Computational acoustics : theory and implementation / / David R. Bergman
| Computational acoustics : theory and implementation / / David R. Bergman |
| Autore | Bergman David R. |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2018 |
| Descrizione fisica | 1 online resource (292 pages) : illustrations, tables |
| Disciplina | 534.0285 |
| Collana |
Wiley Series in Acoustics Noise and Vibration
THEi Wiley ebooks |
| Soggetto topico |
Sound-waves - Measurement
Sound-waves - Mathematical models Sound-waves - Computer simulation |
| ISBN |
1-119-27727-2
1-119-27733-7 1-119-27732-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910270877603321 |
Bergman David R.
|
||
| Hoboken, New Jersey : , : Wiley, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Computational acoustics : theory and implementation / / David R. Bergman
| Computational acoustics : theory and implementation / / David R. Bergman |
| Autore | Bergman David R. |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2018 |
| Descrizione fisica | 1 online resource (292 pages) : illustrations, tables |
| Disciplina | 534.0285 |
| Collana |
Wiley Series in Acoustics Noise and Vibration
THEi Wiley ebooks |
| Soggetto topico |
Sound-waves - Measurement
Sound-waves - Mathematical models Sound-waves - Computer simulation |
| ISBN |
1-119-27727-2
1-119-27733-7 1-119-27732-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910828550503321 |
Bergman David R.
|
||
| Hoboken, New Jersey : , : Wiley, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Computational aeroacoustics : a wave number approach / / Christopher K.W. Tam
| Computational aeroacoustics : a wave number approach / / Christopher K.W. Tam |
| Autore | Tam Christopher K. W |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Cambridge ; ; New York, : Cambridge University Press, 2012 |
| Descrizione fisica | 1 online resource (481 pages) : digital, PDF file(s) |
| Disciplina | 629.132/3 |
| Collana | Cambridge aerospace series |
| Soggetto topico |
Aerodynamic noise - Mathematical models
Sound-waves - Mathematical models |
| ISBN |
1-316-08897-9
1-139-57921-5 1-68015-680-2 1-139-56880-9 1-139-57322-5 1-139-57061-7 0-511-80206-4 1-139-57236-9 1-283-71624-0 1-139-56970-8 |
| Classificazione | TEC009000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Machine generated contents note: 1. Finite difference equations; 2. Spatial discretization in wave number space; 3. Time discretization; 4. Finite difference scheme as dispersive waves; 5. Finite difference solution of the Euler equations; 6. Radiation, outflow, and wall boundary conditions; 7. The short wave component of finite difference schemes; 8. Nonlinear acoustic waves and shocks; 9. Advanced numerical boundary treatments; 10. Time domain impedance boundary condition; 11. Extrapolation and interpolation; 12. Multi-scales problems; 13. Complex geometry; 14. Continuation of a near field acoustic solution to the far field; 15. CAA code design and applications. |
| Record Nr. | UNINA-9911006768503321 |
Tam Christopher K. W
|
||
| Cambridge ; ; New York, : Cambridge University Press, 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Sound visualization and manipulation / / Yang-Hann Kim and Jung-Woo Choi, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea
| Sound visualization and manipulation / / Yang-Hann Kim and Jung-Woo Choi, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea |
| Autore | Kim Yang-Hann |
| Pubbl/distr/stampa | Singapore : , : Wiley, , 2013 |
| Descrizione fisica | 1 online resource (438 p.) |
| Disciplina | 534.01/5153533 |
| Altri autori (Persone) | ChoiJung-Woo |
| Soggetto topico |
Sound-waves - Mathematical models
Helmholtz equation |
| ISBN |
1-118-36850-9
1-118-36848-7 1-118-36849-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
About the Author xi -- Preface xiii -- Acknowledgments xvii -- Part I ESSENCE OF ACOUSTICS -- 1 Acoustic Wave Equation and Its Basic Physical Measures 3 -- 1.1 Introduction 3 -- 1.2 One-Dimensional Acoustic Wave Equation 3 -- 1.2.1 Impedance 9 -- 1.3 Three-Dimensional Wave Equation 10 -- 1.4 Acoustic Intensity and Energy 11 -- 1.4.1 Complex-Valued Pressure and Intensity 16 -- 1.5 The Units of Sound 18 -- 1.6 Analysis Methods of Linear Acoustic Wave Equation 27 -- 1.6.1 Acoustic Wave Equation and Boundary Condition 28 -- 1.6.2 Eigenfunctions and Modal Expansion Theory 31 -- 1.6.3 Integral Approach Using Green's Function 35 -- 1.7 Solutions of the Wave Equation 39 -- 1.7.1 Plane Wave 40 -- 1.7.2 Spherical Wave 41 -- 1.8 Chapter Summary 46 -- References 46 -- 2 Radiation, Scattering, and Diffraction 49 -- 2.1 Introduction/Study Objectives 49 -- 2.2 Radiation of a Breathing Sphere and a Trembling Sphere 50 -- 2.3 Radiation from a Baffled Piston 58 -- 2.4 Radiation from a Finite Vibrating Plate 65 -- 2.5 Diffraction and Scattering 70 -- 2.6 Chapter Summary 79 -- 2.7 Essentials of Radiation, Scattering, and Diffraction 80 -- 2.7.1 Radiated Sound Field from an Infinitely Baffled Circular Piston 80 -- 2.7.2 Sound Field at an Arbitrary Position Radiated by an Infinitely Baffled Circular Piston 81 -- 2.7.3 Understanding Radiation, Scattering, and Diffraction Using the Kirchhoff / Helmholtz Integral Equation 82 -- 2.7.4 Scattered Sound Field Using the Rayleigh Integral Equation 96 -- References 97 -- Part II SOUND VISUALIZATION -- 3 Acoustic Holography 103 -- 3.1 Introduction 103 -- 3.2 The Methodology of Acoustic Source Identification 103 -- 3.3 Acoustic Holography: Measurement, Prediction, and Analysis 106 -- 3.3.1 Introduction and Problem Definitions 106 -- 3.3.2 Prediction Process 107 -- 3.3.3 Mathematical Derivations of Three Acoustic Holography Methods and Their Discrete Forms 113 -- 3.3.4 Measurement 119 -- 3.3.5 Analysis of Acoustic Holography 124 -- 3.4 Summary 129 -- References 130.
4 Beamforming 137 -- 4.1 Introduction 137 -- 4.2 Problem Statement 138 -- 4.3 Model-Based Beamforming 140 -- 4.3.1 Plane and Spherical Wave Beamforming 140 -- 4.3.2 The Array Configuration 142 -- 4.4 Signal-Based Beamforming 145 -- 4.4.1 Construction of Correlation Matrix in Time Domain 146 -- 4.4.2 Construction of Correlation Matrix in Frequency Domain 151 -- 4.4.3 Correlation Matrix of Multiple Sound Sources 152 -- 4.5 Correlation-Based Scan Vector Design 160 -- 4.5.1 Minimum Variance Beamformer 160 -- 4.5.2 Linear Prediction 164 -- 4.6 Subspace-Based Approaches 170 -- 4.6.1 Basic Principles 170 -- 4.6.2 MUSIC Beamformer 173 -- 4.6.3 ESPRIT 180 -- 4.7 Wideband Processing Technique 182 -- 4.7.1 Frequency-Domain Approach: Mapping to the Beam Space 182 -- 4.7.2 Coherent Subspace Method (CSM) 184 -- 4.7.3 Partial Field Decomposition in Beam Space 185 -- 4.7.4 Time-Domain Technique 190 -- 4.7.5 Moving-Source Localization 198 -- 4.8 Post-Processing Techniques 204 -- 4.8.1 Deconvolution and Beamforming 204 -- 4.8.2 Nonnegativity Constraint 207 -- 4.8.3 Nonnegative Least-Squares Algorithm 209 -- 4.8.4 DAMAS 210 -- References 212 -- Part III SOUND MANIPULATION -- 5 Sound Focusing 219 -- 5.1 Introduction 219 -- 5.2 Descriptions of the Problem of Sound Focusing 221 -- 5.2.1 Free-Field Radiation from Loudspeaker Arrays 221 -- 5.2.2 Descriptions of a Sound Field Depending on the Distance from the Array 221 -- 5.2.3 Fresnel Approximation 223 -- 5.2.4 Farfield Description of the Rayleigh Integral (Fraunhofer Approximation) 225 -- 5.2.5 Descriptors of Directivity 227 -- 5.3 Summing Operator (+) 230 -- 5.3.1 Delay-and-Sum Technique 230 -- 5.3.2 Beam Shaping and Steering 231 -- 5.3.3 Wavenumber Cone and Diffraction Limit 233 -- 5.3.4 Frequency Invariant Radiation Pattern 236 -- 5.3.5 Discrete Array and Grating Lobes 237 -- 5.4 Product Theorem (x) 240 -- 5.4.1 Convolution and Multiplication of Sound Beams 240 -- 5.4.2 On-Axis Pressure Response 243 -- 5.5 Differential Operator and Super-Directivity (-) 245. 5.5.1 Endfire Differential Patterns 245 -- 5.5.2 Combination of Delay-and-Sum and Endfire Differential Patterns 252 -- 5.5.3 Broadside Differential Pattern 252 -- 5.5.4 Combination of the Delay-and-Sum and Broadside Differential Patterns 258 -- 5.6 Optimization with Energy Ratios (÷) 259 -- 5.6.1 Problem Statement 259 -- 5.6.2 Capon's Minimum Variance Estimator (Minimum Variance Beamformer) 261 -- 5.6.3 Acoustic Brightness and Contrast Control 262 -- 5.6.4 Further Analysis of Acoustic Brightness and Contrast Control 273 -- 5.6.5 Application Examples 276 -- References 280 -- 6 Sound Field Reproduction 283 -- 6.1 Introduction 283 -- 6.2 Problem Statement 284 -- 6.2.1 Concept of Sound Field Reproduction 284 -- 6.2.2 Objective of Sound Field Reproduction 284 -- 6.3 Reproduction of One-Dimensional Sound Field 286 -- 6.3.1 Field-Matching Approach 286 -- 6.3.2 Mode-Matching Approach 288 -- 6.3.3 Integral Approach 289 -- 6.3.4 Single-Layer Potential 295 -- 6.4 Reproduction of a 3D Sound Field 296 -- 6.4.1 Problem Statement and Associated Variables 296 -- 6.5 Field-Matching Approach 298 -- 6.5.1 Inverse Problem 298 -- 6.5.2 Regularization of an Inverse Problem 305 -- 6.5.3 Selection of the Regularization Parameter 309 -- 6.6 Mode-Matching Approach 311 -- 6.6.1 Encoding and Decoding of Sound Field 311 -- 6.6.2 Mode-Matching with Plane Waves 313 -- 6.6.3 Mode-Matching with Spherical Harmonics 320 -- 6.7 Surface Integral Equations 337 -- 6.7.1 Source Inside, Listener Inside (V0 ⊂ V , r ∈ V ) 337 -- 6.7.2 Source Inside, Listener Outside (V0 ⊂ V , r ∈ ) 340 -- 6.7.3 Source Outside, Listener Outside (V0 ⊂ , r ∈ ) 341 -- 6.7.4 Source Outside, Listener Inside (V0 ⊂ , r ∈ V ) 342 -- 6.7.5 Listener on the Control Surface 342 -- 6.7.6 Summary of Integral Equations 344 -- 6.7.7 Nonradiating Sound Field and Nonuniqueness Problem 344 -- 6.8 Single-layer Formula 346 -- 6.8.1 Single-layer Formula for Exterior Virtual Source 346 -- 6.8.2 Integral Formulas for Interior Virtual Source 355 -- References 369. Appendix A Useful Formulas 371 -- A.1 Fourier Transform 371 -- A.1.1 Fourier Transform Table 371 -- A.2 Dirac Delta Function 374 -- A.3 Derivative of Matrices 374 -- A.3.1 Derivative of Real-Valued Matrix 374 -- A.3.2 Derivative of Complex-Valued Function 375 -- A.3.3 Derivative of Complex Matrix 376 -- A.4 Inverse Problem 376 -- A.4.1 Overdetermined Linear Equations and Least Squares (LS) Solution 377 -- A.4.2 Underdetermined Linear Equations and Minimum-Norm Problem 378 -- A.4.3 Method of Lagrange Multiplier 379 -- A.4.4 Regularized Least Squares 380 -- A.4.5 Singular Value Decomposition 380 -- A.4.6 Total Least Squares (TLS) 382 -- Appendix B Description of Sound Field 385 -- B.1 Three-Dimensional Acoustic Wave Equation 385 -- B.1.1 Conservation of Mass 385 -- B.1.2 Conservation of Momentum 385 -- B.1.3 Equation of State 388 -- B.1.4 Velocity Potential Function 390 -- B.1.5 Complex Intensity 391 -- B.1.6 Singular Sources 392 -- B.2 Wavenumber Domain Representation of the Rayleigh Integral 398 -- B.2.1 Fourier Transform of Free-Field Green's Function (Weyl's Identity) 398 -- B.2.2 High Frequency Approximation (Stationary Phase Approximation) 399 -- B.3 Separation of Variables in Spherical Coordinates 400 -- B.3.1 Angle Functions: Associated Legendre Functions 400 -- B.3.2 Angle Functions: Spherical Harmonics 402 -- B.3.3 Radial Functions 404 -- B.3.4 Radial Functions: Spherical Bessel and Hankel Functions 404 -- B.3.5 Description of Sound Fields by Spherical Basis Function 408 -- B.3.6 Representation of the Green's Function 409 -- References 411 -- Index 413. |
| Record Nr. | UNINA-9910139024003321 |
Kim Yang-Hann
|
||
| Singapore : , : Wiley, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Sound visualization and manipulation / / Yang-Hann Kim and Jung-Woo Choi, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea
| Sound visualization and manipulation / / Yang-Hann Kim and Jung-Woo Choi, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea |
| Autore | Kim Yang-Hann |
| Pubbl/distr/stampa | Singapore : , : Wiley, , 2013 |
| Descrizione fisica | 1 online resource (438 p.) |
| Disciplina | 534.01/5153533 |
| Altri autori (Persone) | ChoiJung-Woo |
| Soggetto topico |
Sound-waves - Mathematical models
Helmholtz equation |
| ISBN |
1-118-36850-9
1-118-36848-7 1-118-36849-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
About the Author xi -- Preface xiii -- Acknowledgments xvii -- Part I ESSENCE OF ACOUSTICS -- 1 Acoustic Wave Equation and Its Basic Physical Measures 3 -- 1.1 Introduction 3 -- 1.2 One-Dimensional Acoustic Wave Equation 3 -- 1.2.1 Impedance 9 -- 1.3 Three-Dimensional Wave Equation 10 -- 1.4 Acoustic Intensity and Energy 11 -- 1.4.1 Complex-Valued Pressure and Intensity 16 -- 1.5 The Units of Sound 18 -- 1.6 Analysis Methods of Linear Acoustic Wave Equation 27 -- 1.6.1 Acoustic Wave Equation and Boundary Condition 28 -- 1.6.2 Eigenfunctions and Modal Expansion Theory 31 -- 1.6.3 Integral Approach Using Green's Function 35 -- 1.7 Solutions of the Wave Equation 39 -- 1.7.1 Plane Wave 40 -- 1.7.2 Spherical Wave 41 -- 1.8 Chapter Summary 46 -- References 46 -- 2 Radiation, Scattering, and Diffraction 49 -- 2.1 Introduction/Study Objectives 49 -- 2.2 Radiation of a Breathing Sphere and a Trembling Sphere 50 -- 2.3 Radiation from a Baffled Piston 58 -- 2.4 Radiation from a Finite Vibrating Plate 65 -- 2.5 Diffraction and Scattering 70 -- 2.6 Chapter Summary 79 -- 2.7 Essentials of Radiation, Scattering, and Diffraction 80 -- 2.7.1 Radiated Sound Field from an Infinitely Baffled Circular Piston 80 -- 2.7.2 Sound Field at an Arbitrary Position Radiated by an Infinitely Baffled Circular Piston 81 -- 2.7.3 Understanding Radiation, Scattering, and Diffraction Using the Kirchhoff / Helmholtz Integral Equation 82 -- 2.7.4 Scattered Sound Field Using the Rayleigh Integral Equation 96 -- References 97 -- Part II SOUND VISUALIZATION -- 3 Acoustic Holography 103 -- 3.1 Introduction 103 -- 3.2 The Methodology of Acoustic Source Identification 103 -- 3.3 Acoustic Holography: Measurement, Prediction, and Analysis 106 -- 3.3.1 Introduction and Problem Definitions 106 -- 3.3.2 Prediction Process 107 -- 3.3.3 Mathematical Derivations of Three Acoustic Holography Methods and Their Discrete Forms 113 -- 3.3.4 Measurement 119 -- 3.3.5 Analysis of Acoustic Holography 124 -- 3.4 Summary 129 -- References 130.
4 Beamforming 137 -- 4.1 Introduction 137 -- 4.2 Problem Statement 138 -- 4.3 Model-Based Beamforming 140 -- 4.3.1 Plane and Spherical Wave Beamforming 140 -- 4.3.2 The Array Configuration 142 -- 4.4 Signal-Based Beamforming 145 -- 4.4.1 Construction of Correlation Matrix in Time Domain 146 -- 4.4.2 Construction of Correlation Matrix in Frequency Domain 151 -- 4.4.3 Correlation Matrix of Multiple Sound Sources 152 -- 4.5 Correlation-Based Scan Vector Design 160 -- 4.5.1 Minimum Variance Beamformer 160 -- 4.5.2 Linear Prediction 164 -- 4.6 Subspace-Based Approaches 170 -- 4.6.1 Basic Principles 170 -- 4.6.2 MUSIC Beamformer 173 -- 4.6.3 ESPRIT 180 -- 4.7 Wideband Processing Technique 182 -- 4.7.1 Frequency-Domain Approach: Mapping to the Beam Space 182 -- 4.7.2 Coherent Subspace Method (CSM) 184 -- 4.7.3 Partial Field Decomposition in Beam Space 185 -- 4.7.4 Time-Domain Technique 190 -- 4.7.5 Moving-Source Localization 198 -- 4.8 Post-Processing Techniques 204 -- 4.8.1 Deconvolution and Beamforming 204 -- 4.8.2 Nonnegativity Constraint 207 -- 4.8.3 Nonnegative Least-Squares Algorithm 209 -- 4.8.4 DAMAS 210 -- References 212 -- Part III SOUND MANIPULATION -- 5 Sound Focusing 219 -- 5.1 Introduction 219 -- 5.2 Descriptions of the Problem of Sound Focusing 221 -- 5.2.1 Free-Field Radiation from Loudspeaker Arrays 221 -- 5.2.2 Descriptions of a Sound Field Depending on the Distance from the Array 221 -- 5.2.3 Fresnel Approximation 223 -- 5.2.4 Farfield Description of the Rayleigh Integral (Fraunhofer Approximation) 225 -- 5.2.5 Descriptors of Directivity 227 -- 5.3 Summing Operator (+) 230 -- 5.3.1 Delay-and-Sum Technique 230 -- 5.3.2 Beam Shaping and Steering 231 -- 5.3.3 Wavenumber Cone and Diffraction Limit 233 -- 5.3.4 Frequency Invariant Radiation Pattern 236 -- 5.3.5 Discrete Array and Grating Lobes 237 -- 5.4 Product Theorem (x) 240 -- 5.4.1 Convolution and Multiplication of Sound Beams 240 -- 5.4.2 On-Axis Pressure Response 243 -- 5.5 Differential Operator and Super-Directivity (-) 245. 5.5.1 Endfire Differential Patterns 245 -- 5.5.2 Combination of Delay-and-Sum and Endfire Differential Patterns 252 -- 5.5.3 Broadside Differential Pattern 252 -- 5.5.4 Combination of the Delay-and-Sum and Broadside Differential Patterns 258 -- 5.6 Optimization with Energy Ratios (÷) 259 -- 5.6.1 Problem Statement 259 -- 5.6.2 Capon's Minimum Variance Estimator (Minimum Variance Beamformer) 261 -- 5.6.3 Acoustic Brightness and Contrast Control 262 -- 5.6.4 Further Analysis of Acoustic Brightness and Contrast Control 273 -- 5.6.5 Application Examples 276 -- References 280 -- 6 Sound Field Reproduction 283 -- 6.1 Introduction 283 -- 6.2 Problem Statement 284 -- 6.2.1 Concept of Sound Field Reproduction 284 -- 6.2.2 Objective of Sound Field Reproduction 284 -- 6.3 Reproduction of One-Dimensional Sound Field 286 -- 6.3.1 Field-Matching Approach 286 -- 6.3.2 Mode-Matching Approach 288 -- 6.3.3 Integral Approach 289 -- 6.3.4 Single-Layer Potential 295 -- 6.4 Reproduction of a 3D Sound Field 296 -- 6.4.1 Problem Statement and Associated Variables 296 -- 6.5 Field-Matching Approach 298 -- 6.5.1 Inverse Problem 298 -- 6.5.2 Regularization of an Inverse Problem 305 -- 6.5.3 Selection of the Regularization Parameter 309 -- 6.6 Mode-Matching Approach 311 -- 6.6.1 Encoding and Decoding of Sound Field 311 -- 6.6.2 Mode-Matching with Plane Waves 313 -- 6.6.3 Mode-Matching with Spherical Harmonics 320 -- 6.7 Surface Integral Equations 337 -- 6.7.1 Source Inside, Listener Inside (V0 ⊂ V , r ∈ V ) 337 -- 6.7.2 Source Inside, Listener Outside (V0 ⊂ V , r ∈ ) 340 -- 6.7.3 Source Outside, Listener Outside (V0 ⊂ , r ∈ ) 341 -- 6.7.4 Source Outside, Listener Inside (V0 ⊂ , r ∈ V ) 342 -- 6.7.5 Listener on the Control Surface 342 -- 6.7.6 Summary of Integral Equations 344 -- 6.7.7 Nonradiating Sound Field and Nonuniqueness Problem 344 -- 6.8 Single-layer Formula 346 -- 6.8.1 Single-layer Formula for Exterior Virtual Source 346 -- 6.8.2 Integral Formulas for Interior Virtual Source 355 -- References 369. Appendix A Useful Formulas 371 -- A.1 Fourier Transform 371 -- A.1.1 Fourier Transform Table 371 -- A.2 Dirac Delta Function 374 -- A.3 Derivative of Matrices 374 -- A.3.1 Derivative of Real-Valued Matrix 374 -- A.3.2 Derivative of Complex-Valued Function 375 -- A.3.3 Derivative of Complex Matrix 376 -- A.4 Inverse Problem 376 -- A.4.1 Overdetermined Linear Equations and Least Squares (LS) Solution 377 -- A.4.2 Underdetermined Linear Equations and Minimum-Norm Problem 378 -- A.4.3 Method of Lagrange Multiplier 379 -- A.4.4 Regularized Least Squares 380 -- A.4.5 Singular Value Decomposition 380 -- A.4.6 Total Least Squares (TLS) 382 -- Appendix B Description of Sound Field 385 -- B.1 Three-Dimensional Acoustic Wave Equation 385 -- B.1.1 Conservation of Mass 385 -- B.1.2 Conservation of Momentum 385 -- B.1.3 Equation of State 388 -- B.1.4 Velocity Potential Function 390 -- B.1.5 Complex Intensity 391 -- B.1.6 Singular Sources 392 -- B.2 Wavenumber Domain Representation of the Rayleigh Integral 398 -- B.2.1 Fourier Transform of Free-Field Green's Function (Weyl's Identity) 398 -- B.2.2 High Frequency Approximation (Stationary Phase Approximation) 399 -- B.3 Separation of Variables in Spherical Coordinates 400 -- B.3.1 Angle Functions: Associated Legendre Functions 400 -- B.3.2 Angle Functions: Spherical Harmonics 402 -- B.3.3 Radial Functions 404 -- B.3.4 Radial Functions: Spherical Bessel and Hankel Functions 404 -- B.3.5 Description of Sound Fields by Spherical Basis Function 408 -- B.3.6 Representation of the Green's Function 409 -- References 411 -- Index 413. |
| Record Nr. | UNINA-9910825494003321 |
Kim Yang-Hann
|
||
| Singapore : , : Wiley, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Theoretical and computational acoustics 2003 [[electronic resource] ] : Honolulu, Hawaii, 11-15 August 2003 / / editors, Alexandra Tolstoy, Yu-Chiung Teng, E.C. Shang
| Theoretical and computational acoustics 2003 [[electronic resource] ] : Honolulu, Hawaii, 11-15 August 2003 / / editors, Alexandra Tolstoy, Yu-Chiung Teng, E.C. Shang |
| Pubbl/distr/stampa | River Edge, N.J., : World Scientific, c2003 |
| Descrizione fisica | 1 online resource (493 p.) |
| Disciplina | 534/.2 |
| Altri autori (Persone) |
TolstoyAlexandra, Dr.
TengYu-Chiung ShangErchang |
| Soggetto topico |
Sound-waves - Measurement
Sound-waves - Mathematical models Underwater acoustics |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-89865-1
9786611898656 981-270-260-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Contents; Cross hole simulations in elastic formations using off axis sources via BEM J Antonio and A Tadeu; BEM-based nearfield holography for scattering sound field XBaoandHGe; Parabolic equation techniques for propagation and scattering D C Calvo et al.; Seafloor properties and segmentation G Canepa et al.; HHsound transmission and spatial conference in selected shallow water areas: measurements and theory WM Carey et al.; Fractional derivative modelling of acoustic dissipations obeying arbitrary frequency power law W Chen and S Holm
Visualization of the energy flow for elastic waves: Comparison and contrast of conventional vector field vs color coded representation of the Poynting vector C E Dean and J P BraseltonThe acoustical Klein-Gordon equation: The direct and inverse problems B J Forbes and ER Pike; Accuracy and efficiency of the multipole Galerkin BEM for acoustics L Gaul, M Fischer and U Ganger; Bottom reflection phase shift parameter inversion from reverberation and propagation data HLGeetal.; Acoustic behavior of elastic screens in open and confined spaces L Godinho and A Tadeu Near-axial interference effects in long-range propagation in a range-independent ocean N S Grigorieva and G M FridmanInvestigation of near-axial interference effects for propagation in a deucted waveguide A'S Grigorieva, G M Fridman and D R Palmer; Dynamics of Immiscible Two-Phase Fluid Reservoir Flow A Hanyga; Bottom reflection properties deduced from ambient noise: Simulation and experiment C H Harrison and A Baldacci; Measurement of the seabed reflection coefficient in shallow water: A comparison of two techniques C W Holland and C H Harrison Azimuthal limitation in the parabolic-equation approximation for three-dimensional underwater acoustic propagation L-WHsieh, Y-TLin and C-F ChenApplication of FEM/BEM method to interior acoustical field shaping by Helmholtz resonators B Irfanoglu and M Caliskan; Blind ocean acoustic tomography with source spectrum estimation S M Jesus and C Soares; Projection operator method for solving coupled-mode equations: An application to separating forward and backward scattered acoustic fields D P Knobles; Molecular dynamics approach to sonoluminescent bubbles W Lauterborn et al. Revolutionary Influence of the Parabolic Equation Approximation D LeeA variational approach for geoacoustic inversion using adjoint modeling of a PE approximation model with non local impedance boundary conditions J-C Le Gac et al.; Visco-acoustic wave equation migration G Li el al.; Time-lapse seismic AVO attributes analysis with variation of oil saturation, pressure and temperature J Li, X Chen and L Jin; Modeling high-frequency seafloor volume backscatter by shell fragment distributions A PLyons; Brain topography of perception of target and non-target acoustic signals S Lytaev Computation of acoustic field on 2D fronts Part 1. Trajectories N Maltsev |
| Record Nr. | UNINA-9910451317903321 |
| River Edge, N.J., : World Scientific, c2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Theoretical and computational acoustics 2003 [[electronic resource] ] : Honolulu, Hawaii, 11-15 August 2003 / / editors, Alexandra Tolstoy, Yu-Chiung Teng, E.C. Shang
| Theoretical and computational acoustics 2003 [[electronic resource] ] : Honolulu, Hawaii, 11-15 August 2003 / / editors, Alexandra Tolstoy, Yu-Chiung Teng, E.C. Shang |
| Pubbl/distr/stampa | River Edge, N.J., : World Scientific, c2003 |
| Descrizione fisica | 1 online resource (493 p.) |
| Disciplina | 534/.2 |
| Altri autori (Persone) |
TolstoyAlexandra, Dr.
TengYu-Chiung ShangErchang |
| Soggetto topico |
Sound-waves - Measurement
Sound-waves - Mathematical models Underwater acoustics |
| ISBN |
1-281-89865-1
9786611898656 981-270-260-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Contents; Cross hole simulations in elastic formations using off axis sources via BEM J Antonio and A Tadeu; BEM-based nearfield holography for scattering sound field XBaoandHGe; Parabolic equation techniques for propagation and scattering D C Calvo et al.; Seafloor properties and segmentation G Canepa et al.; HHsound transmission and spatial conference in selected shallow water areas: measurements and theory WM Carey et al.; Fractional derivative modelling of acoustic dissipations obeying arbitrary frequency power law W Chen and S Holm
Visualization of the energy flow for elastic waves: Comparison and contrast of conventional vector field vs color coded representation of the Poynting vector C E Dean and J P BraseltonThe acoustical Klein-Gordon equation: The direct and inverse problems B J Forbes and ER Pike; Accuracy and efficiency of the multipole Galerkin BEM for acoustics L Gaul, M Fischer and U Ganger; Bottom reflection phase shift parameter inversion from reverberation and propagation data HLGeetal.; Acoustic behavior of elastic screens in open and confined spaces L Godinho and A Tadeu Near-axial interference effects in long-range propagation in a range-independent ocean N S Grigorieva and G M FridmanInvestigation of near-axial interference effects for propagation in a deucted waveguide A'S Grigorieva, G M Fridman and D R Palmer; Dynamics of Immiscible Two-Phase Fluid Reservoir Flow A Hanyga; Bottom reflection properties deduced from ambient noise: Simulation and experiment C H Harrison and A Baldacci; Measurement of the seabed reflection coefficient in shallow water: A comparison of two techniques C W Holland and C H Harrison Azimuthal limitation in the parabolic-equation approximation for three-dimensional underwater acoustic propagation L-WHsieh, Y-TLin and C-F ChenApplication of FEM/BEM method to interior acoustical field shaping by Helmholtz resonators B Irfanoglu and M Caliskan; Blind ocean acoustic tomography with source spectrum estimation S M Jesus and C Soares; Projection operator method for solving coupled-mode equations: An application to separating forward and backward scattered acoustic fields D P Knobles; Molecular dynamics approach to sonoluminescent bubbles W Lauterborn et al. Revolutionary Influence of the Parabolic Equation Approximation D LeeA variational approach for geoacoustic inversion using adjoint modeling of a PE approximation model with non local impedance boundary conditions J-C Le Gac et al.; Visco-acoustic wave equation migration G Li el al.; Time-lapse seismic AVO attributes analysis with variation of oil saturation, pressure and temperature J Li, X Chen and L Jin; Modeling high-frequency seafloor volume backscatter by shell fragment distributions A PLyons; Brain topography of perception of target and non-target acoustic signals S Lytaev Computation of acoustic field on 2D fronts Part 1. Trajectories N Maltsev |
| Record Nr. | UNINA-9910783927903321 |
| River Edge, N.J., : World Scientific, c2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Theoretical and computational acoustics 2005 [[electronic resource] ] : Hangzhou, China, 19-22 September 2005 / / editors, Alexandra Tolstoy, Er-Chang Shang, Yu-Chiung Teng
| Theoretical and computational acoustics 2005 [[electronic resource] ] : Hangzhou, China, 19-22 September 2005 / / editors, Alexandra Tolstoy, Er-Chang Shang, Yu-Chiung Teng |
| Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, c2006 |
| Descrizione fisica | 1 online resource (x, 218 p. ) : ill |
| Disciplina | 534 |
| Altri autori (Persone) |
TolstoyAlexandra, Dr.
ShangErchang TengYu-Chiung |
| Soggetto topico |
Sound-waves - Measurement
Sound-waves - Mathematical models Wave-motion, Theory of Acoustic models |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-92437-7
9786611924379 981-277-260-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Reconstruction of sound pressure field by IFEM / R. Anderssohn ... [et al.] -- Seabed parameter estimation by inversion of long range sound propagation fields / W. Chen, L. Ma and N. R. Chapman -- High resolution radon transform and wavefield separation / J. Chen ... [et al.] -- Three-dimensional acoustic simulation on acoustic scattering by nonlinear internal wave in coastal ocean / L. Y. S. Chiu, C.-F. Chen and J. F. Lynch -- Estimation of shear wave velocity in seafloor sediment by seismo-acoustic interface waves: a case study for geotechnical application / H. Dong, J. M. Hovem and S. A. Frivik. The optimum source depth distribution for reverberation inversion in a shallow-water waveguide / T. F. Gao and E. C. Shang -- Semi-automatic adjoint PE modeling for geoacoustic inversion / J.-P. Hermand ... [et al.] -- Modeling 3D wave propagation in the ocean coupled with elastic bottom and irregular interface / L.-W. Hsieh, D. Lee and C.-F. Chen -- Reflections from steel plates with doubly periodic anechoic coatings / S. Ivansson -- Seismic characterization and monitoring of thin-layer reservoir / L. Jin, X. Chen and J. Li -- The energy-conserving property of the standard PE / D. Lee and E.-C. Shang -- Estimation of anisotropic properties from a surface seismic survey and log data / R. Li and M. Urosevic -- Using Gaussian beam model in oceans with penetrating slope bottoms / Y.-T. Lin ... [et al.] -- Application Niche genetic algorithms to AVOA inversion in orthorhombic media / M.-H. Lu and H.-Z. Yang -- Reconstruction of seismic impedance from marine seismic data / B. R. Mabuza ... [et al.] -- Characterization of an underwater acoustic signal using the statistics of the wavelet subband coefficients / M. I. Taroudakis, G. Tzagkarakis and P. Tsakalides -- Some theoretical aspects for elastic wave modeling in a recently developed spectral element method / X. M. Wang , G. Seriani and W. J. Lin -- Inversion of bottom back-scattering matrix / J. R. Wu, T. F. Gao and E. C. Shang -- New methods of scattering coefficients computation for the prediction of room acoustic parameters / X. Zeng, C. L. Christensen and J. H. Rindel. |
| Record Nr. | UNINA-9910450596803321 |
| Hackensack, NJ, : World Scientific, c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Theoretical and computational acoustics 2005 [[electronic resource] ] : Hangzhou, China, 19-22 September 2005 / / editors, Alexandra Tolstoy, Er-Chang Shang, Yu-Chiung Teng
| Theoretical and computational acoustics 2005 [[electronic resource] ] : Hangzhou, China, 19-22 September 2005 / / editors, Alexandra Tolstoy, Er-Chang Shang, Yu-Chiung Teng |
| Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, c2006 |
| Descrizione fisica | 1 online resource (x, 218 p. ) : ill |
| Disciplina | 534 |
| Altri autori (Persone) |
TolstoyAlexandra, Dr.
ShangErchang TengYu-Chiung |
| Soggetto topico |
Sound-waves - Measurement
Sound-waves - Mathematical models Wave-motion, Theory of Acoustic models |
| ISBN |
1-281-92437-7
9786611924379 981-277-260-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Reconstruction of sound pressure field by IFEM / R. Anderssohn ... [et al.] -- Seabed parameter estimation by inversion of long range sound propagation fields / W. Chen, L. Ma and N. R. Chapman -- High resolution radon transform and wavefield separation / J. Chen ... [et al.] -- Three-dimensional acoustic simulation on acoustic scattering by nonlinear internal wave in coastal ocean / L. Y. S. Chiu, C.-F. Chen and J. F. Lynch -- Estimation of shear wave velocity in seafloor sediment by seismo-acoustic interface waves: a case study for geotechnical application / H. Dong, J. M. Hovem and S. A. Frivik. The optimum source depth distribution for reverberation inversion in a shallow-water waveguide / T. F. Gao and E. C. Shang -- Semi-automatic adjoint PE modeling for geoacoustic inversion / J.-P. Hermand ... [et al.] -- Modeling 3D wave propagation in the ocean coupled with elastic bottom and irregular interface / L.-W. Hsieh, D. Lee and C.-F. Chen -- Reflections from steel plates with doubly periodic anechoic coatings / S. Ivansson -- Seismic characterization and monitoring of thin-layer reservoir / L. Jin, X. Chen and J. Li -- The energy-conserving property of the standard PE / D. Lee and E.-C. Shang -- Estimation of anisotropic properties from a surface seismic survey and log data / R. Li and M. Urosevic -- Using Gaussian beam model in oceans with penetrating slope bottoms / Y.-T. Lin ... [et al.] -- Application Niche genetic algorithms to AVOA inversion in orthorhombic media / M.-H. Lu and H.-Z. Yang -- Reconstruction of seismic impedance from marine seismic data / B. R. Mabuza ... [et al.] -- Characterization of an underwater acoustic signal using the statistics of the wavelet subband coefficients / M. I. Taroudakis, G. Tzagkarakis and P. Tsakalides -- Some theoretical aspects for elastic wave modeling in a recently developed spectral element method / X. M. Wang , G. Seriani and W. J. Lin -- Inversion of bottom back-scattering matrix / J. R. Wu, T. F. Gao and E. C. Shang -- New methods of scattering coefficients computation for the prediction of room acoustic parameters / X. Zeng, C. L. Christensen and J. H. Rindel. |
| Record Nr. | UNINA-9910784745603321 |
| Hackensack, NJ, : World Scientific, c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||