IEEE Std 1679.2-2018 : IEEE Guide for the Characterization and Evaluation of Sodium-Beta Batteries in Stationary Applications / / Energy Storage & Stationary Battery Committee of the IEEE Power and Energy Society |
Pubbl/distr/stampa | New York : , : IEEE, , 2018 |
Descrizione fisica | 1 online resource (29 pages) |
Disciplina | 621.312424 |
Collana | IEEE Std |
Soggetto topico |
Storage batteries - Standards
Sodium ion batteries Sodium-sulfur batteries |
ISBN | 1-5044-5353-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | IEEE Std 1679.2-2018 |
Record Nr. | UNINA-9910297057403321 |
New York : , : IEEE, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
IEEE Std 1679.2-2018 : IEEE Guide for the Characterization and Evaluation of Sodium-Beta Batteries in Stationary Applications / / Energy Storage & Stationary Battery Committee of the IEEE Power and Energy Society |
Pubbl/distr/stampa | New York : , : IEEE, , 2018 |
Descrizione fisica | 1 online resource (29 pages) |
Disciplina | 621.312424 |
Collana | IEEE Std |
Soggetto topico |
Storage batteries - Standards
Sodium ion batteries Sodium-sulfur batteries |
ISBN | 1-5044-5353-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | IEEE Std 1679.2-2018 |
Record Nr. | UNISA-996280061603316 |
New York : , : IEEE, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Na-ion batteries / / edited by Laure Monconduit, Laurence Croguennec |
Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : ISTE Ltd. : , : John Wiley & Sons, Incorporated, , [2020] |
Descrizione fisica | 1 online resource (375 pages) : illustrations |
Disciplina | 621.31242 |
Soggetto topico | Sodium ion batteries |
Soggetto genere / forma | Electronic books. |
ISBN |
1-5231-4364-9
1-119-81804-4 1-119-81805-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction -- I.1. Why Na-ion batteries? -- I.2. From the electrodes to the electrolyte for NIBs -- I.2.1. Positive electrodes -- I.2.2. Negative electrodes -- I.2.3. Electrolytes and the solid electrolyte interphase -- I.3. Future commercialization of NIBs -- I.4. References -- 1. Layered NaMO2 for the Positive Electrode -- 1.1. Research history of layered transition metal oxides as electrode materials for Na-ion batteries until 2009 -- 1.2. Crystal structures of layered materials -- 1.2.1. Crystal structures of synthesizable NaxMO2 -- 1.2.2. Structural changes of O3-NaMO2 by Na extraction -- 1.2.3. Structural changes of P2-NaxMO2 by Na extraction -- 1.3. O3-type layered materials -- 1.3.1. NaMO2 (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni) -- 1.3.2. O3-Na[M,M']O2 (M, M' = transition metals) -- 1.3.3. Moist air stability of O3-NaMO2 and surface coating -- 1.4. P2-type layered materials -- 1.4.1. Practical issues of P2-type materials for Na-ion batteries -- 1.4.2. P2-Na2/3[Mn,Co,M]O2 -- 1.4.3. P2-Na2/3[Mn,Fe,M]O2 -- 1.4.4. P2-Na2/3[Ni,Mn,M]O2 -- 1.5. Summary and prospects -- 1.6. Acknowledgments -- 1.7. References -- 2. Polyanionic-Type Compounds as Positive Electrodes for Na-ion batteries -- 2.1. Introduction -- 2.1.1. Oxides and polyanionic frameworks as positive electrodes for sodium ion-batteries -- 2.1.2. NASICONs and Na3V2(PO4)2F3 -- 2.2. NASICON structures as model frameworks in sodium-ion battery applications -- 2.2.1. Compositional diversity from solid electrolytes to electrodes -- 2.2.2. NASICON-typed materials as electrodes for Na batteries -- 2.2.3. Na3V2(PO4)3 (NVP) -- 2.3. Na3V2(PO4)2F3 used as a model framework in sodium-ion battery applications -- 2.3.1. Structural description and compositional diversity.
2.3.2. Na3V2(PO4)2F3: a promising active material for positive electrodes in NIBs -- 2.3.3. Oxygen substitution in Na3V2(PO4)2F3 and its effects on the electrochemical performance of substituted phases -- 2.3.4. Paving the way toward Na3V2(PO4)2F3 with superior performance -- 2.4. Conclusion and perspectives -- 2.5. References -- 3. Hard Carbon for Na-ion Batteries: From Synthesis to Performance and Storage Mechanism -- 3.1. Introduction -- 3.2. What is a hard carbon? -- 3.3. Hard carbon synthesis and microstructure -- 3.3.1. Synthetic precursors-based hard carbon synthesis -- 3.3.2. Bio-polymers derived hard carbon synthesis -- 3.3.3. Biomass-based hard carbon synthesis -- 3.4. Hard carbon characteristics -- 3.4.1. Hard carbon structure -- 3.4.2. Hard carbon porosity -- 3.4.3. Hard carbon surface chemistry -- 3.4.4. Hard carbon structural defects -- 3.5. Electrochemical performance -- 3.5.1. Materials performance -- 3.5.2. Full Na-ion system performance -- 3.5.3. Sodium insertion mechanisms in hard carbon -- 3.6. Conclusion -- 3.7. References -- 4. Non-Carbonaceous Negative Electrodes in Sodium Batteries -- 4.1. Introduction -- 4.2. Insertion materials -- 4.2.1. Insertion anodes based on titanium oxide and titanates -- 4.2.2. Insertion anodes based on transition metal chalcogenides -- 4.2.3. Insertion MXene-based anodes -- 4.2.4. Insertion organic anodes -- 4.3. Negative electrode materials based on electrochemical alloying with sodium -- 4.3.1. Silicon and germanium -- 4.3.2. Tin -- 4.3.3. Phosphorus -- 4.3.4. Antimony -- 4.3.5. Other post-transition metal elements -- 4.4. Negative electrode materials based on conversion reactions -- 4.4.1. Reaction mechanisms of CM -- 4.4.2. Approaches toward efficient anode CM for NIB -- 4.5. Conclusion -- 4.6. References -- 5. Electrolytes for Sodium Batteries -- 5.1. Introduction. 5.2. Liquid and solid electrolytes for sodium batteries -- 5.2.1. Organic liquid electrolytes -- 5.2.2. IL-based electrolytes -- 5.2.3. Hybrid electrolytes -- 5.2.4. Effects of additives and impurities -- 5.2.5. Solid-state electrolytes -- 5.3. Properties of IL-based electrolytes for Na batteries -- 5.3.1. Physical properties -- 5.3.2. Thermal stability -- 5.3.3. Electrochemical stability -- 5.4. Modeling IL-based electrolytes -- 5.5. Conclusion and future perspectives -- 5.6. Abbreviations -- 5.7. References -- 6. Solid Electrolyte Interphase in Na-ion batteries -- 6.1. Introduction -- 6.1.1. The solid electrolyte interphase -- 6.1.2. Characterization of the SEI -- 6.2. Physical properties of the Na-ion SEI -- 6.2.1. Electrochemical stability -- 6.2.2. Mechanical properties -- 6.2.3. Dissolution of SEI components -- 6.3. Comparisons of SEI in sodium- and lithium-based electrolytes -- 6.3.1. Formation and composition -- 6.3.2. Resistance -- 6.4. Conclusion -- 6.5. References -- 7. Batteries Containing Prussian Blue Analogue Electrodes -- 7.1. Introduction -- 7.1.1. Chapter introduction -- 7.1.2. History of Prussian blue -- 7.1.3. Physical characteristics: structure, composition and morphology -- 7.1.4. Synthetic methods -- 7.2. Electrochemistry of PBAs -- 7.2.1. Mechanism and resulting characteristics -- 7.2.2. Reaction potentials -- 7.2.3. PBA cathodes -- 7.2.4. PBA anodes -- 7.3. Prussian blue batteries -- 7.3.1. Cells containing two PBA electrodes -- 7.3.2. Cells containing one PBA electrode -- 7.3.3. Challenges for PBA batteries -- 7.4. Conclusion and future outlook -- 7.5. References -- 8. The Design, Performance and Commercialization of Faradion's Non-aqueous Na-ion Battery Technology -- 8.1. Introduction -- 8.2. Experimental -- 8.2.1. Active materials -- 8.2.2. Electrode fabrication -- 8.2.3. Pouch cell fabrication. 8.2.4. Faradion electrolyte -- 8.3. Cell performance -- 8.3.1. Half-cell cycling -- 8.3.2. Full Na-ion cell cycling: curves and stability -- 8.3.3. Rate capability -- 8.3.4. Temperature studies -- 8.3.5. Three-electrode cell studies -- 8.4. Safety and zero energy storage and transportation -- 8.5. Scale-up and prototyping -- 8.6. Demonstrators: stacks and packs -- 8.7. Business and IP strategy -- 8.8. Cost analysis -- 8.9. Future developments -- 8.10. Conclusion -- 8.11. Acknowledgments -- 8.12. References -- List of Authors -- Index -- EULA. |
Record Nr. | UNINA-9910554883403321 |
London, England ; ; Hoboken, New Jersey : , : ISTE Ltd. : , : John Wiley & Sons, Incorporated, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Na-ion batteries / / edited by Laure Monconduit, Laurence Croguennec |
Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : ISTE Ltd. : , : John Wiley & Sons, Incorporated, , [2020] |
Descrizione fisica | 1 online resource (375 pages) : illustrations |
Disciplina | 621.31242 |
Soggetto topico | Sodium ion batteries |
ISBN |
1-5231-4364-9
1-119-81804-4 1-119-81805-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction -- I.1. Why Na-ion batteries? -- I.2. From the electrodes to the electrolyte for NIBs -- I.2.1. Positive electrodes -- I.2.2. Negative electrodes -- I.2.3. Electrolytes and the solid electrolyte interphase -- I.3. Future commercialization of NIBs -- I.4. References -- 1. Layered NaMO2 for the Positive Electrode -- 1.1. Research history of layered transition metal oxides as electrode materials for Na-ion batteries until 2009 -- 1.2. Crystal structures of layered materials -- 1.2.1. Crystal structures of synthesizable NaxMO2 -- 1.2.2. Structural changes of O3-NaMO2 by Na extraction -- 1.2.3. Structural changes of P2-NaxMO2 by Na extraction -- 1.3. O3-type layered materials -- 1.3.1. NaMO2 (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni) -- 1.3.2. O3-Na[M,M']O2 (M, M' = transition metals) -- 1.3.3. Moist air stability of O3-NaMO2 and surface coating -- 1.4. P2-type layered materials -- 1.4.1. Practical issues of P2-type materials for Na-ion batteries -- 1.4.2. P2-Na2/3[Mn,Co,M]O2 -- 1.4.3. P2-Na2/3[Mn,Fe,M]O2 -- 1.4.4. P2-Na2/3[Ni,Mn,M]O2 -- 1.5. Summary and prospects -- 1.6. Acknowledgments -- 1.7. References -- 2. Polyanionic-Type Compounds as Positive Electrodes for Na-ion batteries -- 2.1. Introduction -- 2.1.1. Oxides and polyanionic frameworks as positive electrodes for sodium ion-batteries -- 2.1.2. NASICONs and Na3V2(PO4)2F3 -- 2.2. NASICON structures as model frameworks in sodium-ion battery applications -- 2.2.1. Compositional diversity from solid electrolytes to electrodes -- 2.2.2. NASICON-typed materials as electrodes for Na batteries -- 2.2.3. Na3V2(PO4)3 (NVP) -- 2.3. Na3V2(PO4)2F3 used as a model framework in sodium-ion battery applications -- 2.3.1. Structural description and compositional diversity.
2.3.2. Na3V2(PO4)2F3: a promising active material for positive electrodes in NIBs -- 2.3.3. Oxygen substitution in Na3V2(PO4)2F3 and its effects on the electrochemical performance of substituted phases -- 2.3.4. Paving the way toward Na3V2(PO4)2F3 with superior performance -- 2.4. Conclusion and perspectives -- 2.5. References -- 3. Hard Carbon for Na-ion Batteries: From Synthesis to Performance and Storage Mechanism -- 3.1. Introduction -- 3.2. What is a hard carbon? -- 3.3. Hard carbon synthesis and microstructure -- 3.3.1. Synthetic precursors-based hard carbon synthesis -- 3.3.2. Bio-polymers derived hard carbon synthesis -- 3.3.3. Biomass-based hard carbon synthesis -- 3.4. Hard carbon characteristics -- 3.4.1. Hard carbon structure -- 3.4.2. Hard carbon porosity -- 3.4.3. Hard carbon surface chemistry -- 3.4.4. Hard carbon structural defects -- 3.5. Electrochemical performance -- 3.5.1. Materials performance -- 3.5.2. Full Na-ion system performance -- 3.5.3. Sodium insertion mechanisms in hard carbon -- 3.6. Conclusion -- 3.7. References -- 4. Non-Carbonaceous Negative Electrodes in Sodium Batteries -- 4.1. Introduction -- 4.2. Insertion materials -- 4.2.1. Insertion anodes based on titanium oxide and titanates -- 4.2.2. Insertion anodes based on transition metal chalcogenides -- 4.2.3. Insertion MXene-based anodes -- 4.2.4. Insertion organic anodes -- 4.3. Negative electrode materials based on electrochemical alloying with sodium -- 4.3.1. Silicon and germanium -- 4.3.2. Tin -- 4.3.3. Phosphorus -- 4.3.4. Antimony -- 4.3.5. Other post-transition metal elements -- 4.4. Negative electrode materials based on conversion reactions -- 4.4.1. Reaction mechanisms of CM -- 4.4.2. Approaches toward efficient anode CM for NIB -- 4.5. Conclusion -- 4.6. References -- 5. Electrolytes for Sodium Batteries -- 5.1. Introduction. 5.2. Liquid and solid electrolytes for sodium batteries -- 5.2.1. Organic liquid electrolytes -- 5.2.2. IL-based electrolytes -- 5.2.3. Hybrid electrolytes -- 5.2.4. Effects of additives and impurities -- 5.2.5. Solid-state electrolytes -- 5.3. Properties of IL-based electrolytes for Na batteries -- 5.3.1. Physical properties -- 5.3.2. Thermal stability -- 5.3.3. Electrochemical stability -- 5.4. Modeling IL-based electrolytes -- 5.5. Conclusion and future perspectives -- 5.6. Abbreviations -- 5.7. References -- 6. Solid Electrolyte Interphase in Na-ion batteries -- 6.1. Introduction -- 6.1.1. The solid electrolyte interphase -- 6.1.2. Characterization of the SEI -- 6.2. Physical properties of the Na-ion SEI -- 6.2.1. Electrochemical stability -- 6.2.2. Mechanical properties -- 6.2.3. Dissolution of SEI components -- 6.3. Comparisons of SEI in sodium- and lithium-based electrolytes -- 6.3.1. Formation and composition -- 6.3.2. Resistance -- 6.4. Conclusion -- 6.5. References -- 7. Batteries Containing Prussian Blue Analogue Electrodes -- 7.1. Introduction -- 7.1.1. Chapter introduction -- 7.1.2. History of Prussian blue -- 7.1.3. Physical characteristics: structure, composition and morphology -- 7.1.4. Synthetic methods -- 7.2. Electrochemistry of PBAs -- 7.2.1. Mechanism and resulting characteristics -- 7.2.2. Reaction potentials -- 7.2.3. PBA cathodes -- 7.2.4. PBA anodes -- 7.3. Prussian blue batteries -- 7.3.1. Cells containing two PBA electrodes -- 7.3.2. Cells containing one PBA electrode -- 7.3.3. Challenges for PBA batteries -- 7.4. Conclusion and future outlook -- 7.5. References -- 8. The Design, Performance and Commercialization of Faradion's Non-aqueous Na-ion Battery Technology -- 8.1. Introduction -- 8.2. Experimental -- 8.2.1. Active materials -- 8.2.2. Electrode fabrication -- 8.2.3. Pouch cell fabrication. 8.2.4. Faradion electrolyte -- 8.3. Cell performance -- 8.3.1. Half-cell cycling -- 8.3.2. Full Na-ion cell cycling: curves and stability -- 8.3.3. Rate capability -- 8.3.4. Temperature studies -- 8.3.5. Three-electrode cell studies -- 8.4. Safety and zero energy storage and transportation -- 8.5. Scale-up and prototyping -- 8.6. Demonstrators: stacks and packs -- 8.7. Business and IP strategy -- 8.8. Cost analysis -- 8.9. Future developments -- 8.10. Conclusion -- 8.11. Acknowledgments -- 8.12. References -- List of Authors -- Index -- EULA. |
Record Nr. | UNINA-9910830484903321 |
London, England ; ; Hoboken, New Jersey : , : ISTE Ltd. : , : John Wiley & Sons, Incorporated, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Sodium-ion batteries : energy storage materials and technologies / / Yang Yu |
Autore | Yu Yang |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH GmbH, , [2022] |
Descrizione fisica | 1 online resource (555 pages) |
Disciplina | 621.31242 |
Soggetto topico | Sodium ion batteries |
Soggetto genere / forma | Electronic books. |
ISBN |
3-527-83162-2
3-527-83161-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910555134203321 |
Yu Yang | ||
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Sodium-ion batteries : energy storage materials and technologies / / Yang Yu |
Autore | Yu Yang |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH GmbH, , [2022] |
Descrizione fisica | 1 online resource (555 pages) |
Disciplina | 621.31242 |
Soggetto topico | Sodium ion batteries |
ISBN |
3-527-83162-2
3-527-83161-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910686760703321 |
Yu Yang | ||
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Sodium-ion batteries : materials, characterization, and technology / / edited by Maria-Magdalena Titirici, Philipp Adelhelm, and Yong-Sheng Hu |
Pubbl/distr/stampa | Wiesbaden, Germany : , : Wiley-VCH, , [2023] |
Descrizione fisica | 1 online resource (745 pages) |
Disciplina | 621.31242 |
Soggetto topico | Sodium ion batteries |
ISBN |
3-527-82576-2
3-527-82575-4 3-527-82577-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Anodes -- Chapter 1 Graphite as an Anode Material in Sodium‐Ion Batteries -- 1.1 Introduction -- 1.2 Graphite and Graphite Intercalation Compounds (GICs) -- 1.3 Graphite as Negative Electrode in LIBs and SIBs -- 1.3.1 Graphite in Lithium‐Ion Batteries, Li‐rich b‐GICs -- 1.3.2 Problems in Using Graphite in Sodium‐Ion Batteries (The Lack of Na‐rich b‐GICs) -- 1.3.3 Solution to Use Graphite in Sodium‐Ion Batteries (Utilizing Na‐rich t‐GICs) -- 1.4 Recent Development in Using Graphite for SIBs -- 1.4.1 Lattice and Electrode Expansion During Cycling -- 1.4.2 Influence of the Electrolyte -- 1.4.3 Influence of Temperature -- 1.4.4 Physicochemical Properties -- 1.4.5 Solid Electrolyte Interphase (SEI) -- 1.4.6 Increasing the Capacity -- 1.5 Outlook -- References -- Chapter 2 Hard Carbon Anodes for Na‐Ion Batteries -- 2.1 Introduction -- 2.2 Structure Characteristics of Hard Carbons -- 2.3 Characterization of Hard Carbon Materials for Na‐Ion Batteries -- 2.3.1 Determining the Carbon Interlayer Spacing and the Degree of Disorder -- 2.3.2 Characterizations of Defects -- 2.3.3 Porosity Characterization -- 2.3.4 Surface Composition and Electrode-Electrolyte Interface Characterization -- 2.3.5 Other In/Ex Situ Characterization Techniques to Elucidate Structure-Performance Correlations -- 2.4 Sodium Storage Mechanisms in Hard Carbons -- 2.5 Types of Hard Carbon Anodes for Na‐Ion Batteries -- 2.5.1 Biomass‐Derived Hard Carbons -- 2.5.2 Heteroatom‐Doped Hard Carbons -- 2.5.2.1 Nitrogen Doping -- 2.5.2.2 Boron, Sulfur, and Phosphorus Doping -- 2.5.2.3 Oxygen Doping -- 2.5.2.4 Multiatom Doping -- 2.5.3 Other Hard Carbons -- 2.5.4 The Combination of Hard and Soft Carbons -- 2.6 Conclusions and Outlook -- References -- Chapter 3 Alloy Anodes for Sodium‐Ion Batteries -- 3.1 Introduction.
3.2 Challenges Faced by Alloy‐Typed Anodes -- 3.2.1 Volume Expansion -- 3.2.2 Unstable Solid Electrolyte Interphase Layer -- 3.2.3 Voltage Hysteresis -- 3.2.4 Elucidation of the Electrochemical Reaction Mechanisms -- 3.3 Strategies Toward High‐Performance Alloy Anodes -- 3.3.1 Nanostructuring -- 3.3.2 Morphological and Electrode Architectural Control -- 3.3.3 Structural Engineering -- 3.3.4 Surface Engineering -- 3.3.5 Hybrid Composite Design -- 3.4 Modification of Alloy Anodes -- 3.4.1 Phosphorus -- 3.4.1.1 Red Phosphorus -- 3.4.1.2 Black Phosphorus -- 3.4.2 Silicon -- 3.4.3 Tin -- 3.4.4 Germanium -- 3.4.5 Antimony -- 3.4.6 Bismuth -- 3.4.7 Intermetallic Compounds -- 3.5 Summary and Outlook -- References -- Part II Cathodes -- Chapter 4 Sodium Layered Oxide Cathode Materials -- 4.1 Introduction -- 4.1.1 Structure Types -- 4.1.2 High‐Voltage Nickel‐Based Sodium Layered Oxides -- 4.1.2.1 Introduction -- 4.1.2.2 Unary Ni Layered Oxides -- 4.1.2.3 Binary Ni/Fe‐Based Layered Oxides -- 4.1.2.4 Binary Ni/Mn‐Based Layered Oxides -- 4.1.2.5 Conclusions and Outlook -- 4.1.3 Low‐Cost Mn and Fe‐Based Sodium Layered Oxides -- 4.1.3.1 Introduction -- 4.1.3.2 Unary Mn and Fe Layered Oxides -- 4.1.3.3 Binary Mn/Fe‐Based Layered Oxides -- 4.1.3.4 Doped Binary Mn/Fe Layered Oxides -- 4.1.3.5 Conclusions and Outlook -- 4.1.4 Layered Oxides with Anionic Redox Reactions -- 4.1.4.1 Introduction -- 4.1.4.2 Structural Approaches to Enhance Oxygen Redox and Its Reversibility -- 4.1.4.3 Conclusions -- 4.1.5 Conclusions and Future Outlook -- References -- Chapter 5 Phosphate‐Based Polyanionic Sodium‐Ion Electrode Materials -- 5.1 Introduction -- 5.2 Phosphate‐Based Electrode Materials -- 5.2.1 Sodium Transition Metal Phosphates (PO43−) -- 5.2.2 Sodium Transition Metal Metaphosphates (PO43−)3 -- 5.2.3 Sodium Transition Metal Pyrophosphate (P2O74−). 5.2.4 Sodium Transition Metal Oxyphosphate (OPO4) -- 5.2.5 Sodium Transition Metal Fluorophosphates -- 5.2.5.1 NaMPO4F (M & -- equals -- V) -- 5.2.5.2 Na2MPO4F (M & -- equals -- Fe, Mn, Co, Ni,) -- 5.2.6 Sodium‐Fluorinated Vanadium Oxyphosphates Na3V2(PO4)2F3−xOx (0 ≤ x2) -- 5.2.7 Sodium Transition Metal Nitridophosphates Na2MII2(PO3)3N and Na3MIII(PO3)3N -- 5.3 Mixed Polyanion‐Based Electrode Materials -- 5.3.1 Mixed Transition Metal Phosphates-Pyrophosphates [(PO4)(P2O7)] -- 5.3.1.1 Na4M3(PO4)2P2O7 -- 5.3.1.2 Na7M4(P2O7)4PO4 -- 5.3.2 Mixed Transition Metal Carbonates-Phosphates [(CO3)(PO4)] -- 5.4 Summary and Perspectives -- Acknowledgments -- References -- Chapter 6 Prussian Blue Electrodes for Sodium‐Ion Batteries -- 6.1 Introduction -- 6.2 Structural and Bonding -- 6.3 Factors Affecting Electrochemical Behavior -- 6.3.1 Structural Transitions -- 6.3.2 Vacancies and Water -- 6.4 Synthetic Strategies -- 6.4.1 Solution Precipitation Method -- 6.4.2 Hydrothermal Method/Solvothermal -- 6.4.3 Electrodeposition -- 6.5 Aqueous SIBs -- 6.5.1 Single Redox PBAs -- 6.5.2 Multielectron Redox PBAs -- 6.5.3 All PBA Full Aqueous SIBs (ASIBs) -- 6.6 Non‐aqueous SIBs -- 6.6.1 NaxM[Fe(CN)6] - Single Redox Site -- 6.6.2 NaxM[Fe(CN)6] - Multiredox Sites -- 6.6.3 NaxM[A(CN)6] - Changing C‐Coordinated Metal -- 6.7 Commercial Feasibility -- 6.8 Challenges and Future Directions -- References -- Part III Advanced Characterization of Na‐Ion Battery Electrodes -- Chapter 7 Understanding Na‐Ion Batteries on the Atomic Scale Through Operando X‐ray and Neutron Scattering -- 7.1 The Importance and Advantages of Operando Studies -- 7.2 Operando Powder X‐ray Diffraction -- 7.2.1 Choice of X‐ray Source and Detector -- 7.2.2 Design of Operando PXRD Cells -- 7.2.3 Constructing the Na‐Ion Battery Stack for Operando PXRD Studies -- 7.2.3.1 Electrode of Interest. 7.2.3.2 Counter Electrode -- 7.2.3.3 Separator -- 7.2.3.4 Electrolyte -- 7.2.4 PXRD Data Analysis -- 7.3 Examples of Operando PXRD Studies of Na‐Ion Batteries -- 7.4 Other Operando Techniques Providing Structural Information -- 7.4.1 Powder Neutron Diffraction -- 7.4.2 Total Scattering and Pair Distribution Function Analysis of Local Atomic Structures -- References -- Chapter 8 NMR Investigations of Sodium‐Ion Batteries -- 8.1 Introduction -- 8.2 NMR Interactions for Battery Materials -- 8.2.1 The Quadrupolar Interaction -- 8.2.2 The Paramagnetic Interaction -- 8.2.3 The Knight Shift -- 8.3 Acquisition of NMR Spectra of Battery Materials -- 8.3.1 Magic Angle Spinning -- 8.3.2 Ex situ NMR of Battery materials -- 8.3.3 In situ/Operando NMR Measurement of Electrochemical cells -- 8.4 Examples -- 8.4.1 Na Insertion into Carbon‐based Anodes -- 8.4.1.1 Formation and Dynamics of Ternary Na-Diglyme Graphite Intercalation Compounds -- 8.4.1.2 Determining the Sodiation Mechanism of Hard Carbons -- 8.4.2 Solid‐State NMR Investigations of Cathode Materials -- 8.4.2.1 Intergrowth Structure and Evolution in β‐NaMnO2 -- 8.4.2.2 Na (de)insertion in Na3V2(PO4)2F3 -- 8.4.3 Degradation of NaPF6‐based Electrolytes -- 8.5 Conclusions and Future Outlook -- References -- Chapter 9 Computational Studies on Na‐Ion Electrode Materials -- 9.1 Introduction -- 9.2 Density Functional Theory and Molecular Dynamics Simulations -- 9.2.1 Approximations in DFT Simulations -- 9.2.2 Adsorption and Intercalation Energy -- 9.2.3 Phase Stability -- 9.2.4 Voltage Profile -- 9.2.5 Sodium Migration and Diffusion -- 9.3 Cathode Materials -- 9.3.1 Layered Cathode Materials -- 9.3.2 Sodium‐Polyanionic Cathode Materials -- 9.3.3 Prussian Blue Analogues -- 9.4 Anode Materials -- 9.4.1 Carbon‐based Anode Materials -- 9.4.2 2D Anode Materials -- 9.4.3 Layered Anode Materials. 9.4.4 Alloying NIB Anodes -- 9.5 Summary -- Acknowledgements -- References -- Chapter 10 Pair Distribution Function Analysis of Sodium‐Ion Batteries -- 10.1 Introduction to Total‐Scattering and the Pair Distribution Function -- 10.1.1 Conventional Crystallographic Analysis and Total‐Scattering -- 10.1.2 The Pair Distribution Function -- 10.1.3 Experimental Methods to Obtain the Pair Distribution Function -- 10.1.4 Data Collection Methods for Battery Materials -- 10.1.4.1 Sample Containers for X‐ray PDF Analysis -- 10.1.4.2 Experimental Strategies -- 10.2 Analyzing the Pair Distribution Function -- 10.2.1 Model‐Independent Analyses -- 10.2.1.1 Parametric Studies and Differential PDFs (dPDFs) -- 10.2.2 Modeling the PDF -- 10.2.2.1 Small‐Box Modeling -- 10.2.2.2 Big‐Box Modeling -- 10.3 Pair Distribution Function Analysis of Sodium‐Ion Battery Materials -- 10.3.1 Hard Carbon Anodes -- 10.3.2 Tin Anodes -- 10.3.3 Antimony Anodes -- 10.3.4 Local Cation Order in Na(Ni2/3Sb1/3)O2 -- 10.3.5 Birnessite Materials -- 10.3.6 Electrolytes -- 10.4 Future Horizons for Pair Distribution Function Analysis of Sodium‐Ion Batteries -- References -- Part IV Electrolytes -- Chapter 11 Ester‐ and Ether‐Based Electrolytes for Na‐Ion Batteries -- 11.1 Introduction -- 11.2 Ester‐Based Electrolytes for NIBs -- 11.3 Ether‐Based Electrolytes for NIBs -- 11.4 Summary and Perspectives -- References -- Chapter 12 Ionic Liquid and Polymer‐Based Electrolytes for Sodium Battery Applications -- 12.1 Introduction -- 12.2 Na‐Ion‐Based Ionic Liquid Electrolytes -- 12.2.1 The Chemistry and Physicochemical Properties of IL Electrolytes -- 12.2.2 IL Electrolytes Application in Na Secondary Batteries -- 12.2.3 Interfacial Studies of Sodium‐Ion Secondary Batteries Using IL Electrolytes -- 12.3 Solid Gel Polymer Electrolytes -- 12.4 Molecular Simulation of Na Battery Electrolytes. 12.4.1 Physicochemical Properties of the Sodium Ion. |
Record Nr. | UNINA-9910686485103321 |
Wiesbaden, Germany : , : Wiley-VCH, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|