top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The 1996 NASA Aerospace Battery Workshop : proceedings of a workshop / / sponsored by the NASA Aerospace Flight Battery Systems Program, held Huntsville, Alabama, December 3-5, 1996 ; compiled by J.C. Brewer
The 1996 NASA Aerospace Battery Workshop : proceedings of a workshop / / sponsored by the NASA Aerospace Flight Battery Systems Program, held Huntsville, Alabama, December 3-5, 1996 ; compiled by J.C. Brewer
Pubbl/distr/stampa MSFC, Alabama : , : National Aeronautics and Space Administration, Marshall Space Flight Center, , 1997
Descrizione fisica 1 online resource (ix, 613 pages) : illustrations
Collana NASA conference publication
Soggetto topico Space vehicles - Batteries
Space vehicles - Auxiliary power supply
Electric batteries
Nickel-metal hydride batteries
Primary batteries
Nickel hydrogen batteries
Soggetto genere / forma Conference papers and proceedings.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 1996 NASA Aerospace Battery Workshop
Record Nr. UNINA-9910716881703321
MSFC, Alabama : , : National Aeronautics and Space Administration, Marshall Space Flight Center, , 1997
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Spacecraft lithium-ion battery power systems / / edited by Thomas P. Barrera
Spacecraft lithium-ion battery power systems / / edited by Thomas P. Barrera
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-IEEE Press, , [2023]
Descrizione fisica 1 online resource (339 pages)
Disciplina 629.47445
Collana IEEE Press
Soggetto topico Space vehicles - Batteries
ISBN 1-119-77217-6
1-119-77215-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Editor -- About the Contributors -- List of Reviewers -- Foreword by Albert H. Zimmerman and Ralph E. White -- Preface -- Acronyms and Abbreviations -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 Purpose -- 1.2.1 Background -- 1.2.2 Knowledge Management -- 1.3 History of Spacecraft Batteries -- 1.3.1 The Early Years - 1957 to 1975 -- 1.3.2 The Next Generation - 1975 to 2000 -- 1.3.3 The Li-ion Revolution - 2000 to Present -- 1.4 State of Practice -- 1.4.1 Raw Materials Supply Chain -- 1.4.2 COTS and Custom Li-ion Cells -- 1.4.3 Hazard Safety and Controls -- 1.4.4 Acquisition Strategies -- 1.5 About the Book -- 1.5.1 Organization -- 1.5.2 Space Li-ion Cells and Batteries -- 1.5.3 Electrical Power System -- 1.5.4 On-Orbit LIB Experience -- 1.5.5 Safety and Reliability -- 1.5.6 Life Cycle Testing -- 1.5.7 Ground Processing and Mission Operations -- 1.6 Summary -- References -- Chapter 2 Space Lithium-Ion Cells -- 2.1 Introduction -- 2.1.1 Types of Space Battery Cells -- 2.1.2 Rechargeable Space Cells -- 2.1.3 Non-Rechargeable Space Cells -- 2.1.4 Specialty Reserve Space Cells -- 2.2 Definitions -- 2.2.1 Capacity -- 2.2.2 Energy -- 2.2.3 Depth-of-Discharge -- 2.3 Cell Components -- 2.3.1 Positive Electrode -- 2.3.2 Negative Electrode -- 2.3.3 Electrolytes -- 2.3.4 Separators -- 2.3.5 Safety Devices -- 2.4 Cell Geometry -- 2.4.1 Standardization -- 2.4.2 Cylindrical -- 2.4.3 Prismatic -- 2.4.4 Elliptical-Cylindrical -- 2.4.5 Pouch -- 2.5 Cell Requirements -- 2.5.1 Specification -- 2.5.2 Capacity and Energy -- 2.5.3 Operating Voltage -- 2.5.4 Mass and Volume -- 2.5.5 DC Resistance -- 2.5.6 Self-Discharge Rate -- 2.5.7 Environments -- 2.5.8 Lifetime -- 2.5.9 Cycle Life -- 2.5.10 Safety and Reliability -- 2.6 Cell Performance Characteristics -- 2.6.1 Charge and Discharge Voltage.
2.6.2 Capacity -- 2.6.3 Energy -- 2.6.4 Internal Resistance -- 2.6.5 Depth of Discharge -- 2.6.6 Life Cycle -- 2.7 Cell Qualification Testing -- 2.7.1 Test Descriptions -- 2.8 Cell Screening and Acceptance Testing -- 2.8.1 Screening -- 2.8.2 Lot Definition -- 2.8.3 Acceptance Testing -- 2.9 Summary -- Acknowledgments -- References -- Chapter 3 Space Lithium-Ion Batteries -- 3.1 Introduction -- 3.2 Requirements -- 3.2.1 Battery Requirements Specification -- 3.2.2 Statement of Work -- 3.2.3 Voltage -- 3.2.4 Capacity -- 3.2.5 Mass and Volume -- 3.2.6 Cycle Life -- 3.2.7 Environments -- 3.3 Cell Selection and Matching -- 3.3.1 Selection Methodologies -- 3.3.2 Matching Process -- 3.4 Mission-Specific Characteristics -- 3.4.1 LIB Sizing -- 3.4.2 GEO Missions -- 3.4.3 LEO Missions -- 3.4.4 MEO and HEO Missions -- 3.4.5 Lagrange Orbit Missions -- 3.5 Interfaces -- 3.5.1 Electrical -- 3.5.2 Mechanical -- 3.5.3 Thermal -- 3.6 Battery Design -- 3.6.1 Electrical -- 3.6.2 Mechanical -- 3.6.3 Thermal -- 3.6.4 Materials, Parts, and Processes -- 3.6.5 Safety and Reliability -- 3.7 Battery Testing -- 3.7.1 Test Requirements and Planning -- 3.7.2 Test Articles and Events -- 3.7.3 Qualification Test Descriptions -- 3.7.4 Acceptance Test Descriptions -- 3.8 Supply Chain -- 3.8.1 Battery Parts and Materials -- 3.8.2 Space LIB Suppliers -- 3.9 Summary -- Acknowledgments -- References -- Chapter 4 Spacecraft Electrical Power Systems -- 4.1 Introduction -- 4.2 EPS Functional Description -- 4.2.1 Power Generation -- 4.2.2 Energy Storage -- 4.2.3 Power Management and Distribution -- 4.2.4 Harness -- 4.3 EPS Requirements -- 4.3.1 Requirements Specification -- 4.3.2 Orbital Mission Profile -- 4.3.3 Power Capability -- 4.3.4 Mission Lifetime -- 4.4 EPS Architecture -- 4.4.1 Bus Voltage -- 4.4.2 Direct Energy Transfer -- 4.4.3 Peak-Power Tracker.
4.4.4 Direct Energy Transfer and Peak-Power Tracker Trades -- 4.5 Battery Management Systems -- 4.5.1 Autonomy -- 4.5.2 Battery Charge Management -- 4.5.3 Battery Cell Voltage Balancing -- 4.5.4 EPS Telemetry -- 4.6 Dead Bus Events -- 4.6.1 Orbital Considerations -- 4.6.2 Survival Fundamentals -- 4.7 EPS Analysis -- 4.7.1 Energy Balance -- 4.7.2 Power Budget -- 4.8 EPS Testing -- 4.8.1 Assembly, Integration, and Test -- 4.8.2 Bus Integration -- 4.8.3 Functional Test -- 4.9 Summary -- References -- Chapter 5 Earth-Orbiting Satellite Batteries -- 5.1 Introduction -- 5.2 Earth Orbit Battery Requirements -- 5.3 NASA International Space Station - LEO -- 5.3.1 Introduction -- 5.3.2 Electrical Power System -- 5.3.3 Ni-H2 Battery Heritage -- 5.3.4 Transition to Lithium-Ion Battery Power Systems -- 5.4 NASA Goddard Space Flight Center Spacecraft -- 5.4.1 Introduction -- 5.4.2 Solar Dynamics Observatory - GEO -- 5.4.3 Lunar Reconnaissance Orbiter - Lunar -- 5.4.4 Global Precipitation Measurement - LEO -- 5.5 Van Allen Probes - HEO -- 5.5.1 Mission Objectives -- 5.5.2 Electrical Power System -- 5.5.3 LIB Architecture -- 5.6 GOES Communication Satellites - GEO -- 5.6.1 Mission Objectives -- 5.6.2 Battery Heritage -- 5.6.3 LIB and Power System Architecture -- 5.7 James Webb Space Telescope - Earth-Sun Lagrange Point 2 -- 5.7.1 Mission Objectives -- 5.7.2 Lagrange Orbit -- 5.7.3 Electrical Power System -- 5.7.4 LIB Architecture -- 5.8 CubeSats - LEO -- 5.8.1 Introduction -- 5.8.2 Electrical Power System and Battery Architecture -- 5.8.3 Advanced Hybrid EPS Systems -- 5.9 European Space Agency Spacecraft -- 5.9.1 Introduction -- 5.9.2 Sentinel-1 Mission Objectives -- 5.9.3 Galileo Mission Objectives - MEO -- 5.10 -- 5.10.1 Introduction -- 5.10.2 EMU Long-Life Battery -- 5.10.3 Lithium-Ion Rechargeable EVA Battery Assembly.
5.10.4 Lithium-Ion Pistol-Grip Tool Battery -- 5.10.5 Simplified Aid for EVA Rescue -- 5.11 Summary -- Acknowledgment -- References -- Chapter 6 Planetary Spacecraft Batteries -- 6.1 Introduction -- 6.2 Planetary Mission Battery Requirements -- 6.2.1 Service Life and Reliability -- 6.2.2 Radiation Tolerance -- 6.2.3 Extreme Temperature -- 6.2.4 Low Magnetic Signature -- 6.2.5 Mechanical Environments -- 6.2.6 Planetary Protection -- 6.3 Planetary and Space Exploration Missions -- 6.3.1 Earth Orbiters -- 6.3.2 Lunar Missions -- 6.3.3 Mars Missions -- 6.3.4 Missions to Jupiter -- 6.3.5 Missions to Comets and Asteroids -- 6.3.6 Missions to Deep Space and Outer Planets -- 6.4 Future Missions -- 6.4.1 The Planned NASA Europa Clipper Mission -- 6.4.2 ESA JUICE Mission -- 6.5 Mars Sample Return Missions -- 6.6 Summary -- Acknowledgment -- References -- Chapter 7 Space Battery Safety and Reliability -- 7.1 Introduction -- 7.1.1 Space Battery Safety -- 7.1.2 Industry Lessons Learned -- 7.2 Space LIB Safety Requirements -- 7.2.1 NASA JSC-20793 -- 7.2.2 Range Safety -- 7.2.3 Design for Minimum Risk -- 7.3 Safety Hazards, Controls, and Testing -- 7.3.1 Electrical -- 7.3.2 Mechanical -- 7.3.3 Thermal -- 7.3.4 Chemical -- 7.3.5 Safety Testing -- 7.4 Thermal Runaway -- 7.4.1 Likelihood and Severity -- 7.4.2 Characterization -- 7.4.3 Testing -- 7.5 Principles of Safe-by-Design -- 7.5.1 Field Failures Due to ISCs -- 7.5.2 Cell Design -- 7.5.3 Cell Manufacturing and Quality Audits -- 7.5.4 Cell Testing and Operation -- 7.6 Passive Propagation Resistant LIB Design -- 7.6.1 PPR Design Guidelines -- 7.6.2 PPR Verification -- 7.6.3 Case Study - NASA US Astronaut Spacesuit LIB Redesign -- 7.7 Battery Reliability -- 7.7.1 Requirements -- 7.7.2 Battery Failure Rates -- 7.8 Summary -- References -- Chapter 8 Life-Cycle Testing and Analysis -- 8.1 Introduction.
8.1.1 Test-Like-You-Fly -- 8.1.2 Design of Test -- 8.1.3 Test Article Selection -- 8.1.4 Personnel, Equipment, and Facilities -- 8.2 LCT Planning -- 8.2.1 Test Plan -- 8.2.2 Test Procedures -- 8.2.3 Test Readiness Review -- 8.2.4 Sample Size Statistics -- 8.3 Charge and Discharge Test Conditions -- 8.3.1 Charge and Discharge Rates -- 8.3.2 Capacity and DOD -- 8.3.3 Voltage Limits -- 8.3.4 Charge and Discharge Control -- 8.3.5 Parameter Margin -- 8.4 Test Configuration and Environments -- 8.4.1 Test Article Configuration -- 8.4.2 Test Environments -- 8.5 Test Equipment and Safety Hazards -- 8.5.1 Test Equipment Configuration -- 8.5.2 Test Safety Hazards -- 8.6 Real-Time Life-Cycle Testing -- 8.6.1 Test Article Selection -- 8.6.2 Test Execution and Monitoring -- 8.6.3 LCT End-of-Life Management -- 8.7 Calendar and Storage Life Testing -- 8.7.1 Calendar Life -- 8.7.2 Storage Life -- 8.7.3 Test Methodology -- 8.8 Accelerated Life-Cycle Testing -- 8.8.1 Accelerated Life Test Methodologies -- 8.8.2 Lessons Learned -- 8.9 Data Analysis -- 8.9.1 LCT Data Analysis -- 8.9.2 Trend Analysis and Reporting -- 8.10 Modeling and Simulation -- 8.10.1 Modeling and Simulation in Battery-Life Testing -- 8.10.2 Empirical Approaches -- 8.10.3 First Principles of Physics-Based Models -- 8.10.4 Systems Engineering Models -- 8.10.5 Models for Tracking Test Progress -- 8.10.6 Parameterization Approaches -- 8.10.7 Data Requirements -- 8.10.8 Lifetime and Performance Prediction -- 8.11 Summary -- References -- Chapter 9 Ground Processing and Mission Operations -- 9.1 Introduction -- 9.1.1 Satellite Systems Engineering -- 9.1.2 Ground and Space Satellite EPS Requirements -- 9.2 Ground Processing -- 9.2.1 Storage -- 9.2.2 Transportation and Handling -- 9.3 Launch Site Operations -- 9.3.1 Launch Site Processing -- 9.3.2 Pre-Launch Operations -- 9.3.3 Launch Operations.
9.4 Mission Operations.
Record Nr. UNINA-9910830876003321
Hoboken, New Jersey : , : Wiley-IEEE Press, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui