Fractional kinetics in solids : anomalous charge transport in semiconductors, dielectrics, and nanosystems / / Vladimir Uchaikin, Ulyanovsk State University, Russia, Renat Sibatov, Ulyanovsk State University, Russia |
Autore | Uchaikin V. V (Vladimir Vasilevich) |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore, : World Scientific, 2013 |
Descrizione fisica | 1 online resource (274 p.) |
Disciplina |
530.4/16
530.416 531.3 |
Altri autori (Persone) | SibatovRenat |
Soggetto topico |
Solid state physics - Mathematics
Electric discharges - Mathematical models Fractional calculus Semiconductors - Electric properties Electron transport - Mathematical models Chemical kinetics - Mathematics |
ISBN |
1-283-89998-1
981-4355-43-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; 1. Statistical grounds; 1.1 Levy stable statistics; 1.1.1 Generalized limit theorems; 1.1.2 Two subclasses of stable distributions; 1.1.3 Fractional stable distributions; 1.1.4 Self-similar processes: Brownian motion and Levy motion; 1.1.5 Space-fractional equations; 1.2 Random flight models; 1.2.1 Continuous time random flights; 1.2.2 Counting process for number of jumps; 1.2.3 The Poisson process; 1.2.4 The Fractional Poisson process; 1.2.5 Simulation of waiting times; 1.3 Some properties of the fractional Poisson process; 1.3.1 The nth arrival time distribution
1.3.2 The fractional Poisson distribution1.3.3 Limit fractional Poisson distributions; 1.3.4 Fractional Furry process; 1.3.5 Time-fractional equation; 1.4 Random flights on a one-dimensional Levy-Lorentz gas; 1.4.1 One-dimensional Levy-Lorentz gas; 1.4.2 The flight process on the fractal gas; 1.4.3 Propagators; 1.4.4 Fractional equation for flights on fractal; 1.5 Subdiffusion; 1.5.1 Integral equations of diffusion in a medium with traps; Necessary and sufficient condition for subdiffusion; 1.5.2 Differential equations of subdiffusion; 1.5.3 Subdiffusion distribution density 1.5.4 Analysis of subdiffusion distributions1.5.5 Discussion; 2. Fractional kinetics of dispersive transport; 2.1 Macroscopic phenomenology; 2.1.1 A role of phenomenology in studying complex systems; 2.1.2 Universality of transient current curves; 2.1.3 From self-similarity to fractional derivatives; 2.1.4 From transient current to waiting time distribution; 2.2 Microscopic backgrounds of dispersive transport; 2.2.1 From the Scher-Montroll model to fractional derivatives; 2.2.2 Physical basis of the power-law waiting time distribution; 2.2.3 Multiple trapping regime 2.2.4 Hopping conductivity2.2.5 Bassler's model of Gaussian disorder; 2.3 Fractional formalism of multiple trapping; 2.3.1 Prime statements; 2.3.2 Multiple trapping regime and Arkhipov-Rudenko approach; 2.3.3 Fractional equations for delocalized carriers; 2.3.4 Fractional equation for the total concentration; 2.3.5 Two-state dynamics; 2.3.6 Delocalized carrier concentration; 2.3.7 Percolation and fractional kinetics; 2.3.8 The case of Gaussian disorder; 2.4 Some applications; 2.4.1 Dispersive diffusion; 2.4.2 Photoluminescence decay; 2.4.3 Including recombination; 2.4.4 Including generation 2.4.5 Bipolar dispersive transport2.4.6 The family of fractional dispersive transport equations; 3. Transient processes in disordered semiconductor structures; 3.1 Time-of-flight method; 3.1.1 Transient current in disordered semiconductors; 3.1.2 Transient current for truncated waiting time distributions; 3.1.3 Distributed dispersion parameter; 3.1.4 Transient current curves in case of Gaussian disorder; 3.1.5 Percolation in porous semiconductors; 3.1.6 Non-stationary radiation-induced conductivity; 3.2 Non-homogeneous distribution of traps 3.2.1 Non-uniform spatial distribution of localized states |
Record Nr. | UNINA-9910828834503321 |
Uchaikin V. V (Vladimir Vasilevich) | ||
Singapore, : World Scientific, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fractional kinetics in solids [[electronic resource] ] : anomalous charge transport in semiconductors, dielectrics, and nanosystems / / Vladimir Uchaikin, Ulyanovsk State University, Russia, Renat Sibatov, Ulyanovsk State University, Russia |
Autore | Uchaĭkin V. V (Vladimir Vasilʹevich) |
Pubbl/distr/stampa | Singapore, : World Scientific, 2013 |
Descrizione fisica | 1 online resource (274 p.) |
Disciplina |
530.4/16
530.416 531.3 |
Altri autori (Persone) | SibatovRenat |
Soggetto topico |
Solid state physics - Mathematics
Electric discharges - Mathematical models Fractional calculus Semiconductors - Electric properties Electron transport - Mathematical models Chemical kinetics - Mathematics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-283-89998-1
981-4355-43-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; 1. Statistical grounds; 1.1 Levy stable statistics; 1.1.1 Generalized limit theorems; 1.1.2 Two subclasses of stable distributions; 1.1.3 Fractional stable distributions; 1.1.4 Self-similar processes: Brownian motion and Levy motion; 1.1.5 Space-fractional equations; 1.2 Random flight models; 1.2.1 Continuous time random flights; 1.2.2 Counting process for number of jumps; 1.2.3 The Poisson process; 1.2.4 The Fractional Poisson process; 1.2.5 Simulation of waiting times; 1.3 Some properties of the fractional Poisson process; 1.3.1 The nth arrival time distribution
1.3.2 The fractional Poisson distribution1.3.3 Limit fractional Poisson distributions; 1.3.4 Fractional Furry process; 1.3.5 Time-fractional equation; 1.4 Random flights on a one-dimensional Levy-Lorentz gas; 1.4.1 One-dimensional Levy-Lorentz gas; 1.4.2 The flight process on the fractal gas; 1.4.3 Propagators; 1.4.4 Fractional equation for flights on fractal; 1.5 Subdiffusion; 1.5.1 Integral equations of diffusion in a medium with traps; Necessary and sufficient condition for subdiffusion; 1.5.2 Differential equations of subdiffusion; 1.5.3 Subdiffusion distribution density 1.5.4 Analysis of subdiffusion distributions1.5.5 Discussion; 2. Fractional kinetics of dispersive transport; 2.1 Macroscopic phenomenology; 2.1.1 A role of phenomenology in studying complex systems; 2.1.2 Universality of transient current curves; 2.1.3 From self-similarity to fractional derivatives; 2.1.4 From transient current to waiting time distribution; 2.2 Microscopic backgrounds of dispersive transport; 2.2.1 From the Scher-Montroll model to fractional derivatives; 2.2.2 Physical basis of the power-law waiting time distribution; 2.2.3 Multiple trapping regime 2.2.4 Hopping conductivity2.2.5 Bassler's model of Gaussian disorder; 2.3 Fractional formalism of multiple trapping; 2.3.1 Prime statements; 2.3.2 Multiple trapping regime and Arkhipov-Rudenko approach; 2.3.3 Fractional equations for delocalized carriers; 2.3.4 Fractional equation for the total concentration; 2.3.5 Two-state dynamics; 2.3.6 Delocalized carrier concentration; 2.3.7 Percolation and fractional kinetics; 2.3.8 The case of Gaussian disorder; 2.4 Some applications; 2.4.1 Dispersive diffusion; 2.4.2 Photoluminescence decay; 2.4.3 Including recombination; 2.4.4 Including generation 2.4.5 Bipolar dispersive transport2.4.6 The family of fractional dispersive transport equations; 3. Transient processes in disordered semiconductor structures; 3.1 Time-of-flight method; 3.1.1 Transient current in disordered semiconductors; 3.1.2 Transient current for truncated waiting time distributions; 3.1.3 Distributed dispersion parameter; 3.1.4 Transient current curves in case of Gaussian disorder; 3.1.5 Percolation in porous semiconductors; 3.1.6 Non-stationary radiation-induced conductivity; 3.2 Non-homogeneous distribution of traps 3.2.1 Non-uniform spatial distribution of localized states |
Record Nr. | UNINA-9910463661503321 |
Uchaĭkin V. V (Vladimir Vasilʹevich) | ||
Singapore, : World Scientific, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fractional kinetics in solids [[electronic resource] ] : anomalous charge transport in semiconductors, dielectrics, and nanosystems / / Vladimir Uchaikin, Ulyanovsk State University, Russia, Renat Sibatov, Ulyanovsk State University, Russia |
Autore | Uchaĭkin V. V (Vladimir Vasilʹevich) |
Pubbl/distr/stampa | Singapore, : World Scientific, 2013 |
Descrizione fisica | 1 online resource (274 p.) |
Disciplina |
530.4/16
530.416 531.3 |
Altri autori (Persone) | SibatovRenat |
Soggetto topico |
Solid state physics - Mathematics
Electric discharges - Mathematical models Fractional calculus Semiconductors - Electric properties Electron transport - Mathematical models Chemical kinetics - Mathematics |
ISBN |
1-283-89998-1
981-4355-43-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; 1. Statistical grounds; 1.1 Levy stable statistics; 1.1.1 Generalized limit theorems; 1.1.2 Two subclasses of stable distributions; 1.1.3 Fractional stable distributions; 1.1.4 Self-similar processes: Brownian motion and Levy motion; 1.1.5 Space-fractional equations; 1.2 Random flight models; 1.2.1 Continuous time random flights; 1.2.2 Counting process for number of jumps; 1.2.3 The Poisson process; 1.2.4 The Fractional Poisson process; 1.2.5 Simulation of waiting times; 1.3 Some properties of the fractional Poisson process; 1.3.1 The nth arrival time distribution
1.3.2 The fractional Poisson distribution1.3.3 Limit fractional Poisson distributions; 1.3.4 Fractional Furry process; 1.3.5 Time-fractional equation; 1.4 Random flights on a one-dimensional Levy-Lorentz gas; 1.4.1 One-dimensional Levy-Lorentz gas; 1.4.2 The flight process on the fractal gas; 1.4.3 Propagators; 1.4.4 Fractional equation for flights on fractal; 1.5 Subdiffusion; 1.5.1 Integral equations of diffusion in a medium with traps; Necessary and sufficient condition for subdiffusion; 1.5.2 Differential equations of subdiffusion; 1.5.3 Subdiffusion distribution density 1.5.4 Analysis of subdiffusion distributions1.5.5 Discussion; 2. Fractional kinetics of dispersive transport; 2.1 Macroscopic phenomenology; 2.1.1 A role of phenomenology in studying complex systems; 2.1.2 Universality of transient current curves; 2.1.3 From self-similarity to fractional derivatives; 2.1.4 From transient current to waiting time distribution; 2.2 Microscopic backgrounds of dispersive transport; 2.2.1 From the Scher-Montroll model to fractional derivatives; 2.2.2 Physical basis of the power-law waiting time distribution; 2.2.3 Multiple trapping regime 2.2.4 Hopping conductivity2.2.5 Bassler's model of Gaussian disorder; 2.3 Fractional formalism of multiple trapping; 2.3.1 Prime statements; 2.3.2 Multiple trapping regime and Arkhipov-Rudenko approach; 2.3.3 Fractional equations for delocalized carriers; 2.3.4 Fractional equation for the total concentration; 2.3.5 Two-state dynamics; 2.3.6 Delocalized carrier concentration; 2.3.7 Percolation and fractional kinetics; 2.3.8 The case of Gaussian disorder; 2.4 Some applications; 2.4.1 Dispersive diffusion; 2.4.2 Photoluminescence decay; 2.4.3 Including recombination; 2.4.4 Including generation 2.4.5 Bipolar dispersive transport2.4.6 The family of fractional dispersive transport equations; 3. Transient processes in disordered semiconductor structures; 3.1 Time-of-flight method; 3.1.1 Transient current in disordered semiconductors; 3.1.2 Transient current for truncated waiting time distributions; 3.1.3 Distributed dispersion parameter; 3.1.4 Transient current curves in case of Gaussian disorder; 3.1.5 Percolation in porous semiconductors; 3.1.6 Non-stationary radiation-induced conductivity; 3.2 Non-homogeneous distribution of traps 3.2.1 Non-uniform spatial distribution of localized states |
Record Nr. | UNINA-9910788622503321 |
Uchaĭkin V. V (Vladimir Vasilʹevich) | ||
Singapore, : World Scientific, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Topological insulators and topological superconductors / / B. Andrei Bernevig with Taylor L. Hughes |
Autore | Bernevig B. Andrei <1978-> |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Oxford, [England] : , : Princeton University Press, , 2013 |
Descrizione fisica | 1 online resource (260 p.) |
Disciplina | 530.41 |
Soggetto topico |
Energy-band theory of solids
Superconductivity Solid state physics - Mathematics Superconductors - Mathematics |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4008-4673-0 |
Classificazione | UP 2200 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- 1. Introduction -- 2. Berry Phase -- 3. Hall Conductance and Chern Numbers -- 4. Time-Reversal Symmetry -- 5. Magnetic Field on the Square Lattice -- 6. Hall Conductance and Edge Modes: The Bulk-Edge Correspondence -- 7. Graphene -- 8. Simple Models for the Chern Insulator -- 9. Time-Reversal-Invariant Topological Insulators -- 10. Z2 Invariants -- 11. Crossings in Different Dimensions -- 12. Time-Reversal Topological Insulators with Inversion Symmetry -- 13. Quantum Hall Effect and Chern Insulators in Higher Dimensions -- 14. Dimensional Reduction of 4-D Chern Insulators to 3-D Time-Reversal Insulators -- 15. Experimental Consequences of the Z2 Topological Invariant -- 16. Topological Superconductors in One and Two Dimensions / Hughes, Taylor L. -- 17. Time-Reversal-Invariant Topological Superconductors / Hughes, Taylor L. -- 18. Superconductivity and Magnetism in Proximity to Topological Insulator Surfaces / Hughes, Taylor L. -- APPENDIX -- 3-D Topological Insulator in a Magnetic Field -- References -- Index |
Record Nr. | UNINA-9910461024103321 |
Bernevig B. Andrei <1978-> | ||
Princeton, New Jersey ; ; Oxford, [England] : , : Princeton University Press, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Topological insulators and topological superconductors / / B. Andrei Bernevig with Taylor L. Hughes |
Autore | Bernevig B. Andrei <1978-> |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Oxford, [England] : , : Princeton University Press, , 2013 |
Descrizione fisica | 1 online resource (260 p.) |
Disciplina | 530.41 |
Soggetto topico |
Energy-band theory of solids
Superconductivity Solid state physics - Mathematics Superconductors - Mathematics |
ISBN | 1-4008-4673-0 |
Classificazione | UP 2200 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- 1. Introduction -- 2. Berry Phase -- 3. Hall Conductance and Chern Numbers -- 4. Time-Reversal Symmetry -- 5. Magnetic Field on the Square Lattice -- 6. Hall Conductance and Edge Modes: The Bulk-Edge Correspondence -- 7. Graphene -- 8. Simple Models for the Chern Insulator -- 9. Time-Reversal-Invariant Topological Insulators -- 10. Z2 Invariants -- 11. Crossings in Different Dimensions -- 12. Time-Reversal Topological Insulators with Inversion Symmetry -- 13. Quantum Hall Effect and Chern Insulators in Higher Dimensions -- 14. Dimensional Reduction of 4-D Chern Insulators to 3-D Time-Reversal Insulators -- 15. Experimental Consequences of the Z2 Topological Invariant -- 16. Topological Superconductors in One and Two Dimensions / Hughes, Taylor L. -- 17. Time-Reversal-Invariant Topological Superconductors / Hughes, Taylor L. -- 18. Superconductivity and Magnetism in Proximity to Topological Insulator Surfaces / Hughes, Taylor L. -- APPENDIX -- 3-D Topological Insulator in a Magnetic Field -- References -- Index |
Record Nr. | UNINA-9910797964703321 |
Bernevig B. Andrei <1978-> | ||
Princeton, New Jersey ; ; Oxford, [England] : , : Princeton University Press, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Topological insulators and topological superconductors / / B. Andrei Bernevig with Taylor L. Hughes |
Autore | Bernevig B. Andrei <1978-> |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Oxford, [England] : , : Princeton University Press, , 2013 |
Descrizione fisica | 1 online resource (260 p.) |
Disciplina | 530.41 |
Soggetto topico |
Energy-band theory of solids
Superconductivity Solid state physics - Mathematics Superconductors - Mathematics |
ISBN | 1-4008-4673-0 |
Classificazione | UP 2200 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- 1. Introduction -- 2. Berry Phase -- 3. Hall Conductance and Chern Numbers -- 4. Time-Reversal Symmetry -- 5. Magnetic Field on the Square Lattice -- 6. Hall Conductance and Edge Modes: The Bulk-Edge Correspondence -- 7. Graphene -- 8. Simple Models for the Chern Insulator -- 9. Time-Reversal-Invariant Topological Insulators -- 10. Z2 Invariants -- 11. Crossings in Different Dimensions -- 12. Time-Reversal Topological Insulators with Inversion Symmetry -- 13. Quantum Hall Effect and Chern Insulators in Higher Dimensions -- 14. Dimensional Reduction of 4-D Chern Insulators to 3-D Time-Reversal Insulators -- 15. Experimental Consequences of the Z2 Topological Invariant -- 16. Topological Superconductors in One and Two Dimensions / Hughes, Taylor L. -- 17. Time-Reversal-Invariant Topological Superconductors / Hughes, Taylor L. -- 18. Superconductivity and Magnetism in Proximity to Topological Insulator Surfaces / Hughes, Taylor L. -- APPENDIX -- 3-D Topological Insulator in a Magnetic Field -- References -- Index |
Record Nr. | UNINA-9910807742203321 |
Bernevig B. Andrei <1978-> | ||
Princeton, New Jersey ; ; Oxford, [England] : , : Princeton University Press, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The Wigner Monte-Carlo method for nanoelectronic devices : a particle description of quantum transport and decoherence / / Damien Querlioz, Philippe Dollfus |
Autore | Querlioz Damien |
Edizione | [1st ed.] |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (268 p.) |
Disciplina | 530.4/10151 |
Altri autori (Persone) | DollfusPhilippe |
Collana | ISTE |
Soggetto topico |
Solid state physics - Mathematics
Semiconductors Transport theory Coherent states Quantum statistics Particles (Nuclear physics) Nanoelectronics Wigner distribution Monte Carlo method |
ISBN |
1-118-61847-5
1-118-61844-0 1-299-31530-5 1-118-61848-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Theoretical framework of quantum transport in semiconductors and devices -- Particle-based Wigner Monte Carlo approach to device simulation -- Application of the Wigner Monte Carlo technique to RTD, MOSFET, and CNTFET -- Transition from quantum to semi-classical transport through decoherence theory. |
Record Nr. | UNINA-9910139248903321 |
Querlioz Damien | ||
London, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|