Structures 60 2.3.1 Evolutionary spectra of mast antenna structure 61 2.3.2 Evolutionary spectra of cantilever beam structure 67 2.3.3 Evolutionary spectra of plate structure 71 2.3.4 Remarks 73 2.4 Modal Analysis and Time-Dependent Response Statistics 76 2.4.1 Time-dependent covariances of displacements 77 2.4.2 Time-dependent covariances of displacements and velocities 77 2.4.3 Time-dependent covariances of velocities 78 2.4.4 Remarks 78 2.5 Response Statistics of Engineering Structures 79 2.5.1 Mast antenna structure 79 2.5.2 Truncated conical shell structures 81 2.5.3 Laminated composite plate and shell structures 87 References 94 3. Direct Integration Methods for Linear Structural Systems 97 3.1 Stochastic Central Difference Method 97 3.2 Stochastic Central Difference Method with Time Co-ordinate Transformation 100 3.3 Applications 102 3.3.1 Beam structures under base random excitations 102 3.3.2 Plate structures 109 3.3.3 Remarks 114 3.4 Extended Stochastic Central Difference Method and Narrow-band Force Vector 114 3.4.1 Extended stochastic central difference method 114 3.4.2 Beam structure under a narrow-band excitations 118 3.4.3 Concluding remarks 122 3.5 Stochastic Newmark Family of Algorithms 122 3.5.1 Deterministic Newmark family of algorithms 122 3.5.2 Stochastic version of Newmark algorithms 124 3.5.3 Responses of square plates under transverse random forces 126 References 128 4. Modal Analysis and Response Statistics of Quasi-linear Structural Systems 131 4.1 Modal Analysis of Temporally Stochastic Quasi-linear Systems 131 4.1.1 Modal analysis and bi-modal approach 132 4.1.2 Response statistics by Cumming's approach 137 4.2 Response Analysis Based on Melosh-Zienkiewicz-Cheung Bending Plate Finite Element 141 4.2.1 Simply-supported plate structure 142 4.2.2 Square plate clamped at all sides 150 4.2.3 Remarks 152 4.3 Response Analysis Based on High Precision Triangular Plate Finite Element 156 4.3.1 Simply-supported plate structures 157 4.3.2 Square plate clamped at all sides 159 4.4 Concluding Remarks 166 References 166 5. Direct Integration Methods for Response Statistics of Quasi-linear Structural Systems 169 5.1 Stochastic Central Difference Method for Quasi-linear Structural Systems 169 5.1.1 Derivation of covariance matrix of displacements 169 5.1.2 Column under external and parametric random excitations 171 5.2 Recursive Covariance Matrix of Displacements of Cantilever Pipe Containing Turbulent Fluid 174 5.2.1 Recursive covariance matrix of displacements 174 5.2.2 Cantilever pipe containing turbulent fluid 178 5.3 Quasi-linear Systems under Narrow-band Random Excitations 184 5.3.1 Recursive covariance matrix of pipe with mean flow and under narrow-band random excitation 184 5.3.2 Responses of pinned pipe with mean flow and under narrow-band random excitation 186 5.4 Concluding Remarks 188 References 190 6. Direct Integration Methods for Temporally Stochastic Nonlinear Structural Systems 191 6.1 Statistical Linearization Techniques 191 6.2 Symplectic Algorithms of Newmark Family of Integration Schemes 194 6.2.1 Deterministic symplectic algorithms 195 6.2.2 Symplectic members of stochastic version of Newmark family of algorithms 197 6.2.3 Remarks 199 6.3 Stochastic Central Difference Method with Time Co-ordinate Transformation and Adaptive Time Schemes 199 6.3.1 Issues in general nonlinear analysis of shells 200 6.3.2 Time-dependent variances and mean squares of responses 207 6.3.3 Time co-ordinate transformation and adaptive time schemes 210 6.4 Outline of steps in computer program 211 6.5 Large Deformations of Plate and Shell Structures 213 6.5.1 Responses of cantilever plate structure 213 6.5.2 Responses of clamped spherical cap 221 6.6 Concluding Remarks 224 References 226 7. Direct Integration Methods for Temporally and Spatially Stochastic Nonlinear Structural Systems 231 7.1 Perturbation Approximation Techniques and Stochastic Finite Element Methods 232 7.1.1 Stochastic finite element method 232 7.1.2 Statistical moments of responses 236 7.1.3 Solution procedure and computational steps 237 7.1.4 Concluding remarks 241 7.2 Stochastic Central Difference Methods for Temporally and Spatially Stochastic Nonlinear Systems 241 7.2.1 Temporally and spatially homogeneous stochastic nonlinear systems 242 7.2.2 Temporally and spatially non-homogeneous stochastic nonlinear systems 248 7.3 Finite Deformations of Spherical Shells with Large Spatially Stochastic Parameters 251 7.3.1 Spherical cap with spatially homogeneous properties 252 7.3.2 Spherical cap with spatially non-homogeneous properties 254 7.4 Closing Remarks 255 References 257 Appendices 1A Mass and Stiffness Matrices of Higher Order Tapered Beam Element 261 1B Consistent Stiffness Matrix of Lower Order Triangular Shell Element 267 1B.1 Inverse of Element Generalized Stiffness Matrix 267 1B.2 Element Leverage Matrices 268 1B.3 Element Component Stiffness Matrix Associated with Torsion 271 References 276 1C Consistent Mass Matrix of Lower Order Triangular Shell Element 277 Reference 280 2A Eigenvalue Solution 281 References 282 2B Derivation of Evolutionary Spectral Densities and Variances of Displacements 283 2B.1 Evolutionary Spectral Densities Due to Exponentially Decaying Random Excitations 283 2B.2 Evolutionary Spectral Densities Due to Uniformly Modulated Random Excitations 286 2B.3 Variances of Displacements 288 References 297 2C Time-dependent Covariances of Displacements 299 2D Covariances of Displacements and Velocities 311 2E Time-dependent Covariances of Velocities 317 2F Cylindrical Shell Element Matrices 323 3A Deterministic Newmark Family of Algorithms 327 Reference 331 Index 333 .
Record Nr. UNINA-9910138996203321
To Cho W. S  
Chichester, England : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic structural dynamics : application of finite element methods / / Cho W. S. To
Stochastic structural dynamics : application of finite element methods / / Cho W. S. To
Autore To Cho W. S
Edizione [First edition.]
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2014
Descrizione fisica 1 online resource (352 p.)
Disciplina 624.1/70151922
Soggetto topico Structural dynamics - Mathematics
Finite element method
Stochastic analysis
ISBN 1-118-40272-3
1-118-40275-8
1-118-40274-X
Classificazione MAT034000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Dedication xi Preface xiii Acknowledgements xv 1. Introduction 1 1.1 Displacement Formulation Based Finite Element Method 2 1.1.1 Derivation of element equation of motion 2 1.1.2 Mass and stiffness matrices of uniform beam element 7 1.1.3 Mass and stiffness matrices of tapered beam element 9 1.2 Element Equations of Motion for Temporally and Spatially Stochastic Systems 13 1.3 Hybrid Stress Based Element Equations of Motion 14 1.3.1 Derivation of element equation of motion 15 1.3.2 Mass and stiffness matrices of uniform beam element 16 1.4 Incremental Variational Principle and Mixed Formulation Based Nonlinear Element Matrices 18 1.4.1 Incremental variational principle and linearization 19 1.4.2 Linear and nonlinear element stiffness matrices 23 1.5 Constitutive Relations and Updating of Configurations and Stresses 36 1.5.1 Elastic materials 36 1.5.2 Elasto-plastic materials with isotropic strain hardening 39 1.5.3 Configuration and stress updatings 45 1.6 Concluding Remarks 48 References 49 2. Spectral Analysis and Response Statistics of Linear Structural Systems 53 2.1 Spectral Analysis 53 2.1.1 Theory of spectral analysis 54 2.1.2 Remarks 56 2.2 Evolutionary Spectral Analysis 56 2.2.1 Theory of evolutionary spectra 56 2.2.2 Modal analysis and evolutionary spectra 57 2.3 Evolutionary Spectra of Engineering Structures 60 2.3.1 Evolutionary spectra of mast antenna structure 61 2.3.2 Evolutionary spectra of cantilever beam structure 67 2.3.3 Evolutionary spectra of plate structure 71 2.3.4 Remarks 73 2.4 Modal Analysis and Time-Dependent Response Statistics 76 2.4.1 Time-dependent covariances of displacements 77 2.4.2 Time-dependent covariances of displacements and velocities 77 2.4.3 Time-dependent covariances of velocities 78 2.4.4 Remarks 78 2.5 Response Statistics of Engineering Structures 79 2.5.1 Mast antenna structure 79 2.5.2 Truncated conical shell structures 81 2.5.3 Laminated composite plate and shell structures 87 References 94 3. Direct Integration Methods for Linear Structural Systems 97 3.1 Stochastic Central Difference Method 97 3.2 Stochastic Central Difference Method with Time Co-ordinate Transformation 100 3.3 Applications 102 3.3.1 Beam structures under base random excitations 102 3.3.2 Plate structures 109 3.3.3 Remarks 114 3.4 Extended Stochastic Central Difference Method and Narrow-band Force Vector 114 3.4.1 Extended stochastic central difference method 114 3.4.2 Beam structure under a narrow-band excitations 118 3.4.3 Concluding remarks 122 3.5 Stochastic Newmark Family of Algorithms 122 3.5.1 Deterministic Newmark family of algorithms 122 3.5.2 Stochastic version of Newmark algorithms 124 3.5.3 Responses of square plates under transverse random forces 126 References 128 4. Modal Analysis and Response Statistics of Quasi-linear Structural Systems 131 4.1 Modal Analysis of Temporally Stochastic Quasi-linear Systems 131 4.1.1 Modal analysis and bi-modal approach 132 4.1.2 Response statistics by Cumming's approach 137 4.2 Response Analysis Based on Melosh-Zienkiewicz-Cheung Bending Plate Finite Element 141 4.2.1 Simply-supported plate structure 142 4.2.2 Square plate clamped at all sides 150 4.2.3 Remarks 152 4.3 Response Analysis Based on High Precision Triangular Plate Finite Element 156 4.3.1 Simply-supported plate structures 157 4.3.2 Square plate clamped at all sides 159 4.4 Concluding Remarks 166 References 166 5. Direct Integration Methods for Response Statistics of Quasi-linear Structural Systems 169 5.1 Stochastic Central Difference Method for Quasi-linear Structural Systems 169 5.1.1 Derivation of covariance matrix of displacements 169 5.1.2 Column under external and parametric random excitations 171 5.2 Recursive Covariance Matrix of Displacements of Cantilever Pipe Containing Turbulent Fluid 174 5.2.1 Recursive covariance matrix of displacements 174 5.2.2 Cantilever pipe containing turbulent fluid 178 5.3 Quasi-linear Systems under Narrow-band Random Excitations 184 5.3.1 Recursive covariance matrix of pipe with mean flow and under narrow-band random excitation 184 5.3.2 Responses of pinned pipe with mean flow and under narrow-band random excitation 186 5.4 Concluding Remarks 188 References 190 6. Direct Integration Methods for Temporally Stochastic Nonlinear Structural Systems 191 6.1 Statistical Linearization Techniques 191 6.2 Symplectic Algorithms of Newmark Family of Integration Schemes 194 6.2.1 Deterministic symplectic algorithms 195 6.2.2 Symplectic members of stochastic version of Newmark family of algorithms 197 6.2.3 Remarks 199 6.3 Stochastic Central Difference Method with Time Co-ordinate Transformation and Adaptive Time Schemes 199 6.3.1 Issues in general nonlinear analysis of shells 200 6.3.2 Time-dependent variances and mean squares of responses 207 6.3.3 Time co-ordinate transformation and adaptive time schemes 210 6.4 Outline of steps in computer program 211 6.5 Large Deformations of Plate and Shell Structures 213 6.5.1 Responses of cantilever plate structure 213 6.5.2 Responses of clamped spherical cap 221 6.6 Concluding Remarks 224 References 226 7. Direct Integration Methods for Temporally and Spatially Stochastic Nonlinear Structural Systems 231 7.1 Perturbation Approximation Techniques and Stochastic Finite Element Methods 232 7.1.1 Stochastic finite element method 232 7.1.2 Statistical moments of responses 236 7.1.3 Solution procedure and computational steps 237 7.1.4 Concluding remarks 241 7.2 Stochastic Central Difference Methods for Temporally and Spatially Stochastic Nonlinear Systems 241 7.2.1 Temporally and spatially homogeneous stochastic nonlinear systems 242 7.2.2 Temporally and spatially non-homogeneous stochastic nonlinear systems 248 7.3 Finite Deformations of Spherical Shells with Large Spatially Stochastic Parameters 251 7.3.1 Spherical cap with spatially homogeneous properties 252 7.3.2 Spherical cap with spatially non-homogeneous properties 254 7.4 Closing Remarks 255 References 257 Appendices 1A Mass and Stiffness Matrices of Higher Order Tapered Beam Element 261 1B Consistent Stiffness Matrix of Lower Order Triangular Shell Element 267 1B.1 Inverse of Element Generalized Stiffness Matrix 267 1B.2 Element Leverage Matrices 268 1B.3 Element Component Stiffness Matrix Associated with Torsion 271 References 276 1C Consistent Mass Matrix of Lower Order Triangular Shell Element 277 Reference 280 2A Eigenvalue Solution 281 References 282 2B Derivation of Evolutionary Spectral Densities and Variances of Displacements 283 2B.1 Evolutionary Spectral Densities Due to Exponentially Decaying Random Excitations 283 2B.2 Evolutionary Spectral Densities Due to Uniformly Modulated Random Excitations 286 2B.3 Variances of Displacements 288 References 297 2C Time-dependent Covariances of Displacements 299 2D Covariances of Displacements and Velocities 311 2E Time-dependent Covariances of Velocities 317 2F Cylindrical Shell Element Matrices 323 3A Deterministic Newmark Family of Algorithms 327 Reference 331 Index 333 .
Record Nr. UNINA-9910823266603321
To Cho W. S  
Chichester, England : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui