top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Albert Einstein – His Life and Science : A Dramatized Biography / / by Ken K. Chin
Albert Einstein – His Life and Science : A Dramatized Biography / / by Ken K. Chin
Autore Chin Ken K
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XII, 370 p. 113 illus., 20 illus. in color.)
Disciplina 530.092
Collana Physics and Astronomy Series
Soggetto topico Physicists
Astronomers
Physics - History
General relativity (Physics)
Special relativity (Physics)
Quantum theory
Drama
Biographies of Physicists and Astronomers
History of Physics and Astronomy
General Relativity
Special Relativity
Quantum Physics
ISBN 3-031-74066-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Germany -- 2. Switzerland -- 3. A Revolution in Physics -- 4. The Special Theory of Relativity -- 5. The Rising Star.
Record Nr. UNINA-9910993938503321
Chin Ken K  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Albert Einstein—Italian Memories : The Bologna Lectures and Other Events / / by Sandra Linguerri, Raffaella Simili
Albert Einstein—Italian Memories : The Bologna Lectures and Other Events / / by Sandra Linguerri, Raffaella Simili
Autore Linguerri Sandra
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (X, 186 p. 23 illus., 2 illus. in color.)
Disciplina 509
Collana History of Physics
Soggetto topico Physics - History
Physicists
Astronomers
Physics - Philosophy
General relativity (Physics)
Special relativity (Physics)
Gravitation
History of Physics and Astronomy
Biographies of Physicists and Astronomers
Philosophical Foundations of Physics and Astronomy
General Relativity
Special Relativity
Gravitational Physics
ISBN 3-031-52950-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- The Bologna Lectures -- Albert Einstein-Federigo Enriques Correspondence -- Albert Einstein And Other Italian Correspondents -- The "Scientia" Investigation And Other Writings.
Record Nr. UNINA-9910977983103321
Linguerri Sandra  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity [[electronic resource] /] / Abraham Albert Ungar
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity [[electronic resource] /] / Abraham Albert Ungar
Autore Ungar Abraham A
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (649 p.)
Disciplina 516.9
Soggetto topico Special relativity (Physics)
Geometry, Hyperbolic
Soggetto genere / forma Electronic books.
ISBN 1-281-91199-2
9786611911997
981-277-230-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; Acknowledgements; 1. Introduction; 1.1 A Vector Space Approach to Euclidean Geometry and A Gyrovector Space Approach to Hyperbolic Geometry; 1.2 Gyrolanguage; 1.3 Analytic Hyperbolic Geometry; 1.4 The Three Models; 1.5 Applications in Quantum and Special Relativity Theory; 2. Gyrogroups; 2.1 Definitions; 2.2 First Gyrogroup Theorems; 2.3 The Associative Gyropolygonal Gyroaddition; 2.4 Two Basic Gyrogroup Equations and Cancellation Laws; 2.5 Commuting Automorphisms with Gyroautomorphisms; 2.6 The Gyrosemidirect Product Group; 2.7 Basic Gyration Properties
3. Gyrocommutative Gyrogroups3.1 Gyrocommutative Gyrogroups; 3.2 Nested Gyroautomorphism Identities; 3.3 Two-Divisible Two-Torsion Free Gyrocommutative Gyrogroups; 3.4 From M obius to Gyrogroups; 3.5 Higher Dimensional M obius Gyrogroups; 3.6 M obius gyrations; 3.7 Three-Dimensional M obius gyrations; 3.8 Einstein Gyrogroups; 3.9 Einstein Coaddition; 3.10 PV Gyrogroups; 3.11 Points and Vectors in a Real Inner Product Space; 3.12 Exercises; 4. Gyrogroup Extension; 4.1 Gyrogroup Extension; 4.2 The Gyroinner Product, the Gyronorm, and the Gyroboost; 4.3 The Extended Automorphisms
4.4 Gyrotransformation Groups4.5 Einstein Gyrotransformation Groups; 4.6 PV (Proper Velocity) Gyrotransformation Groups; 4.7 Galilei Transformation Groups; 4.8 From Gyroboosts to Boosts; 4.9 The Lorentz Boost; 4.10 The (p :q)-Gyromidpoint; 4.11 The (p1 :p2 :...: pn)-Gyromidpoint; 5. Gyrovectors and Cogyrovectors; 5.1 Equivalence Classes; 5.2 Gyrovectors; 5.3 Gyrovector Translation; 5.4 Gyrovector Translation Composition; 5.5 Points and Gyrovectors; 5.6 The Gyroparallelogram Addition Law; 5.7 Cogyrovectors; 5.8 Cogyrovector Translation; 5.9 Cogyrovector Translation Composition
5.10 Points and Cogyrovectors5.11 Exercises; 6. Gyrovector Spaces; 6.1 Definition and First Gyrovector Space Theorems; 6.2 Solving a System of Two Equations in a Gyrovector Space; 6.3 Gyrolines and Cogyrolines; 6.4 Gyrolines; 6.5 Gyromidpoints; 6.6 Gyrocovariance; 6.7 Gyroparallelograms; 6.8 Gyrogeodesics; 6.9 Cogyrolines; 6.10 Carrier Cogyrolines of Cogyrovectors; 6.11 Cogyromidpoints; 6.12 Cogyrogeodesics; 6.13 Various Gyrolines and Cancellation Laws; 6.14 M obius Gyrovector Spaces; 6.15 M obius Cogyroline Parallelism; 6.16 Illustrating the Gyroline Gyration Transitive Law
6.17 Turning the M obius Gyrometric into the Poincar e Metric6.18 Einstein Gyrovector Spaces; 6.19 Turning Einstein Gyrometric into a Metric; 6.20 PV(ProperVelocity) Gyrovector Spaces; 6.21 Gyrovector Space Isomorphisms; 6.22 Gyrotriangle Gyromedians and Gyrocentroids; 6.22.1 In Einstein Gyrovector Spaces; 6.22.2 In M obius Gyrovector Spaces; 6.22.3 In PV Gyrovector Spaces; 6.23 Exercises; 7. Rudiments of Differential Geometry; 7.1 The Riemannian Line Element of Euclidean Metric; 7.2 The Gyroline and the Cogyroline Element; 7.3 The Gyroline Element of M obius Gyrovector Spaces
7.4 The Cogyroline Element of M obius Gyrovector Spaces
Record Nr. UNINA-9910453536303321
Ungar Abraham A  
Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity [[electronic resource] /] / Abraham Albert Ungar
Analytic hyperbolic geometry and Albert Einstein's special theory of relativity [[electronic resource] /] / Abraham Albert Ungar
Autore Ungar Abraham A
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (649 p.)
Disciplina 516.9
Soggetto topico Special relativity (Physics)
Geometry, Hyperbolic
ISBN 1-281-91199-2
9786611911997
981-277-230-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; Acknowledgements; 1. Introduction; 1.1 A Vector Space Approach to Euclidean Geometry and A Gyrovector Space Approach to Hyperbolic Geometry; 1.2 Gyrolanguage; 1.3 Analytic Hyperbolic Geometry; 1.4 The Three Models; 1.5 Applications in Quantum and Special Relativity Theory; 2. Gyrogroups; 2.1 Definitions; 2.2 First Gyrogroup Theorems; 2.3 The Associative Gyropolygonal Gyroaddition; 2.4 Two Basic Gyrogroup Equations and Cancellation Laws; 2.5 Commuting Automorphisms with Gyroautomorphisms; 2.6 The Gyrosemidirect Product Group; 2.7 Basic Gyration Properties
3. Gyrocommutative Gyrogroups3.1 Gyrocommutative Gyrogroups; 3.2 Nested Gyroautomorphism Identities; 3.3 Two-Divisible Two-Torsion Free Gyrocommutative Gyrogroups; 3.4 From M obius to Gyrogroups; 3.5 Higher Dimensional M obius Gyrogroups; 3.6 M obius gyrations; 3.7 Three-Dimensional M obius gyrations; 3.8 Einstein Gyrogroups; 3.9 Einstein Coaddition; 3.10 PV Gyrogroups; 3.11 Points and Vectors in a Real Inner Product Space; 3.12 Exercises; 4. Gyrogroup Extension; 4.1 Gyrogroup Extension; 4.2 The Gyroinner Product, the Gyronorm, and the Gyroboost; 4.3 The Extended Automorphisms
4.4 Gyrotransformation Groups4.5 Einstein Gyrotransformation Groups; 4.6 PV (Proper Velocity) Gyrotransformation Groups; 4.7 Galilei Transformation Groups; 4.8 From Gyroboosts to Boosts; 4.9 The Lorentz Boost; 4.10 The (p :q)-Gyromidpoint; 4.11 The (p1 :p2 :...: pn)-Gyromidpoint; 5. Gyrovectors and Cogyrovectors; 5.1 Equivalence Classes; 5.2 Gyrovectors; 5.3 Gyrovector Translation; 5.4 Gyrovector Translation Composition; 5.5 Points and Gyrovectors; 5.6 The Gyroparallelogram Addition Law; 5.7 Cogyrovectors; 5.8 Cogyrovector Translation; 5.9 Cogyrovector Translation Composition
5.10 Points and Cogyrovectors5.11 Exercises; 6. Gyrovector Spaces; 6.1 Definition and First Gyrovector Space Theorems; 6.2 Solving a System of Two Equations in a Gyrovector Space; 6.3 Gyrolines and Cogyrolines; 6.4 Gyrolines; 6.5 Gyromidpoints; 6.6 Gyrocovariance; 6.7 Gyroparallelograms; 6.8 Gyrogeodesics; 6.9 Cogyrolines; 6.10 Carrier Cogyrolines of Cogyrovectors; 6.11 Cogyromidpoints; 6.12 Cogyrogeodesics; 6.13 Various Gyrolines and Cancellation Laws; 6.14 M obius Gyrovector Spaces; 6.15 M obius Cogyroline Parallelism; 6.16 Illustrating the Gyroline Gyration Transitive Law
6.17 Turning the M obius Gyrometric into the Poincar e Metric6.18 Einstein Gyrovector Spaces; 6.19 Turning Einstein Gyrometric into a Metric; 6.20 PV(ProperVelocity) Gyrovector Spaces; 6.21 Gyrovector Space Isomorphisms; 6.22 Gyrotriangle Gyromedians and Gyrocentroids; 6.22.1 In Einstein Gyrovector Spaces; 6.22.2 In M obius Gyrovector Spaces; 6.22.3 In PV Gyrovector Spaces; 6.23 Exercises; 7. Rudiments of Differential Geometry; 7.1 The Riemannian Line Element of Euclidean Metric; 7.2 The Gyroline and the Cogyroline Element; 7.3 The Gyroline Element of M obius Gyrovector Spaces
7.4 The Cogyroline Element of M obius Gyrovector Spaces
Record Nr. UNINA-9910782273303321
Ungar Abraham A  
Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Beyond pseudo-rotations in pseudo-euclidean spaces : an introduction to the theory of bi-gyrogroups and bi-gyrovector spaces / / Abraham A. Ungar
Beyond pseudo-rotations in pseudo-euclidean spaces : an introduction to the theory of bi-gyrogroups and bi-gyrovector spaces / / Abraham A. Ungar
Autore Ungar Abraham A.
Pubbl/distr/stampa London, England : , : Academic Press, , 2018
Descrizione fisica 1 online resource (420 pages) : illustrations
Disciplina 530.11
Collana Mathematical Analysis and its Applications
Soggetto topico Special relativity (Physics)
Geometry, Hyperbolic
ISBN 0-12-811774-5
0-12-811773-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. Einstein gyrogroups -- 3. Einstein gyrovector spaces -- 4. Bi-gyrogroups and bi-gyrovector spaces - P -- 5. . Bi-gyrogroups and bi-gyrovector spaces - V -- 6. Applications to time-space of signature (m,n) -- 7. Analytic bi-hyperbolic geometry : the geometry of bi-gyrovector spaces.
Record Nr. UNINA-9910583474603321
Ungar Abraham A.  
London, England : , : Academic Press, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Beyond the Einstein addition law and its gyroscopic Thomas precession [[electronic resource] ] : the theory of gyrogroups and gyrovector spaces / / by Abraham A. Ungar
Beyond the Einstein addition law and its gyroscopic Thomas precession [[electronic resource] ] : the theory of gyrogroups and gyrovector spaces / / by Abraham A. Ungar
Autore Ungar Abraham A
Edizione [1st ed. 2002.]
Pubbl/distr/stampa Dordrecht ; ; Boston, : Kluwer Academic Publishers, c2001
Descrizione fisica 1 online resource (462 p.)
Disciplina 530.11
Collana Fundamental theories of physics
Soggetto topico Special relativity (Physics)
Geometry, Hyperbolic
Soggetto genere / forma Electronic books.
ISBN 1-280-20689-6
9786610206896
0-306-47134-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Thomas Precession: The Missing Link -- Gyrogroups: Modeled on Einstein’S Addition -- The Einstein Gyrovector Space -- Hyperbolic Geometry of Gyrovector Spaces -- The Ungar Gyrovector Space -- The MÖbius Gyrovector Space -- Gyrogeometry -- Gyrooprations — the SL(2, c) Approach -- The Cocycle Form -- The Lorentz Group and its Abstraction -- The Lorentz Transformation Link -- Other Lorentz Groups.
Record Nr. UNINA-9910454579603321
Ungar Abraham A  
Dordrecht ; ; Boston, : Kluwer Academic Publishers, c2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Beyond the Einstein addition law and its gyroscopic Thomas precession [[electronic resource] ] : the theory of gyrogroups and gyrovector spaces / / by Abraham A. Ungar
Beyond the Einstein addition law and its gyroscopic Thomas precession [[electronic resource] ] : the theory of gyrogroups and gyrovector spaces / / by Abraham A. Ungar
Autore Ungar Abraham A
Edizione [1st ed. 2002.]
Pubbl/distr/stampa Dordrecht ; ; Boston, : Kluwer Academic Publishers, c2001
Descrizione fisica 1 online resource (462 p.)
Disciplina 530.11
Collana Fundamental theories of physics
Soggetto topico Special relativity (Physics)
Geometry, Hyperbolic
ISBN 1-280-20689-6
9786610206896
0-306-47134-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Thomas Precession: The Missing Link -- Gyrogroups: Modeled on Einstein’S Addition -- The Einstein Gyrovector Space -- Hyperbolic Geometry of Gyrovector Spaces -- The Ungar Gyrovector Space -- The MÖbius Gyrovector Space -- Gyrogeometry -- Gyrooprations — the SL(2, c) Approach -- The Cocycle Form -- The Lorentz Group and its Abstraction -- The Lorentz Transformation Link -- Other Lorentz Groups.
Record Nr. UNINA-9910780045803321
Ungar Abraham A  
Dordrecht ; ; Boston, : Kluwer Academic Publishers, c2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Beyond the Einstein addition law and its gyroscopic Thomas precession : the theory of gyrogroups and gyrovector spaces / / by Abraham A. Ungar
Beyond the Einstein addition law and its gyroscopic Thomas precession : the theory of gyrogroups and gyrovector spaces / / by Abraham A. Ungar
Autore Ungar Abraham A
Edizione [1st ed. 2002.]
Pubbl/distr/stampa Dordrecht ; ; Boston, : Kluwer Academic Publishers, c2001
Descrizione fisica 1 online resource (462 p.)
Disciplina 530.11
Collana Fundamental theories of physics
Soggetto topico Special relativity (Physics)
Geometry, Hyperbolic
ISBN 1-280-20689-6
9786610206896
0-306-47134-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Thomas Precession: The Missing Link -- Gyrogroups: Modeled on Einstein’S Addition -- The Einstein Gyrovector Space -- Hyperbolic Geometry of Gyrovector Spaces -- The Ungar Gyrovector Space -- The MÖbius Gyrovector Space -- Gyrogeometry -- Gyrooprations — the SL(2, c) Approach -- The Cocycle Form -- The Lorentz Group and its Abstraction -- The Lorentz Transformation Link -- Other Lorentz Groups.
Record Nr. UNINA-9910966444503321
Ungar Abraham A  
Dordrecht ; ; Boston, : Kluwer Academic Publishers, c2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Black holes, cosmology and extra dimensions [[electronic resource] /] / Kirill A. Bronnikov and Sergey G. Rubin
Black holes, cosmology and extra dimensions [[electronic resource] /] / Kirill A. Bronnikov and Sergey G. Rubin
Autore Bronnikov Kirill A
Pubbl/distr/stampa Singapore ; ; London, : World Scientific, 2012
Descrizione fisica 1 online resource (442 p.)
Disciplina 523
Altri autori (Persone) RubinSergei G
Soggetto topico General relativity (Physics)
Special relativity (Physics)
Black holes (Astronomy)
Wormholes (Physics)
Gravitation
Cosmology
Soggetto genere / forma Electronic books.
ISBN 1-283-73936-4
981-4374-21-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Notations; Chapter 1. Modern ideas of gravitation and cosmology - a brief essay; Einstein after Einstein; The technological breakthrough; To quantize or not?; The zoo of theories; Gravitation and the Universe; Part I Gravitation; Chapter 2. Fundamentals of general relativity; 2.1 Special relativity.Minkowski geometry; 2.1.1 Geometry; 2.1.2 Coordinate transformations; 2.1.3 Kinematic effects; 2.1.4 Elements of relativistic point mechanics; 2.2 Riemannian space-time. Coordinate systems and reference frames; 2.2.1 Covariance, maps and atlases; 2.2.2 Reference frames and relativity
2.2.3 Reference frames and chronometric invariants2.2.4 Covariance and relativity; 2.3 Riemannian space-time. Curvature; 2.4 The gravitational field action and dynamic equations; 2.4.1 The Einstein equations; 2.4.2 Geodesic equations; 2.4.3 The correspondence principle; 2.5 Macroscopic matter and nongravitational fields in GR; 2.5.1 Perfect fluid; 2.5.2 Scalar fields; 2.5.3 The electromagnetic field; 2.6 The most symmetric spaces; 2.6.1 Isometry groups and killing vectors; 2.6.2 Isotropic cosmology. The dS and AdS spaces; Chapter 3. Spherically symmetric space-times. Black holes
3.1 Spherically symmetric gravitational fields3.1.1 A regular centre and asymptotic flatness; 3.2 The Reissner-Nordstrom-(anti-)de Sitter solution; 3.2.1 Solution of the Einstein equations; 3.2.2 Special cases; The (anti-)de Sitter metric; The Schwarzschild metric and the Newton law; The Reissner-Nordstrom metric; Metrics with a nonzero cosmological constant; 3.3 Horizons and geodesics in static, spherically symmetric space-times; 3.3.1 The general form of geodesic equations; 3.3.2 Horizons, geodesics and the quasiglobal coordinate; 3.3.3 Transitions to Lemaıtre reference frames
3.3.4 Horizons, R- and T-regions3.4 Schwarzschild black holes. Geodesics and a global description; 3.4.1 R- and T-regions; 3.4.2 Geodesics in the R-region; 3.4.3 Particle capture by a black hole; 3.4.4 A global description: The Kruskal metric; 3.4.5 From Kruskal to Carter-Penrose diagram for the Schwarzschild metric; 3.5 The global causal structure of space-times with horizons; 3.5.1 Crossing the horizon in the general case; 3.5.2 Construction of Carter-Penrose diagrams; 3.6 A black hole as a result of gravitational collapse; 3.6.1 Internal and external regions. Birkhoff's theorem
3.6.2 Gravitational collapse of a spherical dust cloudChapter 4. Black holes under more general conditions; 4.1 Black holes andmassless scalar fields; 4.1.1 The general STT and the Wagoner transformations; On phantom fields; 4.1.2 Minimally coupled scalar fields; 4.1.3 Conformally coupled scalar field; Solutions with nonconformal coupling; 4.1.4 Anomalous (phantom) fields. The anti-Fisher solution; 4.1.5 Cold black holes in the anti-Fisher solution; 4.1.6 Vacuum and electrovacuum in Brans-Dicke theory; 4.1.7 Summary for massless scalar fields
4.2 Scalar fields with arbitrary potentials. No-go theorems
Record Nr. UNINA-9910464781103321
Bronnikov Kirill A  
Singapore ; ; London, : World Scientific, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Black holes, cosmology and extra dimensions [[electronic resource] /] / Kirill A. Bronnikov and Sergey G. Rubin
Black holes, cosmology and extra dimensions [[electronic resource] /] / Kirill A. Bronnikov and Sergey G. Rubin
Autore Bronnikov Kirill A
Pubbl/distr/stampa Singapore ; ; London, : World Scientific, 2012
Descrizione fisica 1 online resource (442 p.)
Disciplina 523
Altri autori (Persone) RubinSergei G
Soggetto topico General relativity (Physics)
Special relativity (Physics)
Black holes (Astronomy)
Wormholes (Physics)
Gravitation
Cosmology
ISBN 1-283-73936-4
981-4374-21-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Notations; Chapter 1. Modern ideas of gravitation and cosmology - a brief essay; Einstein after Einstein; The technological breakthrough; To quantize or not?; The zoo of theories; Gravitation and the Universe; Part I Gravitation; Chapter 2. Fundamentals of general relativity; 2.1 Special relativity.Minkowski geometry; 2.1.1 Geometry; 2.1.2 Coordinate transformations; 2.1.3 Kinematic effects; 2.1.4 Elements of relativistic point mechanics; 2.2 Riemannian space-time. Coordinate systems and reference frames; 2.2.1 Covariance, maps and atlases; 2.2.2 Reference frames and relativity
2.2.3 Reference frames and chronometric invariants2.2.4 Covariance and relativity; 2.3 Riemannian space-time. Curvature; 2.4 The gravitational field action and dynamic equations; 2.4.1 The Einstein equations; 2.4.2 Geodesic equations; 2.4.3 The correspondence principle; 2.5 Macroscopic matter and nongravitational fields in GR; 2.5.1 Perfect fluid; 2.5.2 Scalar fields; 2.5.3 The electromagnetic field; 2.6 The most symmetric spaces; 2.6.1 Isometry groups and killing vectors; 2.6.2 Isotropic cosmology. The dS and AdS spaces; Chapter 3. Spherically symmetric space-times. Black holes
3.1 Spherically symmetric gravitational fields3.1.1 A regular centre and asymptotic flatness; 3.2 The Reissner-Nordstrom-(anti-)de Sitter solution; 3.2.1 Solution of the Einstein equations; 3.2.2 Special cases; The (anti-)de Sitter metric; The Schwarzschild metric and the Newton law; The Reissner-Nordstrom metric; Metrics with a nonzero cosmological constant; 3.3 Horizons and geodesics in static, spherically symmetric space-times; 3.3.1 The general form of geodesic equations; 3.3.2 Horizons, geodesics and the quasiglobal coordinate; 3.3.3 Transitions to Lemaıtre reference frames
3.3.4 Horizons, R- and T-regions3.4 Schwarzschild black holes. Geodesics and a global description; 3.4.1 R- and T-regions; 3.4.2 Geodesics in the R-region; 3.4.3 Particle capture by a black hole; 3.4.4 A global description: The Kruskal metric; 3.4.5 From Kruskal to Carter-Penrose diagram for the Schwarzschild metric; 3.5 The global causal structure of space-times with horizons; 3.5.1 Crossing the horizon in the general case; 3.5.2 Construction of Carter-Penrose diagrams; 3.6 A black hole as a result of gravitational collapse; 3.6.1 Internal and external regions. Birkhoff's theorem
3.6.2 Gravitational collapse of a spherical dust cloudChapter 4. Black holes under more general conditions; 4.1 Black holes andmassless scalar fields; 4.1.1 The general STT and the Wagoner transformations; On phantom fields; 4.1.2 Minimally coupled scalar fields; 4.1.3 Conformally coupled scalar field; Solutions with nonconformal coupling; 4.1.4 Anomalous (phantom) fields. The anti-Fisher solution; 4.1.5 Cold black holes in the anti-Fisher solution; 4.1.6 Vacuum and electrovacuum in Brans-Dicke theory; 4.1.7 Summary for massless scalar fields
4.2 Scalar fields with arbitrary potentials. No-go theorems
Record Nr. UNINA-9910789348303321
Bronnikov Kirill A  
Singapore ; ; London, : World Scientific, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui