Basic research and technologies for two-state-to-orbit vehicles [[electronic resource] ] : final report of the collaborative research centres / / edited by Dieter Jacob, Gottfried Sachs and Siegfried Wagner
| Basic research and technologies for two-state-to-orbit vehicles [[electronic resource] ] : final report of the collaborative research centres / / edited by Dieter Jacob, Gottfried Sachs and Siegfried Wagner |
| Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2005 |
| Descrizione fisica | 1 online resource (686 p.) |
| Disciplina |
629.4
629.47 |
| Altri autori (Persone) |
JacobDieter <1941->
SachsG (Gottfried) WagnerS <1937-2018.> (Siegfried) |
| Collana | Deutsche Forschung |
| Soggetto topico |
Space vehicles - Aerodynamics
Space vehicles - Design and construction Space vehicles - Materials Space vehicles - Thermodynamics |
| ISBN |
1-280-52056-6
9786610520565 3-527-60571-1 3-527-60550-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Basic Research and Technologies for Two-Stage-to-Orbit Vehicles; Contents; 1 Introduction; 2 Network Organization of Collaborative Research Centres for Scientific Efficiency Enhancement; 2.1 Introduction; 2.2 Organization of Collaboration; 2.3 Efficiency Enhancement in Research; 2.4 Efficiency Enhancement in Teaching and Education; 2.5 Internationalization; 2.6 Final Remarks; 3 Overall Design Aspects; 3.1 Conceptual Design of Winged Reusable Two-Stage-to-Orbit Space Transport Systems; 3.1.1 Background and Introduction; 3.1.2 Concepts for Reusable Space Transports
3.1.2.1 Single-Stage-to-Orbit SSTO3.1.2.2 Two-Stage-to-Orbit TSTO; 3.1.3 Design Procedure; 3.1.3.1 Design Tools and Methods; 3.1.3.2 Baseline Concept; 3.1.3.3 Boundary Conditions and Requirements; 3.1.3.4 Variation of Mission and Staging Mach Number; 3.1.3.5 Trade Studies; 3.1.3.6 Evaluation and Comparison of the Concepts; 3.1.4 Variation of Mission and Mach Numbers; 3.1.4.1 Mission Comparison; 3.1.4.2 Comparison of Mach Number Variation; 3.1.4.3 Accelerator Vehicle Concepts; 3.1.5 Trade Studies; 3.1.5.1 Airbreathing Second Stage; 3.1.5.2 LOX-Collection; 3.1.6 Comparison and Evaluation 3.1.7 Conclusion and Outlook3.2 Evaluation and Multidisciplinary Optimization of Two-Stage-to-Orbit Space Planes with Different Lower-Stage Concepts; 3.2.1 Introduction; 3.2.2 Reference Configurations; 3.2.2.1 Concept Design and Mission Requirements; 3.2.2.2 Space Plane Configuration with Lifting Body Lower Stage; 3.2.2.3 Space Plane Configuration with Waverider Lower Stage; 3.2.2.4 Design and Optimization Parameters; 3.2.3 Analysis Methods; 3.2.3.1 Quality Criteria; 3.2.3.2 Simulation and Optimization Software; 3.2.4 Performance of Reference Space Planes; 3.2.4.1 Mass Breakdown 3.2.4.2 Design Sensitivities3.2.5 Optimization Results; 3.2.5.1 Nominal Optimizations; 3.2.5.2 Sensitivity-Based Optimizations; 3.2.6 Summary and Conclusions; 4 Aerodynamics and Thermodynamics; 4.1 Low-Speed Tests with an ELAC-Model at High Reynolds Numbers; 4.1.1 Introduction; 4.1.2 Wind Tunnel Models; 4.1.3 Pressure Distributions Influenced by Reynolds Number; 4.1.4 Flow Field Influenced by Reynolds Number; 4.1.5 Force Coefficients Influenced by Reynolds Number; 4.1.6 Conclusion; 4.2 Experimental and Numerical Analysis of Supersonic Flow over the ELAC-Configuration; 4.2.1 Introduction 4.2.2 Experimental Setup4.2.3 Numerical Method; 4.2.4 Results; 4.2.4.1 Flow Over the Orbital Stage and the EOS/Flat Plate Configuration; 4.2.4.2 Separation of ELAC1C and EOS; 4.2.5 Conclusions; 4.3 Stage Separation - Aerodynamics and Flow Physics; 4.3.1 Introduction; 4.3.2 Methodology and Vehicle Geometries; 4.3.3 Numerical Simulation; 4.3.3.1 Flow Solver; 4.3.3.2 Grid Generation; 4.3.4 Experimental Simulation; 4.3.4.1 Models and Facility; 4.3.4.2 Measurement Technique and Test Programme; 4.3.5 Steady State Flow; 4.3.5.1 Dominant Flow Phenomena; 4.3.5.1.1 Inviscid Case - 2D and 3D Simulations 4.3.5.1.2 Viscous Effects - Laminar and Turbulent Flow |
| Record Nr. | UNINA-9910144586203321 |
| Weinheim, : Wiley-VCH, c2005 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Basic research and technologies for two-state-to-orbit vehicles [[electronic resource] ] : final report of the collaborative research centres / / edited by Dieter Jacob, Gottfried Sachs and Siegfried Wagner
| Basic research and technologies for two-state-to-orbit vehicles [[electronic resource] ] : final report of the collaborative research centres / / edited by Dieter Jacob, Gottfried Sachs and Siegfried Wagner |
| Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2005 |
| Descrizione fisica | 1 online resource (686 p.) |
| Disciplina |
629.4
629.47 |
| Altri autori (Persone) |
JacobDieter <1941->
SachsG (Gottfried) WagnerS <1937-2018.> (Siegfried) |
| Collana | Deutsche Forschung |
| Soggetto topico |
Space vehicles - Aerodynamics
Space vehicles - Design and construction Space vehicles - Materials Space vehicles - Thermodynamics |
| ISBN |
1-280-52056-6
9786610520565 3-527-60571-1 3-527-60550-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Basic Research and Technologies for Two-Stage-to-Orbit Vehicles; Contents; 1 Introduction; 2 Network Organization of Collaborative Research Centres for Scientific Efficiency Enhancement; 2.1 Introduction; 2.2 Organization of Collaboration; 2.3 Efficiency Enhancement in Research; 2.4 Efficiency Enhancement in Teaching and Education; 2.5 Internationalization; 2.6 Final Remarks; 3 Overall Design Aspects; 3.1 Conceptual Design of Winged Reusable Two-Stage-to-Orbit Space Transport Systems; 3.1.1 Background and Introduction; 3.1.2 Concepts for Reusable Space Transports
3.1.2.1 Single-Stage-to-Orbit SSTO3.1.2.2 Two-Stage-to-Orbit TSTO; 3.1.3 Design Procedure; 3.1.3.1 Design Tools and Methods; 3.1.3.2 Baseline Concept; 3.1.3.3 Boundary Conditions and Requirements; 3.1.3.4 Variation of Mission and Staging Mach Number; 3.1.3.5 Trade Studies; 3.1.3.6 Evaluation and Comparison of the Concepts; 3.1.4 Variation of Mission and Mach Numbers; 3.1.4.1 Mission Comparison; 3.1.4.2 Comparison of Mach Number Variation; 3.1.4.3 Accelerator Vehicle Concepts; 3.1.5 Trade Studies; 3.1.5.1 Airbreathing Second Stage; 3.1.5.2 LOX-Collection; 3.1.6 Comparison and Evaluation 3.1.7 Conclusion and Outlook3.2 Evaluation and Multidisciplinary Optimization of Two-Stage-to-Orbit Space Planes with Different Lower-Stage Concepts; 3.2.1 Introduction; 3.2.2 Reference Configurations; 3.2.2.1 Concept Design and Mission Requirements; 3.2.2.2 Space Plane Configuration with Lifting Body Lower Stage; 3.2.2.3 Space Plane Configuration with Waverider Lower Stage; 3.2.2.4 Design and Optimization Parameters; 3.2.3 Analysis Methods; 3.2.3.1 Quality Criteria; 3.2.3.2 Simulation and Optimization Software; 3.2.4 Performance of Reference Space Planes; 3.2.4.1 Mass Breakdown 3.2.4.2 Design Sensitivities3.2.5 Optimization Results; 3.2.5.1 Nominal Optimizations; 3.2.5.2 Sensitivity-Based Optimizations; 3.2.6 Summary and Conclusions; 4 Aerodynamics and Thermodynamics; 4.1 Low-Speed Tests with an ELAC-Model at High Reynolds Numbers; 4.1.1 Introduction; 4.1.2 Wind Tunnel Models; 4.1.3 Pressure Distributions Influenced by Reynolds Number; 4.1.4 Flow Field Influenced by Reynolds Number; 4.1.5 Force Coefficients Influenced by Reynolds Number; 4.1.6 Conclusion; 4.2 Experimental and Numerical Analysis of Supersonic Flow over the ELAC-Configuration; 4.2.1 Introduction 4.2.2 Experimental Setup4.2.3 Numerical Method; 4.2.4 Results; 4.2.4.1 Flow Over the Orbital Stage and the EOS/Flat Plate Configuration; 4.2.4.2 Separation of ELAC1C and EOS; 4.2.5 Conclusions; 4.3 Stage Separation - Aerodynamics and Flow Physics; 4.3.1 Introduction; 4.3.2 Methodology and Vehicle Geometries; 4.3.3 Numerical Simulation; 4.3.3.1 Flow Solver; 4.3.3.2 Grid Generation; 4.3.4 Experimental Simulation; 4.3.4.1 Models and Facility; 4.3.4.2 Measurement Technique and Test Programme; 4.3.5 Steady State Flow; 4.3.5.1 Dominant Flow Phenomena; 4.3.5.1.1 Inviscid Case - 2D and 3D Simulations 4.3.5.1.2 Viscous Effects - Laminar and Turbulent Flow |
| Record Nr. | UNINA-9910830287803321 |
| Weinheim, : Wiley-VCH, c2005 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Basic research and technologies for two-state-to-orbit vehicles : final report of the collaborative research centres / / edited by Dieter Jacob, Gottfried Sachs and Siegfried Wagner
| Basic research and technologies for two-state-to-orbit vehicles : final report of the collaborative research centres / / edited by Dieter Jacob, Gottfried Sachs and Siegfried Wagner |
| Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2005 |
| Descrizione fisica | 1 online resource (686 p.) |
| Disciplina |
629.4
629.47 |
| Altri autori (Persone) |
JacobDieter
SachsG (Gottfried) WagnerSiegfried |
| Collana | Deutsche Forschung |
| Soggetto topico |
Space vehicles - Aerodynamics
Space vehicles - Design and construction Space vehicles - Materials Space vehicles - Thermodynamics |
| ISBN |
9786610520565
9781280520563 1280520566 9783527605712 3527605711 9783527605507 3527605509 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Basic Research and Technologies for Two-Stage-to-Orbit Vehicles; Contents; 1 Introduction; 2 Network Organization of Collaborative Research Centres for Scientific Efficiency Enhancement; 2.1 Introduction; 2.2 Organization of Collaboration; 2.3 Efficiency Enhancement in Research; 2.4 Efficiency Enhancement in Teaching and Education; 2.5 Internationalization; 2.6 Final Remarks; 3 Overall Design Aspects; 3.1 Conceptual Design of Winged Reusable Two-Stage-to-Orbit Space Transport Systems; 3.1.1 Background and Introduction; 3.1.2 Concepts for Reusable Space Transports
3.1.2.1 Single-Stage-to-Orbit SSTO3.1.2.2 Two-Stage-to-Orbit TSTO; 3.1.3 Design Procedure; 3.1.3.1 Design Tools and Methods; 3.1.3.2 Baseline Concept; 3.1.3.3 Boundary Conditions and Requirements; 3.1.3.4 Variation of Mission and Staging Mach Number; 3.1.3.5 Trade Studies; 3.1.3.6 Evaluation and Comparison of the Concepts; 3.1.4 Variation of Mission and Mach Numbers; 3.1.4.1 Mission Comparison; 3.1.4.2 Comparison of Mach Number Variation; 3.1.4.3 Accelerator Vehicle Concepts; 3.1.5 Trade Studies; 3.1.5.1 Airbreathing Second Stage; 3.1.5.2 LOX-Collection; 3.1.6 Comparison and Evaluation 3.1.7 Conclusion and Outlook3.2 Evaluation and Multidisciplinary Optimization of Two-Stage-to-Orbit Space Planes with Different Lower-Stage Concepts; 3.2.1 Introduction; 3.2.2 Reference Configurations; 3.2.2.1 Concept Design and Mission Requirements; 3.2.2.2 Space Plane Configuration with Lifting Body Lower Stage; 3.2.2.3 Space Plane Configuration with Waverider Lower Stage; 3.2.2.4 Design and Optimization Parameters; 3.2.3 Analysis Methods; 3.2.3.1 Quality Criteria; 3.2.3.2 Simulation and Optimization Software; 3.2.4 Performance of Reference Space Planes; 3.2.4.1 Mass Breakdown 3.2.4.2 Design Sensitivities3.2.5 Optimization Results; 3.2.5.1 Nominal Optimizations; 3.2.5.2 Sensitivity-Based Optimizations; 3.2.6 Summary and Conclusions; 4 Aerodynamics and Thermodynamics; 4.1 Low-Speed Tests with an ELAC-Model at High Reynolds Numbers; 4.1.1 Introduction; 4.1.2 Wind Tunnel Models; 4.1.3 Pressure Distributions Influenced by Reynolds Number; 4.1.4 Flow Field Influenced by Reynolds Number; 4.1.5 Force Coefficients Influenced by Reynolds Number; 4.1.6 Conclusion; 4.2 Experimental and Numerical Analysis of Supersonic Flow over the ELAC-Configuration; 4.2.1 Introduction 4.2.2 Experimental Setup4.2.3 Numerical Method; 4.2.4 Results; 4.2.4.1 Flow Over the Orbital Stage and the EOS/Flat Plate Configuration; 4.2.4.2 Separation of ELAC1C and EOS; 4.2.5 Conclusions; 4.3 Stage Separation - Aerodynamics and Flow Physics; 4.3.1 Introduction; 4.3.2 Methodology and Vehicle Geometries; 4.3.3 Numerical Simulation; 4.3.3.1 Flow Solver; 4.3.3.2 Grid Generation; 4.3.4 Experimental Simulation; 4.3.4.1 Models and Facility; 4.3.4.2 Measurement Technique and Test Programme; 4.3.5 Steady State Flow; 4.3.5.1 Dominant Flow Phenomena; 4.3.5.1.1 Inviscid Case - 2D and 3D Simulations 4.3.5.1.2 Viscous Effects - Laminar and Turbulent Flow |
| Record Nr. | UNINA-9911019252003321 |
| Weinheim, : Wiley-VCH, c2005 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Dynamics of atmospheric re-entry [[electronic resource] /] / Frank J. Regan, Satya M. Anandakrishnan
| Dynamics of atmospheric re-entry [[electronic resource] /] / Frank J. Regan, Satya M. Anandakrishnan |
| Autore | Regan Frank J |
| Pubbl/distr/stampa | Washington, D.C., : American Institute of Aeronautics and Astronautics, c1993 |
| Descrizione fisica | 1 online resource (603 p.) |
| Disciplina | 629.4/15 |
| Altri autori (Persone) | AnandakrishnanSatya M |
| Collana | AIAA education series |
| Soggetto topico |
Space vehicles - Atmospheric entry
Space vehicles - Aerodynamics |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-60086-046-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Cover""; ""Title""; ""Copyright""; ""Foreword""; ""Preface""; ""Table of Contents""; ""Chapter 1. Introduction""; ""1.0 Background""; ""1.1 Meteorites�Nature's (Re-)Entry Bodies""; ""1.2 Artifacts�Manmade Re-Entry Bodies""; ""1.3 Overview""; ""References""; ""Chapter 2. Atmospheric Model""; ""2.1 Introduction""; ""2.2 Standard Atmospheres""; ""2.3 Atmospheric Description""; ""2.4 Physical Foundations of an Atmospheric Model""; ""2.5 Derived Atmospheric Quantities""; ""2.6 Exponential Atmosphere""; ""2.7 Planetary Atmospheres""; ""References""
""Chapter 3. Earth's Form and Gravitational Field""""3.1 Introduction""; ""3.2 Geoid and Reference Ellipsoid""; ""3.3 Geocentric Position Vector""; ""3.4 Deflection of the Vertical""; ""3.5 Earth's Radius""; ""3.6 Earth's Gravitational Potential""; ""3.7 Gravitational Field in an Inertial Frame""; ""3.8 Gravitational Anomalies and Deflection of the Vertical""; ""3.9 Longitudinal Dependencies""; ""3.10 Gravity Gradient""; ""References""; ""Chapter 4. Axis Transformations""; ""4.1 Background""; ""4.2 Directional Cosine Matrix""; ""4.3 Updating the DCM""; ""4.4 Euler Angles"" ""4.5 Updating Euler Angles""""4.6 Axis/Angle Parameters""; ""4.7 Updating the Axis/Angle Parameters""; ""4.8 Euler Four-Parameter Method (Quaternions)""; ""4.9 Summary""; ""References""; ""Chapter 5. Force and Moment Equations""; ""5.1 Newton's Second Law of Motion""; ""5.2 Vector Differentiation""; ""5.3 Force Equations""; ""5.4 Moment Equations""; ""5.5 Calculation of the Moments and Products of Inertia""; ""References""; ""Bibliography""; ""Chapter 6. Keplerian Motion""; ""6.1 Equations of Motion""; ""6.2 Impact Equations""; ""6.3 Time of Flight""; ""6.4 Error Analysis"" ""6.5 Oblateness Effects""""6.6 Earth Rotation Effects""; ""6.7 Deployment Attitudes""; ""6.8 Summary""; ""References""; ""Chapter 7. Re-Entry Vehicle Particle Mechanics""; ""7.1 Re-Entry Physics""; ""7.2 Equations of Planar Motion""; ""7.3 Re-Entry Case Studies""; ""7.4 Some Nondimensional Representations""; ""7.5 Heat Transfer and Dynamics""; ""References""; ""Chapter 8. Decoys and the Identification of Re-Entry Vehicles""; ""8.1 Introduction""; ""8.2 Estimators""; ""8.3 Decoy Effectiveness""; ""References""; ""Chapter 9. Maneuvering Re-Entry Vehicles: Particle Motion"" ""9.1 Introduction""""9.2 Drag Polar""; ""9.3 MaRV State Equations""; ""9.4 Diveline Guidance""; ""9.5 Determining the Projected Interception Point""; ""9.6 Interceptor Guidance Equations""; ""9.7 Interceptor State Equations""; ""9.8 Simulation Results""; ""9.9 Other Guidance Laws and Summary""; ""References""; ""Bibliography""; ""Chapter 10. Angular Motion During the Exoatmospheric (Keplerian) Phase""; ""10.1 Introduction""; ""10.2 Re-Entry Vehicle Deployment""; ""10.3 Analytical Treatment of Torque-Free Motion""; ""10.4 Torque-Free Motion�Poinsot Construction""; ""10.5 Relative Motion"" ""References"" |
| Record Nr. | UNINA-9910457230503321 |
Regan Frank J
|
||
| Washington, D.C., : American Institute of Aeronautics and Astronautics, c1993 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Dynamics of atmospheric re-entry [[electronic resource] /] / Frank J. Regan, Satya M. Anandakrishnan
| Dynamics of atmospheric re-entry [[electronic resource] /] / Frank J. Regan, Satya M. Anandakrishnan |
| Autore | Regan Frank J |
| Pubbl/distr/stampa | Washington, D.C., : American Institute of Aeronautics and Astronautics, c1993 |
| Descrizione fisica | 1 online resource (603 p.) |
| Disciplina | 629.4/15 |
| Altri autori (Persone) | AnandakrishnanSatya M |
| Collana | AIAA education series |
| Soggetto topico |
Space vehicles - Atmospheric entry
Space vehicles - Aerodynamics |
| ISBN | 1-60086-046-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Cover""; ""Title""; ""Copyright""; ""Foreword""; ""Preface""; ""Table of Contents""; ""Chapter 1. Introduction""; ""1.0 Background""; ""1.1 Meteorites�Nature's (Re-)Entry Bodies""; ""1.2 Artifacts�Manmade Re-Entry Bodies""; ""1.3 Overview""; ""References""; ""Chapter 2. Atmospheric Model""; ""2.1 Introduction""; ""2.2 Standard Atmospheres""; ""2.3 Atmospheric Description""; ""2.4 Physical Foundations of an Atmospheric Model""; ""2.5 Derived Atmospheric Quantities""; ""2.6 Exponential Atmosphere""; ""2.7 Planetary Atmospheres""; ""References""
""Chapter 3. Earth's Form and Gravitational Field""""3.1 Introduction""; ""3.2 Geoid and Reference Ellipsoid""; ""3.3 Geocentric Position Vector""; ""3.4 Deflection of the Vertical""; ""3.5 Earth's Radius""; ""3.6 Earth's Gravitational Potential""; ""3.7 Gravitational Field in an Inertial Frame""; ""3.8 Gravitational Anomalies and Deflection of the Vertical""; ""3.9 Longitudinal Dependencies""; ""3.10 Gravity Gradient""; ""References""; ""Chapter 4. Axis Transformations""; ""4.1 Background""; ""4.2 Directional Cosine Matrix""; ""4.3 Updating the DCM""; ""4.4 Euler Angles"" ""4.5 Updating Euler Angles""""4.6 Axis/Angle Parameters""; ""4.7 Updating the Axis/Angle Parameters""; ""4.8 Euler Four-Parameter Method (Quaternions)""; ""4.9 Summary""; ""References""; ""Chapter 5. Force and Moment Equations""; ""5.1 Newton's Second Law of Motion""; ""5.2 Vector Differentiation""; ""5.3 Force Equations""; ""5.4 Moment Equations""; ""5.5 Calculation of the Moments and Products of Inertia""; ""References""; ""Bibliography""; ""Chapter 6. Keplerian Motion""; ""6.1 Equations of Motion""; ""6.2 Impact Equations""; ""6.3 Time of Flight""; ""6.4 Error Analysis"" ""6.5 Oblateness Effects""""6.6 Earth Rotation Effects""; ""6.7 Deployment Attitudes""; ""6.8 Summary""; ""References""; ""Chapter 7. Re-Entry Vehicle Particle Mechanics""; ""7.1 Re-Entry Physics""; ""7.2 Equations of Planar Motion""; ""7.3 Re-Entry Case Studies""; ""7.4 Some Nondimensional Representations""; ""7.5 Heat Transfer and Dynamics""; ""References""; ""Chapter 8. Decoys and the Identification of Re-Entry Vehicles""; ""8.1 Introduction""; ""8.2 Estimators""; ""8.3 Decoy Effectiveness""; ""References""; ""Chapter 9. Maneuvering Re-Entry Vehicles: Particle Motion"" ""9.1 Introduction""""9.2 Drag Polar""; ""9.3 MaRV State Equations""; ""9.4 Diveline Guidance""; ""9.5 Determining the Projected Interception Point""; ""9.6 Interceptor Guidance Equations""; ""9.7 Interceptor State Equations""; ""9.8 Simulation Results""; ""9.9 Other Guidance Laws and Summary""; ""References""; ""Bibliography""; ""Chapter 10. Angular Motion During the Exoatmospheric (Keplerian) Phase""; ""10.1 Introduction""; ""10.2 Re-Entry Vehicle Deployment""; ""10.3 Analytical Treatment of Torque-Free Motion""; ""10.4 Torque-Free Motion�Poinsot Construction""; ""10.5 Relative Motion"" ""References"" |
| Record Nr. | UNINA-9910781402503321 |
Regan Frank J
|
||
| Washington, D.C., : American Institute of Aeronautics and Astronautics, c1993 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Effects of cone angle, base flare angle, and corner radius on Mach 3.0 aerodynamic characteristics of large-angle cones / / by William D. Deveikis and James Wayne Sawyer
| Effects of cone angle, base flare angle, and corner radius on Mach 3.0 aerodynamic characteristics of large-angle cones / / by William D. Deveikis and James Wayne Sawyer |
| Autore | Deveikis William D. |
| Pubbl/distr/stampa | Washington, D.C. : , : National Aeronautics and Space Administration, , March 1969 |
| Descrizione fisica | 1 online resource (45 pages) : illustrations |
| Collana | NASA technical note |
| Soggetto topico |
Space vehicles - Aerodynamics
Wind tunnels Cone - Aerodynamics |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910714087703321 |
Deveikis William D.
|
||
| Washington, D.C. : , : National Aeronautics and Space Administration, , March 1969 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Fixed-base visual simulation of pilot-controlled descents of an advanced Apollo spacecraft with an all-flexible parawing / / by G. Kimball Miller, Jr., Byron M. Jacquet, and Douglas B. Price
| Fixed-base visual simulation of pilot-controlled descents of an advanced Apollo spacecraft with an all-flexible parawing / / by G. Kimball Miller, Jr., Byron M. Jacquet, and Douglas B. Price |
| Autore | Miller G. Kimball |
| Pubbl/distr/stampa | Washington, D.C. : , : National Aeronautics and Space Administration, , March 1969 |
| Descrizione fisica | 1 online resource (61 pages) : illustrations |
| Collana | NASA technical note |
| Soggetto topico |
Space vehicles - Piloting
Space vehicles - Landing Space vehicles - Aerodynamics Airplanes - Parawings Flight simulators |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910714088203321 |
Miller G. Kimball
|
||
| Washington, D.C. : , : National Aeronautics and Space Administration, , March 1969 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Full-scale investigation of the aerodynamic characteristics of a sailwing of aspect ratio 5.9 / / by Marvin P. Fink
| Full-scale investigation of the aerodynamic characteristics of a sailwing of aspect ratio 5.9 / / by Marvin P. Fink |
| Autore | Fink Marvin P. |
| Pubbl/distr/stampa | Washington, D.C. : , : National Aeronautics and Space Administration, , February 1969 |
| Descrizione fisica | 1 online resource (30 pages) : illustrations |
| Collana | NASA technical note |
| Soggetto topico |
Space vehicles - Aerodynamics
Lift (Aerodynamics) Drag (Aerodynamics) |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910714087603321 |
Fink Marvin P.
|
||
| Washington, D.C. : , : National Aeronautics and Space Administration, , February 1969 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Heating and flow-field studies on a straight-wing hypersonic reentry vehicle at angles of attack from 20 ̊to 80 ̊with simulation of real-gas trends / / by James L. Hunt and Robert A. Jones
| Heating and flow-field studies on a straight-wing hypersonic reentry vehicle at angles of attack from 20 ̊to 80 ̊with simulation of real-gas trends / / by James L. Hunt and Robert A. Jones |
| Autore | Hunt James L (James Larry), <1939-> |
| Pubbl/distr/stampa | Washington, D.C. : , : National Aeronautics and Space Administration, , March 1973 |
| Descrizione fisica | 1 online resource (94 pages) : illustrations |
| Collana | NASA/TN |
| Soggetto topico |
Aerospace vehicles
Hypersonic reentry Space vehicles - Atmospheric entry Aerodynamic heating Aerodynamics, Hypersonic Space shuttles Gases, Real Space vehicles - Aerodynamics |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910716581803321 |
Hunt James L (James Larry), <1939->
|
||
| Washington, D.C. : , : National Aeronautics and Space Administration, , March 1973 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Space shuttle orbiter trimmed center-of-gravity extension study : summary report / / William I. Scallion and W. Pelham Phillips
| Space shuttle orbiter trimmed center-of-gravity extension study : summary report / / William I. Scallion and W. Pelham Phillips |
| Autore | Scallion William I. |
| Pubbl/distr/stampa | Washington, D.C. : , : National Aeronautics and Space Administration, , 1985 |
| Descrizione fisica | 1 online resource (50 pages) : illustrations |
| Collana | NASA technical paper |
| Soggetto topico |
Center of gravity
Aerodynamic configurations Space Shuttle orbiters Wind tunnel tests Design analysis Space shuttles - Design and construction Center of mass Space vehicles - Aerodynamics |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Space shuttle orbiter trimmed center-of-gravity extension study |
| Record Nr. | UNINA-9910709630903321 |
Scallion William I.
|
||
| Washington, D.C. : , : National Aeronautics and Space Administration, , 1985 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||