top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
AI Assisted Business Analytics : Techniques for Reshaping Competitiveness / / by Joseph Boffa
AI Assisted Business Analytics : Techniques for Reshaping Competitiveness / / by Joseph Boffa
Autore Boffa Joseph
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (133 pages)
Disciplina 300.727
658.4012
Soggetto topico Statistics
Stochastic models
Multivariate analysis
Statistics in Business, Management, Economics, Finance, Insurance
Stochastic Modelling in Statistics
Multivariate Analysis
Planificació empresarial
Planificació estratègica
Processament de dades
Intel·ligència artificial
Aplicacions industrials
Competència econòmica
Soggetto genere / forma Llibres electrònics
ISBN 3-031-40821-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Business Prosperity -- Analytics Case Studies -- Statistical Audit Design -- The Sales Tax Audit -- Forensic Accounting Using Benford Formula -- Financial Projections -- Planning Expenses and Investments -- Market Research.
Record Nr. UNINA-9910755079503321
Boffa Joseph  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayesian Network Modeling of Corrosion / / edited by Narasi Sridhar
Bayesian Network Modeling of Corrosion / / edited by Narasi Sridhar
Autore Sridhar Narasi
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (343 pages)
Disciplina 620.11223
Altri autori (Persone) Sridhar
Soggetto topico Corrosion and anti-corrosives
Statistics
Stochastic models
Surfaces (Technology)
Thin films
Coatings
Corrosion
Bayesian Network
Stochastic Modelling in Statistics
Surfaces, Interfaces and Thin Film
ISBN 9783031561283
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter1. Introduction: Risk Assessment -- Chapter.2. Bayesian Network Basics -- Chaoter.3. Corrosion Models -- Chapter.4. Statistical Models: Propagation of Uncertainty and Monte Carlo modeling -- Chapter.5. Corrosion Risk Assessment in Pipelines -- Chapter.6. Oil and Gas Production Systems -- Chapter.7.Nuclear Energy -- Chapter.8. Localized Corrosion in Saline Environments -- Chapter.9. BN for reinforced concrete structures -- Chapter.10.Coatings -- Chapter.11.Summary and Future.
Record Nr. UNINA-9910869156003321
Sridhar Narasi  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Closure Properties for Heavy-Tailed and Related Distributions : An Overview / / by Remigijus Leipus, Jonas Šiaulys, Dimitrios Konstantinides
Closure Properties for Heavy-Tailed and Related Distributions : An Overview / / by Remigijus Leipus, Jonas Šiaulys, Dimitrios Konstantinides
Autore Leipus Remigijus
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (99 pages)
Disciplina 519.24
Altri autori (Persone) SiaulysJonas
KonstantinidesDimitrios
Collana SpringerBriefs in Statistics
Soggetto topico Probabilities
Distribution (Probability theory)
Stochastic models
Actuarial science
Applied Probability
Distribution Theory
Probability Theory
Stochastic Modelling in Statistics
Actuarial Mathematics
Distribució (Teoria de la probabilitat)
Soggetto genere / forma Llibres electrònics
ISBN 3-031-34553-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Acronyms -- 1 Introduction -- 1.1 An Overview of the Book -- 1.2 Notations and Definitions -- 2 Heavy-Tailed and Related Classes of Distributions -- 2.1 Heavy-Tailed Distributions -- 2.2 Regularly Varying Distributions -- 2.3 Consistently Varying Distributions -- 2.4 Dominatedly Varying Distributions -- 2.5 Long-Tailed Distributions -- 2.6 Exponential-Like-Tailed Distributions -- 2.7 Generalized Long-Tailed Distributions -- 2.8 Subexponential Distributions -- 2.9 Strong Subexponential Distributions -- 2.10 Convolution Equivalent Distributions -- 2.11 Generalized Subexponential Distributions -- 2.12 Bibliographical Notes -- 3 Closure Properties Under Tail-Equivalence, Convolution, Finite Mixing, Maximum, and Minimum -- 3.1 Ruin Probability in the Cramér-Lundberg Risk Model in the Case of Heavy-Tailed Claims -- 3.2 Convolution Closure and Max-Sum Equivalence -- 3.3 Closure Properties for Heavy-Tailed Class of Distributions -- 3.4 Closure Properties for Regularly Varying Class of Distributions -- 3.5 Closure Properties for Consistently Varying Class of Distributions -- 3.6 Closure Properties for Dominatedly Varying Class of Distributions -- 3.7 Closure Properties for Long-Tailed Class of Distributions -- 3.8 Closure Properties for Exponential-Like-Tailed Class of Distributions -- 3.9 Closure Properties for Generalized Long-Tailed Class of Distributions -- 3.10 Closure Properties for Subexponential Class of Distributions -- 3.11 Closure Properties for Strong Subexponential Class of Distributions -- 3.12 Closure Properties for Convolution Equivalent Class of Distributions -- 3.13 Closure Properties for Generalized Subexponential Class of Distributions -- 3.14 Bibliographical Notes -- 4 Convolution-Root Closure -- 4.1 Distribution Classes Closed Under Convolution Roots.
4.2 Distribution Classes Not Closed Under Convolution Roots -- 4.3 Bibliographical Notes -- 5 Product-Convolution of Heavy-Tailed and Related Distributions -- 5.1 Product-Convolution -- 5.2 From Light Tails to Heavy Tails Through Product-Convolution -- 5.3 Product-Convolution Closure Properties for Heavy-Tailed Class of Distributions -- 5.4 Product-Convolution Closure Properties for Regularly Varying Class of Distributions -- 5.5 Product-Convolution Closure Properties for Consistently Varying Class of Distributions -- 5.6 Product-Convolution Closure Properties for Dominatedly Varying Class of Distributions -- 5.7 Product-Convolution Closure Properties for Exponential-Like-Tailed Distributions -- 5.8 Product-Convolution Closure Properties for Generalized Long-Tailed Class of Distributions -- 5.9 Product-Convolution Closure Properties for Convolution Equivalent Class of Distributions -- 5.10 Product-Convolution Closure Properties for Generalized Subexponential Class of Distributions -- 5.11 Some Extensions -- 5.12 Bibliographical Notes -- 6 Summary of Closure Properties -- References -- Index.
Record Nr. UNINA-9910746099003321
Leipus Remigijus  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Practical Applications of Stochastic Modelling [[electronic resource] ] : 11th International Workshop, PASM 2022, Alicante, Spain, September 23, 2022, Revised Selected Papers / / edited by Matthew Forshaw, Katja Gilly, William Knottenbelt, Nigel Thomas
Practical Applications of Stochastic Modelling [[electronic resource] ] : 11th International Workshop, PASM 2022, Alicante, Spain, September 23, 2022, Revised Selected Papers / / edited by Matthew Forshaw, Katja Gilly, William Knottenbelt, Nigel Thomas
Autore Forshaw Matthew
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (140 pages)
Disciplina 519.2
Collana Communications in Computer and Information Science
Soggetto topico Stochastic models
Stochastic processes
Application software
Stochastic Modelling in Statistics
Stochastic Modelling
Stochastic Networks
Computer and Information Systems Applications
ISBN 3-031-44053-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Performance modelling of attack graphs -- Towards Calculating the Resilience of a Urban Transport Network under Attack -- Analysis of the Battery Level in Complex Wireless Sensor Networks using a Two Time Scales Second Order Fluid Model -- To Confine or not to Confine: A Mean Field Game Analysis of the End of an Epidemic -- Data Center Organization and Optimization Strategy as a k-ary n-cube Topology -- Towards energy-aware management of shared printers -- Modelling Performance and Fairness of Frame Bursting in IEEE 802.11n using PEPA.
Record Nr. UNISA-996558570603316
Forshaw Matthew  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Practical Applications of Stochastic Modelling : 11th International Workshop, PASM 2022, Alicante, Spain, September 23, 2022, Revised Selected Papers / / edited by Matthew Forshaw, Katja Gilly, William Knottenbelt, Nigel Thomas
Practical Applications of Stochastic Modelling : 11th International Workshop, PASM 2022, Alicante, Spain, September 23, 2022, Revised Selected Papers / / edited by Matthew Forshaw, Katja Gilly, William Knottenbelt, Nigel Thomas
Autore Forshaw Matthew
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (140 pages)
Disciplina 519.2
Collana Communications in Computer and Information Science
Soggetto topico Stochastic models
Stochastic processes
Application software
Stochastic Modelling in Statistics
Stochastic Modelling
Stochastic Networks
Computer and Information Systems Applications
ISBN 3-031-44053-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Performance modelling of attack graphs -- Towards Calculating the Resilience of a Urban Transport Network under Attack -- Analysis of the Battery Level in Complex Wireless Sensor Networks using a Two Time Scales Second Order Fluid Model -- To Confine or not to Confine: A Mean Field Game Analysis of the End of an Epidemic -- Data Center Organization and Optimization Strategy as a k-ary n-cube Topology -- Towards energy-aware management of shared printers -- Modelling Performance and Fairness of Frame Bursting in IEEE 802.11n using PEPA.
Record Nr. UNINA-9910746965903321
Forshaw Matthew  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical Modeling and Simulation for Experimental Design and Machine Learning Applications [[electronic resource] ] : Selected Contributions from SimStat 2019 and Invited Papers / / edited by Jürgen Pilz, Viatcheslav B. Melas, Arne Bathke
Statistical Modeling and Simulation for Experimental Design and Machine Learning Applications [[electronic resource] ] : Selected Contributions from SimStat 2019 and Invited Papers / / edited by Jürgen Pilz, Viatcheslav B. Melas, Arne Bathke
Autore Pilz Jürgen
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (265 pages)
Disciplina 519.57
Altri autori (Persone) MelasViatcheslav B
BathkeArne
Collana Contributions to Statistics
Soggetto topico Statistics
Mathematical statistics - Data processing
Experimental design
Machine learning
Stochastic models
Statistical Theory and Methods
Statistics and Computing
Design of Experiments
Machine Learning
Applied Statistics
Stochastic Modelling in Statistics
ISBN 3-031-40055-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Part I Invited Papers -- 1 Likelihood Ratios in Forensics: What They Are and What They Are Not -- 1.1 Introduction -- 1.2 Lindley's Likelihood Ratio (LLR) -- 1.2.1 Notations -- 1.2.2 A Frequentist Framework for Lindley's Likelihood Ratio (LLR) -- 1.3 Score-Based Likelihood Ratio (SLR) -- 1.3.1 The Expression of the SLR -- 1.3.2 The Glass Example -- 1.4 Discussion -- References -- 2 MANOVA for Large Number of Treatments -- 2.1 Introduction -- 2.2 Notations and Model Setup -- 2.3 Simulations -- 2.3.1 MANOVA Tests for Large g -- 2.3.2 Special Case: ANOVA for Large g -- 2.4 Discussion and Outlook -- References -- 3 Pollutant Dispersion Simulation by Means of a Stochastic Particle Model and a Dynamic Gaussian Plume Model -- 3.1 Introduction -- 3.2 Meteorological Monitoring Network -- 3.3 Wind Field Modeling -- 3.3.1 Mass Correction of the Wind Field -- 3.3.2 Plume Rise -- 3.4 Stochastic Particle Model -- 3.4.1 Deposition -- 3.4.2 Implementation -- 3.5 Dynamic Gaussian Plume Model -- 3.6 Implementation on the Server -- 3.7 A Real-World Example with Application to an Alpine Valley -- 3.8 Conclusions and Outlook -- References -- 4 On an Alternative Trigonometric Strategy for StatisticalModeling -- 4.1 Introduction -- 4.2 The Alternative Sine Distribution -- 4.2.1 Presentation -- 4.2.2 Moment Properties -- 4.2.3 Parametric Extensions -- 4.3 AS Generated Family -- 4.3.1 Definition -- 4.3.2 Series Expansions -- 4.3.3 Example: The ASE Exponential Distribution -- 4.3.4 Moment Properties -- 4.4 Application to a Famous Cancer Data -- 4.5 Conclusion -- References -- Part II Design of Experiments -- 5 Incremental Construction of Nested Designs Basedon Two-Level Fractional Factorial Designs -- 5.1 Introduction -- 5.2 Greedy Coffee-House Design -- 5.3 Two-Level Fractional Factorial Designs -- 5.3.1 Half Fractions: m=1.
5.3.2 Several Generators -- 5.3.2.1 Defining Relations -- 5.3.2.2 Resolution -- 5.3.2.3 Word Length Pattern -- 5.3.3 Minimum Size -- 5.4 Two-Level Factorial Designs and Error-Correcting Codes -- 5.4.1 Definitions and Properties -- 5.4.2 Examples -- 5.5 Maximin Distance Properties of Two-Level Factorial Designs -- 5.5.1 Neighbouring Pattern and Distant Site Pattern -- 5.5.2 Optimal Selection of Generators by Simulated Annealing -- 5.5.2.1 SA Algorithm for the Maximisation of ρH -- 5.6 Covering Properties of Two-Level Factorial Designs -- 5.6.1 Bounds on CRH(Xn) -- 5.6.2 Calculation of CRH(Xn) -- 5.6.2.1 Algorithmic Construction of a Lower Bound on CRH(Xn) -- 5.7 Greedy Constructions Based on Fractional Factorial Designs -- 5.7.1 Base Designs -- 5.7.2 Rescaled Designs -- 5.7.3 Projection Properties -- 5.8 Summary and Future Work -- Appendix -- References -- 6 A Study of L-Optimal Designs for the Two-Dimensional Exponential Model -- 6.1 Introduction -- 6.2 Equivalence Theorem for L-Optimal Designs -- 6.3 General Case -- 6.4 Excess and Saturated Designs -- References -- 7 Testing for Randomized Block Single-Case Designsby Combined Permutation Tests with Multivariate Mixed Data -- 7.1 Introduction -- 7.2 Randomized Block Single-Case Designs and NPC -- 7.3 Simulation Study -- 7.4 A Real Case Study -- 7.5 Conclusions -- References -- 8 Adaptive Design Criteria Motivated by a Plug-In Percentile Estimator -- 8.1 Introduction -- 8.2 Problem Formulation and Background -- 8.2.1 Problem Formulation -- 8.2.2 Background -- 8.3 The Plug-In Estimator -- 8.4 Adaptive ``Plug-In'' Criteria -- 8.4.1 Monte Carlo Approximation -- 8.4.2 Monte Carlo Approximation Assuming Independency -- 8.4.3 Assuming Independency and Neglecting Uncertainty -- 8.4.4 Using SUR Design Criterion for Exceedance Probability -- 8.5 Numerical Implementation -- 8.6 Numerical Study.
8.6.1 Comparison Study -- 8.6.2 Methodology -- 8.6.2.1 Case Studies -- 8.6.2.2 Performance Indicators -- 8.6.3 Numerical Results -- 8.6.3.1 Estimators Performance -- 8.6.3.2 Implementation -- 8.6.3.3 Criteria -- 8.7 Conclusions -- Appendix 1 -- Posterior Mean and Variance of f Under the Gaussian Process Assumption -- SUR Design Criteria for Exceedance Probability Estimation -- Appendix 2 -- References -- Part III Queueing and Inventory Analysis -- 9 On a Parametric Estimation for a Convolutionof Exponential Densities -- 9.1 Introduction -- 9.2 Convolution of the Exponential Densities -- 9.3 ML Estimation of the Parameters -- 9.4 Parameter's Estimation by the Moments' Method -- 9.5 Approximation of the Density -- 9.6 Experimental Study -- 9.7 Application to a Single Queueing System M/G/1/k -- 9.8 Conclusions -- References -- 10 Statistical Estimation with a Known Quantileand Its Application in a Modified ABC-XYZ Analysis -- 10.1 Introduction -- 10.2 Methods -- 10.2.1 Statistical Estimation with a Known Quantile -- 10.2.2 ABC-XYZ Analysis -- 10.3 ABC-XYZ Analysis Modified with a Known Quantile -- 10.4 Conclusions -- References -- Part IV Machine Learning and Applications -- 11 A Study of Design of Experiments and Machine Learning Methods to Improve Fault Detection Algorithms -- 11.1 Introduction -- 11.2 Design of Experiments and Machine Learning Modelling -- 11.3 Application to Fault Detection -- 11.3.1 Design of Experiments Step -- 11.3.2 Machine Learning Modelling Step -- 11.3.2.1 Refrigerant Undercharge: Fault Detection -- 11.3.2.2 Condenser Fouling: Fault Detection -- 11.4 Conclusions -- References -- 12 Microstructure Image Segmentation Using Patch-Based Clustering Approach -- 12.1 Introduction -- 12.2 Input Data -- 12.3 Previous Work -- 12.4 Grain Segmentation -- 12.4.1 Seeded Region Growing (SRG) -- 12.4.2 Image Denoising and Patch Determination.
12.4.3 Feature Extraction -- 12.4.4 Patch Clustering -- 12.4.5 Implementation -- 12.5 Results -- 12.6 Conclusion and Outlook -- References -- 13 Clustering and Symptom Analysis in Binary Datawith Application -- 13.1 Introduction -- 13.2 The Symptom Analysis -- 13.2.1 The Symptom and Syndrome Definition -- 13.2.2 Impulse Vector and Super-symptoms -- 13.2.3 Prefigurations of Super-symptom -- 13.2.4 The Super-symptom Recovery by Vector β -- 13.2.5 Clustering in Dichotomous Space and Symptom Analysis -- 13.3 The Medical Application of the Clustering and Symptom Analysis in Binary Data -- 13.3.1 Dataset -- 13.3.2 Result and Discussion -- 13.4 Conclusion -- References -- 14 Big Data for Credit Risk Analysis: Efficient Machine Learning Models Using PySpark -- 14.1 Introduction -- 14.2 Data Processing -- 14.2.1 Data Treatment -- 14.2.2 Data Storage and Distribution -- 14.2.3 Munge Data -- 14.2.4 Creating New Measures -- 14.2.5 Missing Values Imputation and Outliers Treatment -- 14.2.6 One-Hot Code and Dummy Variables -- 14.2.7 Final Dataset -- 14.3 Method and Models -- 14.3.1 Method -- 14.3.2 Model Building -- 14.4 Results and Credit Scorecard Conversion -- 14.5 Conclusion -- Appendix 1 -- Appendix 2 -- References.
Record Nr. UNINA-9910754092903321
Pilz Jürgen  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic Dynamic Response and Stability of Ships and Offshore Platforms / / by Yingguang Wang
Stochastic Dynamic Response and Stability of Ships and Offshore Platforms / / by Yingguang Wang
Autore Wang Yingguang
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (368 pages)
Disciplina 799
Collana Ocean Engineering & Oceanography
Soggetto topico Mechanics, Applied
Mechanical engineering
Stochastic models
Engineering Mechanics
Mechanical Engineering
Stochastic Modelling in Statistics
ISBN 981-9958-53-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1 Introduction -- Chapter 2 State of the art -- Chapter 3 The Monte Carlo simulation method -- Chapter 4 The numerical path integral solution method -- Chapter 5 The global geometric method -- Chapter 6 The first passage theory -- Chapter 7 Concluding remarks.
Record Nr. UNINA-9910760300203321
Wang Yingguang  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui