top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced mathematics for engineers with applications in stochastic processes [[electronic resource] /] / Aliakbar Montazer Haghighi, Jian-ao Lian, and Dimitar P. Mishev
Advanced mathematics for engineers with applications in stochastic processes [[electronic resource] /] / Aliakbar Montazer Haghighi, Jian-ao Lian, and Dimitar P. Mishev
Autore Haghighi Aliakbar Montazer
Edizione [Rev. ed.]
Pubbl/distr/stampa New York, : Nova Science Publishers, Inc., 2011, c2010
Descrizione fisica 1 online resource (568 p.)
Disciplina 510
Altri autori (Persone) LianJian-ao
MishevD. P (Dimiter P.)
Collana Mathematics research developments
Soggetto topico Functions of several complex variables
Stochastic analysis
Soggetto genere / forma Electronic books.
ISBN 1-62417-681-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910453211603321
Haghighi Aliakbar Montazer  
New York, : Nova Science Publishers, Inc., 2011, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced mathematics for engineers with applications in stochastic processes [[electronic resource] /] / Aliakbar Montazer Haghighi, Jian-ao Lian, and Dimitar P. Mishev
Advanced mathematics for engineers with applications in stochastic processes [[electronic resource] /] / Aliakbar Montazer Haghighi, Jian-ao Lian, and Dimitar P. Mishev
Autore Haghighi Aliakbar Montazer
Edizione [Rev. ed.]
Pubbl/distr/stampa New York, : Nova Science Publishers, Inc., 2011, c2010
Descrizione fisica 1 online resource (568 p.)
Disciplina 510
Altri autori (Persone) LianJian-ao
MishevD. P (Dimiter P.)
Collana Mathematics research developments
Soggetto topico Functions of several complex variables
Stochastic analysis
ISBN 1-62417-681-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910779785203321
Haghighi Aliakbar Montazer  
New York, : Nova Science Publishers, Inc., 2011, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced mathematics for engineers with applications in stochastic processes / / Aliakbar Montazer Haghighi, Jian-ao Lian, and Dimitar P. Mishev
Advanced mathematics for engineers with applications in stochastic processes / / Aliakbar Montazer Haghighi, Jian-ao Lian, and Dimitar P. Mishev
Autore Haghighi Aliakbar Montazer
Edizione [Rev. ed.]
Pubbl/distr/stampa New York, : Nova Science Publishers, Inc., 2011, c2010
Descrizione fisica 1 online resource (568 p.)
Disciplina 510
Altri autori (Persone) LianJian-ao
MishevD. P (Dimiter P.)
Collana Mathematics research developments
Soggetto topico Functions of several complex variables
Stochastic analysis
ISBN 1-62417-681-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- ADVANCED MATHEMATICSFOR ENGINEERS WITH APPLICATIONSIN STOCHASTIC PROCESSES -- ADVANCED MATHEMATICSFOR ENGINEERS WITH APPLICATIONSIN STOCHASTIC PROCESSES -- LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA -- CONTENTS -- PREFACE -- Chapter 1: INTRODUCTION -- 1.1. FUNCTIONS OF SEVERAL VARIABLES -- Definition 1.1.1. -- Example 1.1.1. -- Definition 1.1.2. -- Definition 1.1.3. -- Definition 1.1.4. -- Definition 1.1.5. -- Example 1.1.2. -- Definition 1.1.6. -- Definition 1.1.7. -- 1.2. PARTIAL DERIVATIVES, GRADIENT, AND DIVERGENCE -- Definition 1.2.1. -- Theorem 1.2.1 (Clairaut's1 Theorem or Schwarz's2 Theorem) -- Example 1.2.1. -- Definition 1.2.2. -- Example 1.2.3. -- Definition 1.2.3. -- Definition 1.2.4. -- Definition 1.2.5. -- Example 1.2.4. -- Definition 1.2.6. -- Definition 1.2.7. -- Example 1.2.5. -- Definition 1.2.8. -- Theorem 1.2.2. -- Example 1.2.6. -- 1.3. FUNCTIONS OF A COMPLEX VARIABLE -- Definition 1.3.1. -- 1.4. POWER SERIES AND THEIR CONVERGENT BEHAVIOR -- Definition 1.4.1. -- Definition 1.4.2. -- 1.5. REAL-VALUED TAYLOR SERIES AND MACLAURIN SERIES -- Definition 1.5.1. -- Definition 1.5.2. -- 1.6. POWER SERIES REPRESENTATION OF ANALYTIC FUNCTIONS -- 1.6.1. Derivative and Analytic Functions -- Definition 1.6.1. -- Definition 1.6.2 -- Theorem 1.6.1 (Cauchy-Riemann10 Equations and Analytic Functions) -- 1.6.2. Line Integral in the Complex Plane -- Definition 1.6.3. -- Definition 1.6.4. -- Definition 1.6.5. -- Theorem 1.6.2. -- 1.6.3. Cauchy's Integral Theorem for Simply Connected Domains -- Theorem 1.6.3 (Cauchy's Integral Theorem) -- 1.6.4. Cauchy's Integral Theorem for Multiple Connected Domains -- Theorem 1.6.4. (Cauchy's Integral Theorem for Multiple ConnectedDomains) -- 1.6.5. Cauchy's Integral Formula -- Theorem 1.6.5. (Cauchy's Integral Formula) -- 1.6.6. Cauchy's Integral Formula for Derivatives.
Theorem 1.6.6. (Cauchy's Integral Formula for Derivatives) -- 1.6.7. Taylor and Maclaurin Series of Complex-Valued Functions -- Definition 1.6.6. -- Definition 1.6.7. -- Theorem 1.6.7. (Taylor Theorem) -- Definition 1.6.8. -- 1.6.8. Taylor Polynomials and their Applications -- Definition 1.6.9. -- EXERCISES -- 1.1. Functions of Several Variables -- 1.2. Partial Derivatives, Gradient, and Divergence -- 1.3. Functions of a Complex Variable -- 1.4. Power Series and their Convergent Behavior -- 1.5. Real-Valued Taylor Series and Maclaurin Series -- 1.6. Power Series Representation of Analytic Functions -- Chapter 2: FOURIER AND WAVELET ANALYSIS -- 2.1. VECTOR SPACES AND ORTHOGONALITY -- Definition 2.1.1. -- Definition 2.1.2. -- Definition 2.1.3. -- Definition 2.1.4. -- Definition 2.1.5. -- Definition 2.1.6. -- Definition 2.1.7. -- Definition 2.1.8. -- Definition 2.1.9. -- Definition 2.1.10. -- Definition 2.1.11. -- 2.2. FOURIER SERIES AND ITS CONVERGENT BEHAVIOR -- Definition 2.2.1. -- Definition 2.2.2. -- Definition 2.2.3. -- Theorem 2.2.1. (Uniform Convergence) -- Theorem 2.2.2. (Fourier Series of Piecewise Smooth Functions) -- 2.3. FOURIER COSINE AND SINE SERIESAND HALF-RANGE EXPANSIONS -- Definition 2.3.1. -- Definition 2.3.2. -- 2.4. FOURIER SERIES AND PDES -- Definition 2.4.1. -- 2.5. FOURIER TRANSFORM AND INVERSE FOURIER TRANSFORM -- Definition 2.5.1. -- Definition 2.5.2. -- 2.6. PROPERTIES OF FOURIER TRANSFORMAND CONVOLUTION THEOREM -- Definition 2.6.1. -- 2.7. DISCRETE FOURIER TRANSFORMAND FAST FOURIER TRANSFORM -- Definition 2.7.1. -- Definition 2.7.2. -- Definition 2.7.3. -- Definition 2.7.4. -- 2.8. CLASSICAL HAAR SCALING FUNCTION AND HAAR WAVELETS -- Definition 2.8.1. -- 2.9. DAUBECHIES7 ORTHONORMALSCALING FUNCTIONS ANDWAVELETS -- Definition 2.9.1. -- Definition 2.9.2. -- 2.10.MULTIRESOLUTION ANALYSIS IN GENERAL -- Definition 2.10.1.
2.11.WAVELET TRANSFORM AND INVERSE WAVELET TRANSFORM -- Definition 2.11.1. -- Definition 2.11.2. -- 2.12. OTHER WAVELETS -- 2.12.1. Compactly Supported Spline Wavelets -- Definition 2.12.1. -- Definition 2.12.2. -- 2.12.2. Morlet Wavelets -- 2.12.3. Gaussian Wavelets -- 2.12.4. Biorthogonal Wavelets -- 2.12.5. CDF 5/3 Wavelets -- 2.12.6. CDF 9/7 Wavelets -- EXERCISES -- 2.1. Vector Spaces and Orthogonality -- 2.2. Fourier Series and its Convergent Behavior -- 2.3. Fourier Cosine and Sine Series and Half-Range Expansions -- 2.4. Fourier Series and PDEs -- 2.5. Fourier Transform and Inverse Fourier Transform -- 2.6. Properties of Fourier Transform and Convolution Theorem -- 2.8. Classical Haar Scaling Function and Haar Wavelets -- 2.9. Daubechies Orthonormal Scaling Functions and Wavelets -- 2.12. Other Wavelets -- Chapter 3: LAPLACE TRANSFORM -- 3.1. DEFINITIONS OF LAPLACE TRANSFORM ANDINVERSE LAPLACE TRANSFORM -- Definition 3.1.1. -- Theorem 3.1.1. (Existence of Laplace Transform) -- 3.2. FIRST SHIFTING THEOREM -- Theorem 3.2.1. (First Shifting or s-Shifting Theorem) -- 3.3. LAPLACE TRANSFORM OF DERIVATIVES -- Theorem 3.3.1. (Laplace Transform of First Order Derivative) . -- Theorem 3.3.2. (Laplace Transform of High Order Derivatives) -- 3.4. SOLVING INITIAL-VALUE PROBLEMS BY LAPLACE TRANSFORM -- 3.5. HEAVISIDE FUNCTION AND SECOND SHIFTING THEOREM -- Definition 3.5.1. -- Theorem 3.5.1. (The Second Shifting or t-Shifting Theorem) -- 3.6. SOLVING INITIAL-VALUE PROBLEMSWITH DISCONTINUOUS INPUTS -- 3.7. SHORT IMPULSE AND DIRAC'S DELTA FUNCTIONS -- 3.8. SOLVING INITIAL-VALUE PROBLEMSWITH IMPULSE INPUTS -- 3.9. APPLICATION OF LAPLACE TRANSFORMTO ELECTRIC CIRCUITS -- 3.10. TABLE OF LAPLACE TRANSFORMS -- EXERCISES -- 3.1. Definitions of Laplace Transform and Inverse Laplace Transform -- 3.2. First Shifting Theorem -- 3.3. Laplace Transform of Derivatives.
3.4. Solving Initial-Value Problems by Laplace Transform -- 3.5. Heaviside Function and Second Shifting Theorem -- 3.6. Solving Initial-Value Problems with Discontinuous Inputs -- 3.8. Solving Initial-Value Problems with Impulse Inputs -- 3.9. Application of Laplace Transform to Electric Circuits -- Chapter 4: PROBABILITY -- 4.1. INTRODUCTION -- Definition 4.1.1. -- Definition 4.1.2. -- Definition 4.1.3. -- Definition 4.1.4. -- Definition 4.1.5. -- Definition 4.1.6. -- Definition 4.1.7. -- Definition 4.1.8. -- Definition 4.1.9. -- 4.2. COUNTING TECHNIQUES -- Definition 4.2.1. -- Rule 4.2.1. The Fundamental Principle of Counting -- Definition 4.2.2. -- Theorem 4.2.1. -- Definition 4.2.3. -- Definition 4.2.4. -- Theorem 4.2.3. -- 4.3. TREE DIAGRAMS -- 4.4. CONDITIONAL PROBABILITY AND INDEPENDENCE -- Definition 4.4.1. -- Definition 4.4.2. -- Theorem 4.4.1. -- Definition 4.4.3. -- 4.5. THE LAW OF TOTAL PROBABILITY -- Theorem 4.5.1. (The Multiplicative Law) -- Theorem 4.5.2. (The Multiplicative Law)Let 1 -- Theorem 4.5.3. (The Law of Total Probability) -- Theorem 4.5.4. (Bayes' Formula) -- 4.6. DISCRETE RANDOM VARIABLES -- Definition 4.6.1. -- Definition 4.6.2. -- Definition 4.6.3. -- 4.7. DISCRETE PROBABILITY DISTRIBUTIONS -- Definition 4.7.1. -- Definition 4.7.2. -- Definition 4.7.3. -- Definition 4.7.4. -- Definition 4.7.5. -- Definition 4.7.6. -- Definition 4.7.7. -- Definition 4.7.8. -- Definition 4.7.9. -- Theorem 4.7.2. -- 4.8. RANDOM VECTORS -- Definition 4.8.1. -- Definition 4.8.2. -- Definition 4.8.3. -- Theorem 4.8.1. Multinomial Theorem -- Definition 4.8.4. -- 4.9. CONDITIONAL DISTRIBUTION AND INDEPENDENCE -- Theorem 4.9.1. (The Law of Total Probability) -- Definition 4.9.1. -- Definition 4.9.2. -- Definition 4.9.3. -- Theorem 4.9.2. -- Theorem 4.9.3 -- Theorem 4.9.4. -- 4.10. DISCRETE MOMENTS -- Definition 4.10.1. -- Definition 4.10.2.
Theorem 4.10.1. -- Theorem 4.10.2. -- Theorem 4.10.3. -- Definition 4.10.3. -- Definition 4.10.4. -- Definition 4.10.5. -- Theorem 4.10.4. -- Definition 4.10.6. -- Theorem 4.10.5. -- Definition 4.10.7. -- Theorem 4.10.6. -- Theorem 4.10.7. -- Theorem 4.10.8. -- Theorem 4.10.9. -- Theorem 4.10.10. -- Theorem 4.10.11. -- Definition 4.10.8. -- Definition 4.10.8. -- 4.11. CONTINUOUS RANDOM VARIABLES AND DISTRIBUTIONS -- Definition 4.11.1. -- Definition 4.11.2. -- Definition 4.11.3. -- Definition 4.11.4. -- Definition 4.11.5. -- Definition 4.11.6. -- Definition 4.11.7 -- Definition 4.11.8 -- Definition 4.11.9. -- Definition 4.11.10 -- Definition 4.11.11. -- Definition 4.11.12. -- Definition 4.11.13. -- Definition 4.11.14 -- Definition 4.11.15. -- Definition 4.11.16 -- Remark 4.11.1. -- 4.12. CONTINUOUS RANDOM VECTOR -- Definition 4.12.1. -- Definition 4.12.2 -- 4.13. FUNCTIONS OF A RANDOM VARIABLE -- Definition 4.13.1. -- Definition 4.13.2. -- Theorem 4.13.1. -- Definition 4.13.3. -- Theorem 4.13.2. -- Definition 4.13.4. -- Theorem 4.13.3. Central Limit Theorem -- EXERCISES -- 4.1. Introduction -- 4.2. Counting Techniques -- 4.3. Tree Diagrams -- 4.4. Conditional Probability and Independence -- 4.5. The Law of Total Probability -- 4.6. Discrete Random Variables -- 4.7. Discrete Probability Distributions -- 4.8. Random Vectors -- 4.9. Conditional Distribution and Independence -- 4.10. Discrete Moments -- 4.11. Continuous Random Variables and Distributions -- 4.12. Continuous Random Vector -- 4.13. Functions of a Random Variable -- Chapter 5: STATISTICS -- PART ONE: DESCRIPTIVE STATISTICS -- 5.1. BASIC STATISTICAL CONCEPTS -- Definition 5.1.1. -- Definition 5.1.2. -- 5.1.1. Measures of Central Tendency -- Definition 5.1.3. -- Definition 5.1.4. -- Definition 5.1.5. -- Definition 5.1.6. -- 5.1.2. Organization of Data -- Definition 5.1.7. -- Definition 5.1.8.
Definition 5.1.9.
Record Nr. UNINA-9910960571603321
Haghighi Aliakbar Montazer  
New York, : Nova Science Publishers, Inc., 2011, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Deterministic and Stochastic Analysis [[electronic resource] /] / editors, N. M. Chuong ... [et al.]
Advances in Deterministic and Stochastic Analysis [[electronic resource] /] / editors, N. M. Chuong ... [et al.]
Pubbl/distr/stampa Singapore ; ; Hackensack, : World Scientific, c2007
Descrizione fisica 1 online resource (372 p.)
Disciplina 519.23
Altri autori (Persone) ChuongN. M (Nguyen Minh)
Soggetto topico Stochastic analysis
Deterministic chaos
Soggetto genere / forma Electronic books.
ISBN 1-281-12151-7
9786611121518
981-277-049-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; CONTENTS; Chapter I Integral and Pseudodifferential Operators; 1. Pseudodifferential Operators of Second Order with Sign-Changed Characteristic Form Nguyen Minh Tri; 2. A Semilinear Nonclassical Pseudodifferential Boundary Value Problem in Sobolev Spaces 1 < p < 00 Nguyen Minh Chuong and Dang Anh Tuan; 3. Singular Integral Operators in Functional Spaces of Morrey Type Lubomira Softova; 4. Classification of Integral Transforms Vu Kim Tuan; Chapter II Partial Differential Equations; 5. Unified Minimax Methods Martin Schechter
6. Some Remarks on Single Conservation Laws Mikio Tsuji and Peter Wagner7. Iterative Method for Solving a Mixed Boundary Value Problem for Biharmonic Type Equation Dung Quang A and Le Tung Son; 8. Numerical Solution to a Non-Linear Parabolic Boundary Control Problem Dinh Nho Hao, Nguyen Trung Thanh and H. Sahli; 9. A Class of Solutions to Maxwell's Equations in Matter and Associated Special Functions Peter Massopust
10. On the Cauchy Problem for a Quasilinear Weakly Hyperbolic System in Two Variables and Applications to that for Weakly Hyperbolic Classical Monge- Ampkre Equations Ha Tien Ngoan and Nguyen Thi Nga11. Some Singular Perturbation Problems Related to the Navier- Stokes Equations Makram Hamouda and Roger Temam; Chapter III Geometric Analysis; 12. Monotone Invariants and Embeddings of Statistical Manifolds Le Hong Van; 13. Graded Cech Cohomology in Noncommutative Geometry Do Ngoc Diep; 14. Sobolev Spaces with Weight on Riemannian Manifolds Nguyen Manh Chuong and Le DUC Thinh
Chapter IV Stochastic and Infinite-Dimentional Analysis15. Stochastic Population Control and RSDE with Jumps Situ Rong; 16. Noncausal Stochastic Calculus Revisited - Around the So-called Ogawa Integral Shigeyoshi Ogawa; 17. Infinite-Dimensional Stochastic Analysis and Foundations of Quantum Mechanics Andrei Khrennikov; 18. Noncommutative Trigonometry and Quantum Mechanics Karl Gustafson
Record Nr. UNINA-9910450671803321
Singapore ; ; Hackensack, : World Scientific, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Deterministic and Stochastic Analysis [[electronic resource] /] / editors, N. M. Chuong ... [et al.]
Advances in Deterministic and Stochastic Analysis [[electronic resource] /] / editors, N. M. Chuong ... [et al.]
Pubbl/distr/stampa Singapore ; ; Hackensack, : World Scientific, c2007
Descrizione fisica 1 online resource (372 p.)
Disciplina 519.23
Altri autori (Persone) ChuongN. M (Nguyen Minh)
Soggetto topico Stochastic analysis
Deterministic chaos
ISBN 1-281-12151-7
9786611121518
981-277-049-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; CONTENTS; Chapter I Integral and Pseudodifferential Operators; 1. Pseudodifferential Operators of Second Order with Sign-Changed Characteristic Form Nguyen Minh Tri; 2. A Semilinear Nonclassical Pseudodifferential Boundary Value Problem in Sobolev Spaces 1 < p < 00 Nguyen Minh Chuong and Dang Anh Tuan; 3. Singular Integral Operators in Functional Spaces of Morrey Type Lubomira Softova; 4. Classification of Integral Transforms Vu Kim Tuan; Chapter II Partial Differential Equations; 5. Unified Minimax Methods Martin Schechter
6. Some Remarks on Single Conservation Laws Mikio Tsuji and Peter Wagner7. Iterative Method for Solving a Mixed Boundary Value Problem for Biharmonic Type Equation Dung Quang A and Le Tung Son; 8. Numerical Solution to a Non-Linear Parabolic Boundary Control Problem Dinh Nho Hao, Nguyen Trung Thanh and H. Sahli; 9. A Class of Solutions to Maxwell's Equations in Matter and Associated Special Functions Peter Massopust
10. On the Cauchy Problem for a Quasilinear Weakly Hyperbolic System in Two Variables and Applications to that for Weakly Hyperbolic Classical Monge- Ampkre Equations Ha Tien Ngoan and Nguyen Thi Nga11. Some Singular Perturbation Problems Related to the Navier- Stokes Equations Makram Hamouda and Roger Temam; Chapter III Geometric Analysis; 12. Monotone Invariants and Embeddings of Statistical Manifolds Le Hong Van; 13. Graded Cech Cohomology in Noncommutative Geometry Do Ngoc Diep; 14. Sobolev Spaces with Weight on Riemannian Manifolds Nguyen Manh Chuong and Le DUC Thinh
Chapter IV Stochastic and Infinite-Dimentional Analysis15. Stochastic Population Control and RSDE with Jumps Situ Rong; 16. Noncausal Stochastic Calculus Revisited - Around the So-called Ogawa Integral Shigeyoshi Ogawa; 17. Infinite-Dimensional Stochastic Analysis and Foundations of Quantum Mechanics Andrei Khrennikov; 18. Noncommutative Trigonometry and Quantum Mechanics Karl Gustafson
Record Nr. UNINA-9910784062503321
Singapore ; ; Hackensack, : World Scientific, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analyzing tax policy changes using a stochastic OLG model with heterogeneous households [[electronic resource] /] / Shinichi Nishiyama
Analyzing tax policy changes using a stochastic OLG model with heterogeneous households [[electronic resource] /] / Shinichi Nishiyama
Autore Nishiyama Shinichi
Pubbl/distr/stampa Washington, DC : , : Congressional Budget Office, , [2003]
Descrizione fisica 1 online resource (61 pages) : digital, PDF file
Collana Technical paper series
Soggetto topico Fiscal policy - United States - Mathematical models
Finance, Public - United States - Mathematical models
Income tax - United States - Mathematical models
Stochastic analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910699397303321
Nishiyama Shinichi  
Washington, DC : , : Congressional Budget Office, , [2003]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied stochastic hydrogeology [[electronic resource] /] / Yoram Rubin
Applied stochastic hydrogeology [[electronic resource] /] / Yoram Rubin
Autore Rubin Yoram
Pubbl/distr/stampa Oxford ; ; New York, : Oxford University Press, 2003
Descrizione fisica 1 online resource (412 p.)
Disciplina 551.49/01/5118
Collana Oxford scholarship online
Soggetto topico Hydrogeology - Mathematical models
Stochastic analysis
Soggetto genere / forma Electronic books.
ISBN 0-19-756167-5
1-280-83465-X
0-19-803154-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Important Terms, xiii -- Symbols, xv --1 Introduction, 3 -- 2 Fundamentals of Stochastic Site Characterization, 13 -- 3 Estimation and Simulation, 60 -- 4 Moments of the Flow Variables, Part I: The Flow Equation and the Hydraulic Head, 86 -- 5 Moments of the Flow Variables, Part II: The Effective Conductivity, 121 -- 6 Upscaling, Computational Aspects, and Statistics of the Velocity Field, 140 -- 7 An Overview of Stochastic Tools for Modeling Transport of Tracers in Heterogeneous Media, 161 -- 8 The Eulerian Picture: Principles of the Eulerian Approach to Modeling the Transport of Solutes, 169 -- 9 The Lagrangian Picture, Part I: Fundamentals of the Lagrangian Approach to Solute Transport, 200 -- 10 The Lagrangian Picture, Part II: Models and Applications of the Lagrangian Approach to Solute Transport, 217 -- 11 Vadose Zone, Part I: Characterization and Flow Processes, 288 -- 12 Vadose Zone, Part II: Transport, 312 -- 13 Quantifying and Accounting for Uncertainty, 321 --References, 357 -- Index, 385.
Record Nr. UNINA-9910454171803321
Rubin Yoram  
Oxford ; ; New York, : Oxford University Press, 2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied stochastic hydrogeology / / Yoram Rubin
Applied stochastic hydrogeology / / Yoram Rubin
Autore Rubin Yoram
Pubbl/distr/stampa Oxford ; ; New York : , : Oxford University Press, , 2003
Descrizione fisica 1 online resource (xix, 391 pages) : illustrations
Disciplina 551.49/01/5118
Collana Oxford scholarship online
Soggetto topico Hydrogeology - Mathematical models
Stochastic analysis
ISBN 0-19-756167-5
1-280-83465-X
0-19-803154-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Important Terms, xiii -- Symbols, xv --1 Introduction, 3 -- 2 Fundamentals of Stochastic Site Characterization, 13 -- 3 Estimation and Simulation, 60 -- 4 Moments of the Flow Variables, Part I: The Flow Equation and the Hydraulic Head, 86 -- 5 Moments of the Flow Variables, Part II: The Effective Conductivity, 121 -- 6 Upscaling, Computational Aspects, and Statistics of the Velocity Field, 140 -- 7 An Overview of Stochastic Tools for Modeling Transport of Tracers in Heterogeneous Media, 161 -- 8 The Eulerian Picture: Principles of the Eulerian Approach to Modeling the Transport of Solutes, 169 -- 9 The Lagrangian Picture, Part I: Fundamentals of the Lagrangian Approach to Solute Transport, 200 -- 10 The Lagrangian Picture, Part II: Models and Applications of the Lagrangian Approach to Solute Transport, 217 -- 11 Vadose Zone, Part I: Characterization and Flow Processes, 288 -- 12 Vadose Zone, Part II: Transport, 312 -- 13 Quantifying and Accounting for Uncertainty, 321 --References, 357 -- Index, 385.
Record Nr. UNINA-9910782479903321
Rubin Yoram  
Oxford ; ; New York : , : Oxford University Press, , 2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied stochastic hydrogeology / Yoram Rubin
Applied stochastic hydrogeology / Yoram Rubin
Autore Rubin, Yoram
Pubbl/distr/stampa Oxford ; New York : Oxford University Press, 2003
Descrizione fisica xix, 391 p. : ill. ; 24 cm
Disciplina 551.49015118
Soggetto topico Hydrogeology - Mathematical models
Stochastic analysis
ISBN 019513804X
Classificazione AMS 86A05
AMS 60H99
LC GB1001.72.M35
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents: Important Terms, xiii ; Symbols, xv ; 1 Introduction, 3 ; 2 Fundamentals of Stochastic Site Characterization, 13 ; 3 Estimation and Simulation, 60 ; 4 Moments of the Flow Variables, Part I: The Flow Equation and the Hydraulic Head, 86 ; 5 Moments of the Flow Variables, Part II: The Effective Conductivity, 121 ; 6 Upscaling, Computational Aspects, and Statistics of the Velocity Field, 140 ; 7 An Overview of Stochastic Tools for Modeling Transport of Tracers in Heterogeneous Media, 161 ; 8 The Eulerian Picture: Principles of the Eulerian Approach to Modeling the Transport of Solutes, 169 ; 9 The Lagrangian Picture, Part I: Fundamentals of the Lagrangian Approach to Solute Transport, 200 ; 10 The Lagrangian Picture, Part II: Models and Applications of the Lagrangian Approach to Solute Transport, 217 ; 11 Vadose Zone, Part I: Characterization and Flow Processes, 288 ; 12 Vadose Zone, Part II: Transport, 312 ; 13 Quantifying and Accounting for Uncertainty, 321 ; References, 357 ; Index, 385
Record Nr. UNISALENTO-991000998039707536
Rubin, Yoram  
Oxford ; New York : Oxford University Press, 2003
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Applied stochastic models and data analysis
Applied stochastic models and data analysis
Pubbl/distr/stampa [Chichester ; ; New York, N.Y.], : John Wiley & Sons, -c1999
Disciplina 519 $2 13
Soggetto topico Stochastic analysis
Stochastic processes
Probabilities
Mathematical statistics
ISSN 1099-0747
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNISA-996209659603316
[Chichester ; ; New York, N.Y.], : John Wiley & Sons, -c1999
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui