top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applied Statistical Learning : With Case Studies in Stata / / by Matthias Schonlau
Applied Statistical Learning : With Case Studies in Stata / / by Matthias Schonlau
Autore Schonlau Matthias
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource
Disciplina 006.31
Collana Statistics and Computing
Soggetto topico Machine learning
Social sciences - Statistical methods
Statistics
Statistics - Computer programs
Quantitative research
Statistical Learning
Machine Learning
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Statistics in Business, Management, Economics, Finance, Insurance
Statistical Software
Data Analysis and Big Data
ISBN 9783031333903
303133390X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1 Prologue -- 2 Statistical Learning: Concepts -- 3 Statistical Learning: Practical Aspects -- 4 Logistic Regression -- 5 Lasso and Friends -- 6 Working with Text Data -- 7 Nearest Neighbors -- 8 The Naive Bayes Classifier -- 9 Trees -- 10 Random Forests -- 11 Boosting -- 12 Support Vector Machines -- 13 Feature Engineering -- 14 Neural Networks -- 15 Stacking -- Index.
Record Nr. UNINA-9910736996503321
Schonlau Matthias  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied Time Series Analysis and Forecasting with Python [[electronic resource] /] / by Changquan Huang, Alla Petukhina
Applied Time Series Analysis and Forecasting with Python [[electronic resource] /] / by Changquan Huang, Alla Petukhina
Autore Huang Changquan
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (377 pages)
Disciplina 813
Collana Statistics and Computing
Soggetto topico Time-series analysis
Statistics - Computer programs
Econometrics
Python (Computer program language)
Machine learning
Statistics
Time Series Analysis
Statistical Software
Python
Machine Learning
Statistics in Business, Management, Economics, Finance, Insurance
Anàlisi de sèries temporals
Python (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
ISBN 3-031-13584-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Time Series Concepts and Python -- 2. Exploratory Time Series Data Analysis -- 3. Stationary Time Series Models -- 4. ARMA and ARIMA Modeling and Forecasting -- 5. Nonstationary Time Series Models -- 6. Financial Time Series and Related Models -- 7. Multivariate Time Series Analysis -- 8. State Space Models and Markov Switching Models -- 9. Nonstationarity and Cointegrations -- 10. Modern Machine Learning Methods for Time Series Analysis.
Record Nr. UNISA-996495169403316
Huang Changquan  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Applied Time Series Analysis and Forecasting with Python / / by Changquan Huang, Alla Petukhina
Applied Time Series Analysis and Forecasting with Python / / by Changquan Huang, Alla Petukhina
Autore Huang Changquan
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (377 pages)
Disciplina 813
519.55
Collana Statistics and Computing
Soggetto topico Time-series analysis
Statistics - Computer programs
Econometrics
Python (Computer program language)
Machine learning
Statistics
Time Series Analysis
Statistical Software
Python
Machine Learning
Statistics in Business, Management, Economics, Finance, Insurance
Anàlisi de sèries temporals
Python (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
ISBN 3-031-13584-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Time Series Concepts and Python -- 2. Exploratory Time Series Data Analysis -- 3. Stationary Time Series Models -- 4. ARMA and ARIMA Modeling and Forecasting -- 5. Nonstationary Time Series Models -- 6. Financial Time Series and Related Models -- 7. Multivariate Time Series Analysis -- 8. State Space Models and Markov Switching Models -- 9. Nonstationarity and Cointegrations -- 10. Modern Machine Learning Methods for Time Series Analysis.
Record Nr. UNINA-9910619280803321
Huang Changquan  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Classification and Data Science in the Digital Age / / edited by Paula Brito, José G. Dias, Berthold Lausen, Angela Montanari, Rebecca Nugent
Classification and Data Science in the Digital Age / / edited by Paula Brito, José G. Dias, Berthold Lausen, Angela Montanari, Rebecca Nugent
Autore Brito Paula
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (393 pages)
Disciplina 005.7
Altri autori (Persone) DiasJosé G
LausenBerthold
MontanariAngela
NugentRebecca
Collana Studies in Classification, Data Analysis, and Knowledge Organization
Soggetto topico Artificial intelligence - Data processing
Machine learning
Data mining
Multivariate analysis
Statistics - Computer programs
Data Science
Statistical Learning
Machine Learning
Data Mining and Knowledge Discovery
Multivariate Analysis
Statistical Software
ISBN 3-031-09034-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- R. Abdesselam: A Topological Clustering of Individuals -- C. Anton and I. Smith: Model Based Clustering of Functional Data with Mild Outliers -- F. Antonazzo and S. Ingrassia: A Trivariate Geometric Classification of Decision Boundaries for Mixtures of Regressions -- E. Arnone, E. Cunial, and L. M. Sangalli: Generalized Spatio-temporal Regression with PDE Penalization -- R. Ascari and S. Migliorati: A New Regression Model for the Analysis of Microbiome Data -- R. Aschenbruck, G. Szepannek, and A. F. X. Wilhelm: Stability of Mixed-type Cluster Partitions for Determination of the Number of Clusters -- A. Ashofteh and P. Campos: A Review on Official Survey Item Classification for Mixed-Mode Effects Adjustment -- V. Batagelj: Clustering and Blockmodeling Temporal Networks – Two Indirect Approaches -- R. Boutalbi, L. Labiod, and M. Nadif: Latent Block Regression Model -- N. Chabane, M. Achraf Bouaoune, R. Amir Sofiane Tighilt, B. Mazoure, N. Tahiri, and V. Makarenkov: Using Clustering and Machine Learning Methods to Provide Intelligent Grocery Shopping Recommendations -- T. Chadjipadelis and S. Magopoulou: COVID-19 Pandemic: a Methodological Model for the Analysis of Government’s Preventing Measures and Health Data Records -- J. Champagne Gareau, É. Beaudry, and V. Makarenkov: pcTVI: Parallel MDP Solver Using a Decomposition into Independent Chains -- C. Di Nuzzo and S. Ingrassia: Three-way Spectral Clustering -- J. Dobša and H. A. L. Kiers: Improving Classification of Documents by Semi-supervised Clustering in a Semantic Space -- J. Gama: Trends in Data Stream Mining -- L. A. García-Escudero, A. Mayo-Iscar, G. Morelli, and M. Riani: Old and New Constraints in Model Based Clustering -- V. G Genova, G. Giordano, G . Ragozini, and M. Prosperina Vitale: Clustering Student Mobility Data in 3-way Networks -- R. Giubilei: Clustering Brain Connectomes Through a Density-peak Approach -- T. Górecki, M. Šuczak, and P. Piasecki: Similarity Forest for Time Series Classification -- K. Hayashi, E. Hoshino, M. Suzuki, E. Nakanishi, K. Sakai, and M. Obatake: Detection of the Biliary Atresia Using Deep Convolutional Neural Networks Based on Statistical Learning Weights via Optimal Similarity and Resampling Methods -- Ch. Hennig: Some Issues in Robust Clustering -- J. Kalina and P. Janá£ek: Robustness Aspects of Optimized Centroids -- L. Labiod and M. Nadif: Data Clustering and Representation Learning Based on Networked Data -- Lazhar Labiod and Mohamed Nadif: Towards a Bi-stochastic Matrix Approximation of k-means and Some Variants -- A. LaLonde, T. Love, D. R. Young, and T. Wu: Clustering Adolescent Female Physical Activity Levels with an Infinite Mixture Model on Random Effects -- Á. López-Oriona, J. A. Vilar, and P. D’Urso: Unsupervised Classification of Categorical Time Series Through Innovative Distances -- D. Masís, E. Segura, J. Trejos, and A. Xavier: Fuzzy Clustering by Hyperbolic Smoothing -- R. Meng, H. K. H. Lee, and K. Bouchard: Stochastic Collapsed Variational Inference for Structured Gaussian Process Regression Networks -- H. Duy Nguyen, F. Forbes, G. Fort, and O. Cappé: An Online Minorization-Maximization Algorithm -- L. Palazzo and R. Ievoli: Detecting Differences in Italian Regional Health Services During Two Covid-19 Waves -- G. Panagiotidou and T. Chadjipadelis: Political and Religion Attitudes in Greece: Behavioral Discourses -- K. Pawlasová, I. Karafiátová, and J. Dvořák: Supervised Classification via Neural Networks for Replicated Point Patterns -- G. Perrone and G. Soffritti: Parsimonious Mixtures of Seemingly Unrelated Contaminated Normal Regression Models -- N. Pronello, R. Ignaccolo, L. Ippoliti, and S. Fontanella: Penalized Model-based Functional Clustering: a Regularization Approach via Shrinkage Methods -- D. Rodrigues, L. P. Reis, and B. M. Faria: Emotion Classification Based on Single Electrode Brain Data: Applications for Assistive Technology -- R. Scimone, A. Menafoglio, L. M. Sangalli, and P. Secchi: The Death Process in Italy Before and During the Covid-19 Pandemic: a Functional Compositional Approach -- O. Silva, Á. Sousa, and H. Bacelar-Nicolau: Clustering Validation in the Context of Hierarchical Cluster Analysis: an Empirical Study -- C. Silvestre, M. G. M. S. Cardoso, and M. Figueiredo: An MML Embedded Approach for Estimating the Number of Clusters -- Á. Sousa, O. Silva, M. Graça Batista, S. Cabral, and H. Bacelar-Nicolau: Typology of Motivation Factors for Employees in the Banking Sector: An Empirical Study Using Multivariate Data Analysis Methods -- J. Michael Spoor, J. Weber, and J. Ovtcharova: A Proposal for Formalization and Definition of Anomalies in Dynamical Systems -- N. Tahiri and A. Koshkarov: New Metrics for Classifying Phylogenetic Trees Using -means and the Symmetric Difference Metric -- S. D. Tomarchio: On Parsimonious Modelling via Matrix-variate t Mixtures -- G. Zammarchi, M. Romano, and C. Conversano: Evolution of Media Coverage on Climate Change and Environmental Awareness: an Analysisof Tweets from UK and US Newspapers.
Record Nr. UNINA-9910768481303321
Brito Paula  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational Finance with R / / by Rituparna Sen, Sourish Das
Computational Finance with R / / by Rituparna Sen, Sourish Das
Autore Sen Rituparna
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (352 pages)
Disciplina 332.028553
Collana Indian Statistical Institute Series
Soggetto topico Statistics
Social sciences - Mathematics
Stochastic analysis
Machine learning
Statistics - Computer programs
Statistics in Business, Management, Economics, Finance, Insurance
Mathematics in Business, Economics and Finance
Stochastic Analysis
Machine Learning
Statistical Software
ISBN 981-19-2008-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I. Numerical Methods -- 1. Preliminaries -- 2. Solving a System of Linear Equations -- 3. Solving Non-Linear Equations -- 4. Numerical Integration -- 5. Numerical Differentiation -- 6. Numerical Methods for PDE -- 7. Optimization -- Part II. Simulation Methods -- 8. Monte-Carlo Methods -- 9. Lattice Models -- 10. Simulating Brownian Motion -- 11. Variance Reduction -- 12. Bayesian Computation with Stan -- 13. Resampling -- Part III. Statistical Methods -- 14. Descriptive Methods -- 15. Inferential Statistics -- 16. Statistical Risk Analysis -- 17. Multivariate Analysis -- 18. Univariate Time Series -- 19. Multivariate Time Series -- 20. High Frequency Data -- 21. Supervised Learning -- 22. Unsupervised Learning -- Appendix -- A. Basics of Mathematical Finance -- B. Introduction to R -- C. Extreme Value Theory in Finance -- Bibliography. .
Record Nr. UNINA-9910733712103321
Sen Rituparna  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A Course on Small Area Estimation and Mixed Models : Methods, Theory and Applications in R / / by Domingo Morales, María Dolores Esteban, Agustín Pérez, Tomáš Hobza
A Course on Small Area Estimation and Mixed Models : Methods, Theory and Applications in R / / by Domingo Morales, María Dolores Esteban, Agustín Pérez, Tomáš Hobza
Autore Morales Domingo
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (XX, 599 p. 373 illus., 10 illus. in color.)
Disciplina 519.52
Collana Statistics for Social and Behavioral Sciences
Soggetto topico Social sciences - Statistical methods
Statistics
Statistics - Computer programs
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Statistical Theory and Methods
Statistical Software
Statistics in Business, Management, Economics, Finance, Insurance
ISBN 9783030637576
3030637573
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Small Area Estimation -- 2 Design-based Direct Estimation -- 3 Design-based Indirect Estimation -- 4 Prediction Theory -- 5 Linear Models -- 6 Linear Mixed Models -- 7 Nested Error Regression Models -- 8 EBLUPs under Nested Error Regression Models -- 9 Mean Squared Error of EBLUPs -- 10 EBPs under Nested Error Regression Models -- 11 EBLUPs under Two-fold Nested Error Regression Models -- 12 EBPs under Two-fold Nested Error Regression Models -- 13 Random Regression Coefficient Models -- 14 EBPs under Unit-level Logit Mixed Models -- 15 EBPs under Unit-level Two-fold Logit Mixed Models -- 16 Fay-Herriot Models -- 17 Area-level Temporal Linear Mixed Models -- 18 Area-level Spatio-temporal Linear Mixed Models -- 19 Area-level Bivariate Linear Mixed Models -- 20 Area-level Poisson Mixed Models -- 21 Area-level Temporal Poisson Mixed Models -- A Some Useful Formulas -- Index.
Record Nr. UNINA-9910484980203321
Morales Domingo  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Elements of Network Science : Theory, Methods and Applications in Stata, R and Python / / by Antonio Zinilli
Elements of Network Science : Theory, Methods and Applications in Stata, R and Python / / by Antonio Zinilli
Autore Zinilli Antonio
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XVI, 242 p. 89 illus., 77 illus. in color.)
Disciplina 300.727
Collana Statistics and Computing
Soggetto topico Social sciences - Statistical methods
Mathematical statistics - Data processing
Social sciences - Network analysis
Statistics - Computer programs
Statistics
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Statistics and Computing
Network Research
Statistical Software
Statistics in Business, Management, Economics, Finance, Insurance
Statistical Theory and Methods
ISBN 3-031-84712-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto - 1. Introduction -- 2. Network Science: concepts and definitions -- 3. Network Metrics -- 4. Theoretical models of networks -- 5.Statistical social network models.
Record Nr. UNINA-9910999790103321
Zinilli Antonio  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Excel data analysis for dummies / / by Stephen L. Nelson and E. C. Nelson
Excel data analysis for dummies / / by Stephen L. Nelson and E. C. Nelson
Autore Nelson Stephen L.
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2014
Descrizione fisica 1 online resource (363 p.)
Disciplina 005.54
Collana For Dummies
Soggetto topico Statistics - Data processing
Statistics - Computer programs
Soggetto genere / forma Electronic books.
ISBN 1-118-89810-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Copyright Page; Contents at a Glance; Table of Contents; Introduction; About This Book; What You Can Safely Ignore; What You Shouldn't Ignore (Unless You're a Masochist); Foolish Assumptions; How This Book Is Organized; Icons Used in This Book; Beyond the Book; Where to Go from Here; Part I: Where's the Beef?; Chapter 1: Introducing Excel Tables; What Is a Table and Why Do I Care?; Building Tables; Analyzing Table Information; Chapter 2: Grabbing Data from External Sources; Getting Data the Export-Import Way; Querying External Databases and Web Page Tables
It's Sometimes a Raw DealChapter 3: Scrub-a-Dub-Dub: Cleaning Data; Editing Your Imported Workbook; Cleaning Data with Text Functions; Using Validation to Keep Data Clean; Part II: PivotTables and PivotCharts; Chapter 4: Working with PivotTables; Looking at Data from Many Angles; Getting Ready to Pivot; Running the PivotTable Wizard; Fooling Around with Your Pivot Table; Customizing How Pivot Tables Work and Look; Chapter 5: Building PivotTable Formulas; Adding Another Standard Calculation; Creating Custom Calculations; Using Calculated Fields and Items; Retrieving Data from a Pivot Table
Chapter 6: Working with PivotChartsWhy Use a Pivot Chart?; Getting Ready to Pivot; Running the PivotTable Wizard; Fooling Around with Your Pivot Chart; Using Chart Commands to Create Pivot Charts; Chapter 7: Customizing PivotCharts; Selecting a Chart Type; Working with Chart Styles; Changing Chart Layout; Changing a Chart's Location; Formatting the Plot Area; Formatting the Chart Area; Formatting 3-D Charts; Part III: Advanced Tools; Chapter 8: Using the Database Functions; Quickly Reviewing Functions; Using the DAVERAGE Function; Using the DCOUNT and DCOUNTA Functions
Using the DGET FunctionUsing the DMAX and DMAX Functions; Using the DPRODUCT Function; Using the DSTDEV and DSTDEVP Functions; Using the DSUM Function; Using the DVAR and DVARP Functions; Chapter 9: Using the Statistics Functions; Counting Items in a Data Set; Means, Modes, and Medians; Finding Values, Ranks, and Percentiles; Standard Deviations and Variances; Normal Distributions; t-distributions; f-distributions; Binomial Distributions; Chi-Square Distributions; Regression Analysis; Correlation; Some Really Esoteric Probability Distributions; Chapter 10: Descriptive Statistics
Using the Descriptive Statistics ToolCreating a Histogram; Ranking by Percentile; Calculating Moving Averages; Exponential Smoothing; Generating Random Numbers; Sampling Data; Chapter 11: Inferential Statistics; Using the t-test Data Analysis Tool; Performing z-test Calculations; Creating a Scatter Plot; Using the Regression Data Analysis Tool; Using the Correlation Analysis Tool; Using the Covariance Analysis Tool; Using the ANOVA Data Analysis Tools; Creating an f-test Analysis; Using Fourier Analysis; Chapter 12: Optimization Modeling with Solver; Understanding Optimization Modeling
Setting Up a Solver Worksheet
Record Nr. UNINA-9910453567003321
Nelson Stephen L.  
Hoboken, New Jersey : , : John Wiley & Sons, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Excel data analysis for dummies / / by Stephen L. Nelson and E. C. Nelson
Excel data analysis for dummies / / by Stephen L. Nelson and E. C. Nelson
Autore Nelson Stephen L.
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2014
Descrizione fisica 1 online resource (363 p.)
Disciplina 005.54
Collana For Dummies
Soggetto topico Statistics - Data processing
Statistics - Computer programs
ISBN 1-118-89810-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Copyright Page; Contents at a Glance; Table of Contents; Introduction; About This Book; What You Can Safely Ignore; What You Shouldn't Ignore (Unless You're a Masochist); Foolish Assumptions; How This Book Is Organized; Icons Used in This Book; Beyond the Book; Where to Go from Here; Part I: Where's the Beef?; Chapter 1: Introducing Excel Tables; What Is a Table and Why Do I Care?; Building Tables; Analyzing Table Information; Chapter 2: Grabbing Data from External Sources; Getting Data the Export-Import Way; Querying External Databases and Web Page Tables
It's Sometimes a Raw DealChapter 3: Scrub-a-Dub-Dub: Cleaning Data; Editing Your Imported Workbook; Cleaning Data with Text Functions; Using Validation to Keep Data Clean; Part II: PivotTables and PivotCharts; Chapter 4: Working with PivotTables; Looking at Data from Many Angles; Getting Ready to Pivot; Running the PivotTable Wizard; Fooling Around with Your Pivot Table; Customizing How Pivot Tables Work and Look; Chapter 5: Building PivotTable Formulas; Adding Another Standard Calculation; Creating Custom Calculations; Using Calculated Fields and Items; Retrieving Data from a Pivot Table
Chapter 6: Working with PivotChartsWhy Use a Pivot Chart?; Getting Ready to Pivot; Running the PivotTable Wizard; Fooling Around with Your Pivot Chart; Using Chart Commands to Create Pivot Charts; Chapter 7: Customizing PivotCharts; Selecting a Chart Type; Working with Chart Styles; Changing Chart Layout; Changing a Chart's Location; Formatting the Plot Area; Formatting the Chart Area; Formatting 3-D Charts; Part III: Advanced Tools; Chapter 8: Using the Database Functions; Quickly Reviewing Functions; Using the DAVERAGE Function; Using the DCOUNT and DCOUNTA Functions
Using the DGET FunctionUsing the DMAX and DMAX Functions; Using the DPRODUCT Function; Using the DSTDEV and DSTDEVP Functions; Using the DSUM Function; Using the DVAR and DVARP Functions; Chapter 9: Using the Statistics Functions; Counting Items in a Data Set; Means, Modes, and Medians; Finding Values, Ranks, and Percentiles; Standard Deviations and Variances; Normal Distributions; t-distributions; f-distributions; Binomial Distributions; Chi-Square Distributions; Regression Analysis; Correlation; Some Really Esoteric Probability Distributions; Chapter 10: Descriptive Statistics
Using the Descriptive Statistics ToolCreating a Histogram; Ranking by Percentile; Calculating Moving Averages; Exponential Smoothing; Generating Random Numbers; Sampling Data; Chapter 11: Inferential Statistics; Using the t-test Data Analysis Tool; Performing z-test Calculations; Creating a Scatter Plot; Using the Regression Data Analysis Tool; Using the Correlation Analysis Tool; Using the Covariance Analysis Tool; Using the ANOVA Data Analysis Tools; Creating an f-test Analysis; Using Fourier Analysis; Chapter 12: Optimization Modeling with Solver; Understanding Optimization Modeling
Setting Up a Solver Worksheet
Record Nr. UNINA-9910790926503321
Nelson Stephen L.  
Hoboken, New Jersey : , : John Wiley & Sons, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Excel data analysis for dummies / / by Stephen L. Nelson and E. C. Nelson
Excel data analysis for dummies / / by Stephen L. Nelson and E. C. Nelson
Autore Nelson Stephen L.
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2014
Descrizione fisica 1 online resource (363 p.)
Disciplina 005.54
Collana For Dummies
Soggetto topico Statistics - Data processing
Statistics - Computer programs
ISBN 1-118-89810-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Copyright Page; Contents at a Glance; Table of Contents; Introduction; About This Book; What You Can Safely Ignore; What You Shouldn't Ignore (Unless You're a Masochist); Foolish Assumptions; How This Book Is Organized; Icons Used in This Book; Beyond the Book; Where to Go from Here; Part I: Where's the Beef?; Chapter 1: Introducing Excel Tables; What Is a Table and Why Do I Care?; Building Tables; Analyzing Table Information; Chapter 2: Grabbing Data from External Sources; Getting Data the Export-Import Way; Querying External Databases and Web Page Tables
It's Sometimes a Raw DealChapter 3: Scrub-a-Dub-Dub: Cleaning Data; Editing Your Imported Workbook; Cleaning Data with Text Functions; Using Validation to Keep Data Clean; Part II: PivotTables and PivotCharts; Chapter 4: Working with PivotTables; Looking at Data from Many Angles; Getting Ready to Pivot; Running the PivotTable Wizard; Fooling Around with Your Pivot Table; Customizing How Pivot Tables Work and Look; Chapter 5: Building PivotTable Formulas; Adding Another Standard Calculation; Creating Custom Calculations; Using Calculated Fields and Items; Retrieving Data from a Pivot Table
Chapter 6: Working with PivotChartsWhy Use a Pivot Chart?; Getting Ready to Pivot; Running the PivotTable Wizard; Fooling Around with Your Pivot Chart; Using Chart Commands to Create Pivot Charts; Chapter 7: Customizing PivotCharts; Selecting a Chart Type; Working with Chart Styles; Changing Chart Layout; Changing a Chart's Location; Formatting the Plot Area; Formatting the Chart Area; Formatting 3-D Charts; Part III: Advanced Tools; Chapter 8: Using the Database Functions; Quickly Reviewing Functions; Using the DAVERAGE Function; Using the DCOUNT and DCOUNTA Functions
Using the DGET FunctionUsing the DMAX and DMAX Functions; Using the DPRODUCT Function; Using the DSTDEV and DSTDEVP Functions; Using the DSUM Function; Using the DVAR and DVARP Functions; Chapter 9: Using the Statistics Functions; Counting Items in a Data Set; Means, Modes, and Medians; Finding Values, Ranks, and Percentiles; Standard Deviations and Variances; Normal Distributions; t-distributions; f-distributions; Binomial Distributions; Chi-Square Distributions; Regression Analysis; Correlation; Some Really Esoteric Probability Distributions; Chapter 10: Descriptive Statistics
Using the Descriptive Statistics ToolCreating a Histogram; Ranking by Percentile; Calculating Moving Averages; Exponential Smoothing; Generating Random Numbers; Sampling Data; Chapter 11: Inferential Statistics; Using the t-test Data Analysis Tool; Performing z-test Calculations; Creating a Scatter Plot; Using the Regression Data Analysis Tool; Using the Correlation Analysis Tool; Using the Covariance Analysis Tool; Using the ANOVA Data Analysis Tools; Creating an f-test Analysis; Using Fourier Analysis; Chapter 12: Optimization Modeling with Solver; Understanding Optimization Modeling
Setting Up a Solver Worksheet
Record Nr. UNINA-9910809370903321
Nelson Stephen L.  
Hoboken, New Jersey : , : John Wiley & Sons, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui