top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Sampling Methods / / by Raosaheb Latpate, Jayant Kshirsagar, Vinod Kumar Gupta, Girish Chandra
Advanced Sampling Methods / / by Raosaheb Latpate, Jayant Kshirsagar, Vinod Kumar Gupta, Girish Chandra
Autore Latpate Raosaheb
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (XVII, 301 p. 23 illus., 13 illus. in color.)
Disciplina 519.52
Soggetto topico Statistics
Mathematical statistics - Data processing
Statistical Theory and Methods
Bayesian Inference
Statistics and Computing
ISBN 9789811606229
9811606226
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -1. Introduction -- 2. Simple Random Sampling -- 3. Stratied Random Sampling -- 4. Cluster Sampling -- 5. Double Sampling -- 6. Probability Proportional to Size Sampling -- 7. Systematic Sampling -- 8. Resampling Techniques -- 9. Adaptive Cluster Sampling -- 10. Two-Stage Adaptive Cluster Sampling -- 11. Adaptive Cluster Double Sampling -- 12. Inverse Adaptive Cluster Sampling -- 13. Two Stage Inverse Adaptive Cluster Sampling -- 14. Stratified Inverse Adaptive Cluster Sampling -- 15. Negative Adaptive Cluster Sampling -- 16. Negative Adaptive Cluster Double Sampling -- 17. Two- Stage Negative Adaptive Cluster Sampling -- 18. Balanced and Unbalanced Ranked Set Sampling -- 19. Ranked Set Sampling in Other Parameter Estimation and Non-Parametric Inference -- 20. Important Versions of Ranked Set Sampling -- 21. Sampling Errors.
Record Nr. UNINA-9910484590903321
Latpate Raosaheb  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances and Challenges in Parametric and Semi-parametric Analysis for Correlated Data : Proceedings of the 2015 International Symposium in Statistics / / edited by Brajendra C. Sutradhar
Advances and Challenges in Parametric and Semi-parametric Analysis for Correlated Data : Proceedings of the 2015 International Symposium in Statistics / / edited by Brajendra C. Sutradhar
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (XIX, 256 p. 12 illus., 6 illus. in color.)
Disciplina 519.5
Collana Lecture Notes in Statistics - Proceedings
Soggetto topico Statistics
Mathematical statistics - Data processing
Statistical Theory and Methods
Statistics and Computing
ISBN 3-319-31260-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910254077003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Statistical Models for Data Analysis / / edited by Isabella Morlini, Tommaso Minerva, Maurizio Vichi
Advances in Statistical Models for Data Analysis / / edited by Isabella Morlini, Tommaso Minerva, Maurizio Vichi
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (264 p.)
Disciplina 519.5
Collana Studies in Classification, Data Analysis, and Knowledge Organization
Soggetto topico Statistics
Mathematical statistics - Data processing
Social sciences - Statistical methods
Statistical Theory and Methods
Statistics and Computing
Statistics in Business, Management, Economics, Finance, Insurance
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
ISBN 3-319-17377-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Using the dglars Package to Estimate a Sparse Generalized Linear Model -- A Depth function for Geostatistical Functional Data -- Robust Clustering of EU Banking Data -- Sovereign Risk and Contagion Effects in the Eurozone: a Bayesian Stochastic Correlation Model -- Female Labour Force Participation and Selection Effect: Southern vs Eastern European Countries -- Asymptotics in Survey Sampling for High Entropy Sampling Design -- A Note On the Use of Recursive Partitioning in Causal Inference -- Meta-Analysis of Poll Accuracy Measures: A Multilevel Approach -- Families of Parsimonious Finite Mixtures of Regression Models -- Quantile Regression for Clustering and Modeling Data -- Non-metric MDS Consensus Community Detection -- The performance of the Gradient-like Influence Measure in Generalized Linear Mixed Models -- New Flexible Probability Distributions for Ranking Data -- Robust Estimation of Regime Switching Models -- Incremental Visualization of Categorical Data -- A new Proposal for Tree Model Selection and Visualization -- Object-Oriented Bayesian Network to Deal with Measurement Error in Household Surveys -- Comparing Fuzzy and Multidimensional Methods to Evaluate Well-being in European Regions -- Cluster Analysis of Three-way Atmospheric Data -- Asymmetric CLUster Analysis Based on SKEW-symmetry: ACLUSKEW -- Parsimonious Generalized Linear Gaussian Cluster-Weighted Models -- New perspectives for the MDC Index in Social Research Fields -- Clustering Methods for Ordinal Data: A Comparison Between Standard and New Approaches -- Novelty Detection with One-class Support Vector Machines -- Using Discrete-time  Multi-State Models to Analyze  Students' University Pathways.
Record Nr. UNINA-9910300242403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analysis and Modeling of Complex Data in Behavioral and Social Sciences / / edited by Donatella Vicari, Akinori Okada, Giancarlo Ragozini, Claus Weihs
Analysis and Modeling of Complex Data in Behavioral and Social Sciences / / edited by Donatella Vicari, Akinori Okada, Giancarlo Ragozini, Claus Weihs
Edizione [1st ed. 2014.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
Descrizione fisica 1 online resource (297 p.)
Disciplina 519.5
Collana Studies in Classification, Data Analysis, and Knowledge Organization
Soggetto topico Statistics
Mathematical statistics - Data processing
Sociology - Methodology
Social sciences - Statistical methods
Statistical Theory and Methods
Statistics and Computing
Sociological Methods
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
ISBN 3-319-06692-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Time-frequency Filtering for Seismic Waves Clustering -- Modeling Longitudinal Data by Latent Markov Models with Application to Educational and Psychological Measurement -- Clustering of Stratified Aggregated Data using the Aggregate Association Index: Analysis of New Zealand Voter Turnout (1893 - 1919) -- Estimating a Rasch Model via Fuzzy Empirical Probability Functions -- Scale Reliability Evaluation for a-priori Clustered Data -- An Evaluation of Performance of Territorial Services Center (TSC) by a Nonparametric Combination Ranking Method. The IQuEL Italian Project -- A New Index for the Comparison of Different Measurement Scales -- Asymmetries in Organizational Structures -- A Generalized Additive Model for Binary Rare Events Data: an Application to Credit Defaults -- The Meaning of forma in Thomas Aquinas. Hierarchical Clustering from the Index Thomisticus Treebank -- The Estimation of the Parameters in Multi-Criteria Classification Problem: the Case of the Electre Tri Method -- Dynamic Clustering of Financial Assets -- A Comparison of  metrics for the Assessment of Relational Similarities in Affiliation Networks -- Influence Diagnostics for Meta-Analysis of Individual Patient Data using Generalized Linear Mixed Models -- Social Networks as Symbolic Data -- Statistical Assessment for Risk Prediction of Endoleak Formation after TEVAR Based on Linear Discriminant Analysis -- Fuzzy c-means for Web Mining: The Italian Tourist Forum Case -- On Joint Dimension Reduction and Clustering of Categorical Data -- A SVM Applied Text Categorization of Academia-Industry Collaborative Research and Development Documents on the Web -- Dynamic Customer Satisfaction and Measure of Trajectories: a Banking Case -- The Analysis of Partnership Networks in Social Planning Processes -- Evaluating theEffect of New Brand by Asymmetric Multidimensional Scaling -- Statistical Characterization of the Virtual Water Trade Network -- A Pre-Specified Blockmodeling to Analyze Structural Dynamics in Innovation Networks -- The RCI as a Measure of Monotonic Dependence -- A Value Added Approach in Upper Secondary Schools of Lombardy by OECD-PISA 2009 Data -- Algorithmic-Type Imputation Techniques with Different Data Structures: Alternative Approaches in Comparison -- Changes in Japanese EFL Learners' Proficiency: An Application of Latent Rank Theory -- Robustness and Stability Analysis of Factor PD-Clustering on Large Social Data Sets -- A Box-plot and Outliers Detection Proposal for Histogram Data: New Tools for Data Stream Analysis -- Assessing Cooperation in Open Systems: an Empirical Test in Healthcare.
Record Nr. UNINA-9910299981703321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analysis of Doubly Truncated Data : An Introduction / / by Achim Dörre, Takeshi Emura
Analysis of Doubly Truncated Data : An Introduction / / by Achim Dörre, Takeshi Emura
Autore Dörre Achim
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XVI, 109 p. 38 illus., 10 illus. in color.)
Disciplina 519.5
Collana JSS Research Series in Statistics
Soggetto topico Statistics
Biometry
Mathematical statistics - Data processing
Statistical Theory and Methods
Applied Statistics
Biostatistics
Statistics and Computing
ISBN 981-13-6241-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Introduction to double-truncation -- Chapter 2: Parametric inference under special exponential family -- Chapter 3: Parametric inference under location-scale family -- Chapter 4: Bayes inference -- Chapter 5: Nonparametric inference -- Chapter 6: Linear regression -- Appendix A: Data (if German company data are available) -- Appendix B: R codes for inference under exponential family -- Appendix C: R codes for inference under location-scale family -- Appendix D: R codes for Bayes inference -- Appendix E: R codes for linear regression.
Record Nr. UNINA-9910350247703321
Dörre Achim  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analytical Methods in Statistics : AMISTAT, Liberec, Czech Republic, September 2019 / / edited by Matúš Maciak, Michal Pešta, Martin Schindler
Analytical Methods in Statistics : AMISTAT, Liberec, Czech Republic, September 2019 / / edited by Matúš Maciak, Michal Pešta, Martin Schindler
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (X, 156 p. 15 illus., 8 illus. in color.)
Disciplina 519.5
Collana Springer Proceedings in Mathematics & Statistics
Soggetto topico Statistics
Probabilities
Mathematics
Mathematical statistics - Data processing
Statistical Theory and Methods
Probability Theory
Applications of Mathematics
Statistics and Computing
Applied Statistics
ISBN 3-030-48814-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Y. Güney, J. Jurečková and O. Arslan, Averaged Autoregression Quantiles in Autoregressive Model -- J. Kalina and P. Vidnerová, Regression Neural Networks with a Highly Robust Loss Function -- H. L. Koul and P. Geng, Weighted Empirical Minimum Distance Estimators in Berkson Measurement Error Regression Models -- M. Maciak, M. Pešta and S. Vitali, Implied Volatility Surface Estimation via Quantile Regularization -- I. Mizera, A remark on the Grenander estimator -- U. Radojičić and K. Nordhausen, Non-Gaussian Component Analysis: Testing the Dimension of the Signal Subspace -- P. Vidnerová, J. Kalina and Y. Güney, A Comparison of Robust Model Choice Criteria within a Metalearning Study -- S. Zwanzig and R. Ahmad, On Parameter Estimation for High Dimensional Errors-in-Variables Models.
Record Nr. UNINA-9910484485203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analyzing Compositional Data with R / / by K. Gerald van den Boogaart, Raimon Tolosana-Delgado
Analyzing Compositional Data with R / / by K. Gerald van den Boogaart, Raimon Tolosana-Delgado
Autore Boogaart Gerald Van den
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (269 p.)
Disciplina 005.55
Collana Use R!
Soggetto topico Statistics
Mathematical statistics - Data processing
Geochemistry
Statistical Theory and Methods
Statistics and Computing
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
ISBN 9783642368097
3642368093
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Fundamental Concepts of Compositional Data Analysis -- Distributions for Random Compositions -- Descriptive Analysis of Compositional Data -- Linear Models for Compositions -- Multivariate Statistics -- Zeroes, Missings and Outliers -- References -- Index.  .
Record Nr. UNINA-9910739406103321
Boogaart Gerald Van den  
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analyzing Dependent Data with Vine Copulas : A Practical Guide With R / / by Claudia Czado
Analyzing Dependent Data with Vine Copulas : A Practical Guide With R / / by Claudia Czado
Autore Czado Claudia
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XXIX, 242 p. 70 illus., 25 illus. in color.)
Disciplina 519.535
Collana Lecture Notes in Statistics
Soggetto topico Statistics
Biometry
Quantitative research
Mathematical statistics - Data processing
Statistical Theory and Methods
Statistics in Business, Management, Economics, Finance, Insurance
Biostatistics
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Data Analysis and Big Data
Statistics and Computing
ISBN 3-030-13785-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Multivariate Distributions and Copulas -- Dependence Measures -- Bivariate Copula Classes, Their Visualization and Estimation -- Pair Copula Decompositions and Constructions -- Regular Vines -- Simulating Regular Vine Copulas and Distributions -- Parameter Estimation in Regular Vine Copulas -- Selection of Regular Vine Copula Models -- Comparing Regular Vine Copula Models -- Case Study: Dependence Among German DAX Stocks -- Recent Developments in Vine Copula Based Modeling -- Indices.
Record Nr. UNINA-9910338251503321
Czado Claudia  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analyzing Qualitative Data with MAXQDA : Text, Audio, and Video / / by Udo Kuckartz, Stefan Rädiker
Analyzing Qualitative Data with MAXQDA : Text, Audio, and Video / / by Udo Kuckartz, Stefan Rädiker
Autore Kuckartz Udo
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XIII, 290 p. 180 illus., 177 illus. in color.)
Disciplina 001.42
Soggetto topico Sociology - Methodology
Social sciences - Statistical methods
Education - Research
Mathematical statistics - Data processing
Biometry
Statistics
Sociological Methods
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Research Methods in Education
Statistics and Computing
Biostatistics
Statistics in Business, Management, Economics, Finance, Insurance
ISBN 3-030-15671-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction: Analyzing Qualitative Data with Software -- Getting to Know the Interface of MAXQDA -- Setting up a Project and Importing Data -- Transcribing Audio and Video Recordings -- Exploring the Data -- Coding Text and PDF Files -- Coding Video Data, Audio Data, and Images -- Building a Coding Frame -- Working with Coded Segments and Memos -- Adding Variables and Quantifying Codes -- Working with Paraphrases and Summaries, Creating Case Overviews -- Comparing Cases and Groups, Discovering Interrelations and Using Visualizations -- Analyzing Mixed Methods Data -- Working with Bibliographic Information and Creating Literature Reviews -- Analyzing Focus Group Data -- Analyzing (Online) Survey Data with Closed and Open-Ended Questions -- MAXMaps: Creating Infographics and Concept Maps -- Collaborating in Teams -- Analyzing Intercoder Agreement -- Documenting and Archiving the Research Process.
Record Nr. UNINA-9910337729403321
Kuckartz Udo  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications in Statistical Computing : From Music Data Analysis to Industrial Quality Improvement / / edited by Nadja Bauer, Katja Ickstadt, Karsten Lübke, Gero Szepannek, Heike Trautmann, Maurizio Vichi
Applications in Statistical Computing : From Music Data Analysis to Industrial Quality Improvement / / edited by Nadja Bauer, Katja Ickstadt, Karsten Lübke, Gero Szepannek, Heike Trautmann, Maurizio Vichi
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XI, 340 p. 83 illus., 48 illus. in color.)
Disciplina 519.5
Collana Studies in Classification, Data Analysis, and Knowledge Organization
Soggetto topico Mathematical statistics - Data processing
Data mining
Statistics
Computer science - Mathematics
Mathematical statistics
Music - Mathematics
Operations research
Statistics and Computing
Data Mining and Knowledge Discovery
Applied Statistics
Probability and Statistics in Computer Science
Mathematics in Music
Operations Research and Decision Theory
ISBN 3-030-25147-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I Methodological Developments in Data Science.-Aviation Data Analysis by Linear Programming in Airline Network Revenue Management -- Bayesian Reduced Rank Regression for Classification -- Modelling and classification of GC/IMS breath gas measurements for lozenges of different flavours -- The Cosine Depth Distribution Classifier for Directional Data -- A Nonconformity Ratio Based Desirability Function for Capability Assessment -- Part II Computational Statistics -- Heteroscedastic Discriminant Analysis using R -- Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package flacco -- Part III Perspectives on Statistics and Data Science -- A Note on Artificial Intelligence and Statistics -- Statistical Computing and Data Science in Introductory Statistics -- Approaching Ethical Guidelines for Data Scientists -- Part IV Statistics in Econometric Applications -- Dating Lower Turning Points of Business Cycles – a Multivariate Linear Discriminant Analysis for Germany 1984 to 2009 -- Partial Orderings of Default Predictions -- Improving GMM efficiency in dynamic models for panel data with mean stationarity -- Part V Statistics in Industrial Applications -- Economically designed Bayesian np control charts using dual sample sizes for long-run processes -- Statistical analysis of the lifetime of diamond impregnated tools for core drilling of concrete -- Detection of anomalous sequences in crack data of a bridge monitoring -- Optimal Semi-Split-Plot Designs with R -- Continuous process monitoring through ensemble based anomaly detection -- Part VI Statistics in Music Applications -- Evaluation of Audio Feature Groups for the Prediction of Arousal and Valence in Music -- The Psychological Foundations of Classification.
Record Nr. UNINA-9910349330403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui