top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
75 Years of the Indian National Sample Survey : Evolution of Sample Design, Key Challenges and Way Forward / / by G C Manna
75 Years of the Indian National Sample Survey : Evolution of Sample Design, Key Challenges and Way Forward / / by G C Manna
Autore Manna G. C
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (313 pages)
Disciplina 331
Collana India Studies in Business and Economics
Soggetto topico Labor economics
Population - Economic aspects
Economics - Computer programs
Development economics
Sampling (Statistics)
Experimental design
Social sciences - Statistical methods
Labor and Population Economics
Computational Economics
Development Economics
Survey Methodology
Design of Experiments
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
ISBN 981-9673-20-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction and history of formation of the NSS -- Chapter 2. Salient features of the NSS -- Chapter 3. Sample designs adopted in the NSS over its 75 years of operation -- Chapter 4. Major changes in sample design over the 75 years of functioning of the NSS -- Chapter 5. Three pilot surveys conducted by NSS -- Chapter 6. Discussion on global survey practices. Chapter 7. Derivation of NSS design-based estimates of aggregates and ratios -- Chapter 8. Level of precision of key estimates as per the NSS -- Chapter 9. Strengthening the NSS database.
Record Nr. UNINA-9911010527803321
Manna G. C  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced quantitative data analysis / / Duncan Cramer
Advanced quantitative data analysis / / Duncan Cramer
Autore Cramer Duncan <1948-, >
Pubbl/distr/stampa Maidenhead, Berkshire, England ; ; Philadelphia, PA : , : Open University Press, McGraw-Hill Education, $c 2003
Descrizione fisica 1 online resource (254 pages) : illustrations
Disciplina 001.422
300.15195
Collana Understanding social research
Soggetto topico Social sciences
Social sciences - Statistical methods
Soggetto genere / forma Electronic books.
ISBN 1-280-95113-3
0-335-22466-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword; Preface; Chapter 01; Part 01; Chapter 02; Chapter 03; Chapter 04; Part 02; Chapter 05; Chapter 06; Part 03; Chapter 07; Chapter 08; Part 04; Chapter 09; Part 05; Chapter 10; Chapter 11; Chapter 12; Part 06; Chapter 13; Part 07; Chapter 14; Glossary; References; Index
Record Nr. UNINA-9910457596003321
Cramer Duncan <1948-, >  
Maidenhead, Berkshire, England ; ; Philadelphia, PA : , : Open University Press, McGraw-Hill Education, $c 2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Statistics for the Behavioral Sciences : A Computational Approach with R / / by Jonathon D. Brown
Advanced Statistics for the Behavioral Sciences : A Computational Approach with R / / by Jonathon D. Brown
Autore Brown Jonathon D
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XXI, 526 p. 244 illus., 207 illus. in color.)
Disciplina 519.5
Soggetto topico Social sciences - Statistical methods
Statistics
Psychometrics
Psychology
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Statistical Theory and Methods
Behavioral Sciences and Psychology
ISBN 3-319-93549-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Linear Equations -- Least Squares Estimation -- Linear Regression -- Eigen Decomposition -- Singular Value Decomposition -- Generalized Least Squares Estimation -- Robust Regression -- Model Selection and Biased Estimation -- Cubic Splines and Additive Models -- Nonlinear Regression and Optimization -- Generalized Linear Models -- Survival Analysis -- Time Series Analysis -- Mixed Effects Models. .
Record Nr. UNINA-9910320753403321
Brown Jonathon D  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced statistics in criminology and criminal justice / / David Weisburd, David B. Wilson, Alese Wooditch, and Chester Britt
Advanced statistics in criminology and criminal justice / / David Weisburd, David B. Wilson, Alese Wooditch, and Chester Britt
Autore Weisburd David
Edizione [Fifth edition.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (552 pages)
Disciplina 364.021
Soggetto topico Criminology
Social sciences - Statistical methods
ISBN 3-030-67738-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Chapter 1: Introduction -- Proportionality Review and the Supreme Court of New Jersey: A Cautionary Tale -- Generalized Linear Models -- Special Topics -- References -- Chapter 2: Multiple Regression -- Overview of Simple Regression -- Extending Simple Regression to Multiple Regression -- Assumptions of Multiple Regression -- Independence -- Normally Distributed Errors -- Homoscedasticity of Errors -- Linearity -- Measurement Error in the Independent Variables -- Regression Diagnostics -- Dealing with Outliers and Influential Cases -- Testing the Significance of Individual Regression Coefficients -- Assessing Overall Model Fit and Comparing Nested Models -- R2 and Adjusted R2 -- Comparing Regression Coefficients Within a Single Model: The Standardized Regression Coefficient -- Correctly Specifying the Regression Model -- Model Specification and Building -- An Example of a Multiple Regression Model -- Chapter Summary -- Key Terms -- Symbols and Formulas -- Exercises -- Computer Exercises -- SPSS -- Standardized Regression Coefficients (Betas) -- F-Test for a Subset of Variables -- Residual Plot -- Stata -- Standardized Regression Coefficients (Betas) -- F-Test for a Subset of Variables -- Residual Plot -- R -- Standardized Regression Coefficients (Betas) -- F-Test for a Subset of Variables -- Residual Plot -- Problems -- References -- Chapter 3: Multiple Regression: Additional Topics -- Nominal Variables with Three or More Categories in Multiple Regression -- Nonlinear Relationships -- Finding a Nonlinear Relationship: Graphical Assessment -- Incorporating Nonlinear Relationships into an OLS Model Using a Quadratic Term of an Independent Variable -- Interpreting Nonlinear Coefficients -- Note on Statistical Significance -- Transforming the Dependent Variable -- Review of Nonlinear Relationships -- Interaction Effects.
Interaction of a Dummy Variable and a Scaled Variable -- An Example: Race and Punishment Severity -- Interaction Effects Between Two Scaled Variables -- An Example: Punishment Severity -- The Problem of Multicollinearity -- Chapter Summary -- Key Terms -- Symbols and Formulas -- Exercises -- Computer Exercises -- SPSS -- Dummy Coding Nominal Variables -- Computing Nonlinear and Interaction Terms -- Nonlinear Terms -- Interaction Terms -- Estimating the Regression Model -- Collinearity Diagnostics -- Stata -- Dummy Coding Nominal Variables -- Computing Nonlinear and Interaction Terms -- Nonlinear Terms -- Interaction Terms -- Estimating the Regression Model -- Collinearity Diagnostics -- R -- Dummy Coding Nominal Variables -- Computing Nonlinear and Interaction Terms -- Nonlinear Terms -- Interaction Terms -- Estimating the Regression Model -- Collinearity Diagnostics -- Problems -- References -- Chapter 4: Logistic Regression -- Why Is It Inappropriate to Use OLS Regression for a Dichotomous Dependent Variable? -- Logistic Regression -- A Substantive Example: Adoption of Compstat in U.S. Police Agencies -- Interpreting Logistic Regression Coefficients -- The Odds Ratio -- The Derivative at Mean -- Comparing Logistic Regression Coefficients -- Using Probability Estimates to Compare Coefficients -- Standardized Logistic Regression Coefficients -- Evaluating the Logistic Regression Model -- Percent of Correct Predictions -- Pseudo-R2 -- Statistical Significance in Logistic Regression -- Chapter Summary -- Key Terms -- Symbols and Formulas -- Exercises -- Computer Exercises -- SPSS -- Stata -- R -- Problems -- References -- Chapter 5: Multiple Regression with Multiple Category Nominal or Ordinal Measures -- Multinomial Logistic Regression -- A Substantive Example: Case Dispositions in California -- The Missing Set of Coefficients -- Statistical Inference.
Single Coefficients -- Multiple Coefficients -- Overall Model -- A Concluding Observation About Multinomial Logistic Regression Models -- Ordinal Logistic Regression -- Interpretation of Ordinal Logistic Regression Coefficients -- Substantive Example: Severity of Punishment Decisions -- Interpreting the Coefficients -- Statistical Significance -- Parallel Slopes Tests -- Score Test -- Brant Test -- Partial Proportional Odds -- Severity of Punishment Example -- Chapter Summary -- Key Terms -- Formulas -- Exercises -- Computer Exercises -- SPSS -- Multinomial Logistic Regression -- Ordinal Logistic Regression -- Stata -- Multinomial Logistic Regression -- Ordinal Logistic Regression -- Partial Proportional Odds -- R -- Multinomial Logistic Regression -- Ordinal Logistic Regression -- Partial Proportional Odds -- Problems -- References -- Chapter 6: Count-Based Regression Models -- The Poisson Distribution -- Poisson Regression -- Incident Rate Ratios (IRRs) -- Significance Testing -- Exposure and Offsets -- An Example: California 1999 Uniform Crime Report Data -- Over-Dispersion in Count Data -- Quasi-Poisson and Negative Binomial Regression -- An Example: Reanalysis of the California 1999 Uniform Crime Report Data -- Zero-Inflated Poisson and Negative Binomial Regression -- Chapter Summary -- Key Terms -- Symbols and Formulas -- Exercises -- Computer Exercises -- SPSS -- Poisson Regression -- Quasi-Poisson Regression -- Negative Binomial Regression -- Zero-Inflated Poisson/Negative Binomial Regression -- Stata -- Poisson Regression -- Quasi-Poisson Regression -- Negative Binomial Regression -- Zero-Inflated Poisson/Negative Binomial Regression -- R -- Poisson Regression -- Quasi-Poisson Regression -- Negative Binomial Regression -- Zero-Inflated Poisson/Negative Binomial Regression -- Problems -- References -- Chapter 7: Multilevel Regression Models.
A Simple Multilevel Model -- Fixed-Effects and Random-Effects -- A Substantive Example: Bail Decision-Making Study -- Intraclass Correlation and Explained Variance -- Deciding Between and Fixed- and Random-Effects Model -- Statistical Significance -- Bail Decision-Making Study -- Random Intercept Model with Fixed Slopes -- Statistical Significance -- Centering Independent Variables -- Bail Decision-Making Study -- Between and Within Effects -- Testing for Between and Within Effects -- Bail Decision-Making Study -- Random Coefficient Model -- Variance Estimates -- Bail Decision-Making Study -- Adding Cluster (Level 2) Characteristics -- A Substantive Example: Race and Sentencing Across Pennsylvania Counties -- Multilevel Negative Binomial Regression -- Chapter Summary -- Key Terms -- Symbols and Formulas -- Exercises -- Computer Exercises -- SPSS -- Stata -- Random Intercept Models -- Random Coefficient Models -- R -- Random Intercept Models -- Random Coefficient Models -- Problems -- References -- Chapter 8: Statistical Power -- Statistical Power -- Setting the Level of Statistical Power -- Components of Statistical Power -- Statistical Significance and Statistical Power -- Directional Hypotheses -- Sample Size and Statistical Power -- Effect Size and Statistical Power -- Estimating Statistical Power and Sample Size for a Statistically Powerful Study -- Difference of Means Test -- ANOVA -- Correlation -- Least Squares Regression -- Summing Up: Avoiding Studies Designed for Failure -- Chapter Summary -- Key Terms -- Symbols and Formulas -- Computer Exercises -- Stata -- Two-Sample Difference of Means Test -- ANOVA -- Correlation -- OLS Regression -- R -- Two-Sample Difference of Means Test -- ANOVA -- Correlation -- OLS Regression -- Problems -- References -- Chapter 9: Randomized Experiments -- The Structure of a Randomized Experiment.
The Main Advantage of Experiments: Isolating Causal Effects -- Internal Validity -- Selected Design Types and Associated Statistical Methods -- The Two-Group Randomized Design -- Three or More Group Randomized Design -- Factorial Design -- Two-Way ANOVA for Between-Subjects Designs -- An Example: Perceptions of Children During a Police Interrogation -- Mixed Within- and Between-Subjects Factorial Designs -- Block Randomized Designs -- Block Randomization and Statistical Power -- Examining Interaction in a Block Randomized Experiment -- Using Covariates to Increase Statistical Power in Experimental Studies -- Chapter Summary -- Key Terms -- Symbols and Formulas -- Exercises -- Computer Exercises -- SPSS -- Independent Sample t-Test -- One-Way ANOVA -- Two-Way Factorial (Type I SS) -- Two-Way Factorial (Type II SS) -- Two-Way Factorial (Type III SS) -- Stata -- Independent Sample t-Test -- One-Way ANOVA -- Two-Way Factorial (Type I SS) -- Two-Way Factorial (Type II SS) -- Two-Way Factorial (Type III SS) -- R -- Independent Sample t-Test -- One-Way ANOVA -- Two-Way Factorial (Type I SS) -- Two-Way Factorial (Type II SS) -- Two-Way Factorial (Type III SS) -- Problems -- References -- Chapter 10: Propensity Score Matching -- The Underlying Logic Behind Propensity Score Matching -- Selection of Model for Predicting Propensity for Treatment -- Matching Methods -- The Case of Work Release in Prison: A Substantive Example -- Assessing the Quality of the Matches -- Sensitivity Analysis for Average Treatment Effects -- Limitations of Propensity Score Matching -- Chapter Summary -- Key Terms -- Symbols and Formulas -- Exercises -- Computer Exercises -- Stata -- Estimating Propensity Score -- Matching Cases -- Assessing Matches -- Estimating Treatment Effect -- R -- Estimating Propensity Score -- Matching Cases -- Assessing Matches -- Estimating Treatment Effect -- Problems.
Record Nr. UNINA-9910523896203321
Weisburd David  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Studies in Behaviormetrics and Data Science : Essays in Honor of Akinori Okada / / edited by Tadashi Imaizumi, Atsuho Nakayama, Satoru Yokoyama
Advanced Studies in Behaviormetrics and Data Science : Essays in Honor of Akinori Okada / / edited by Tadashi Imaizumi, Atsuho Nakayama, Satoru Yokoyama
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XV, 472 p. 136 illus., 69 illus. in color.)
Disciplina 658.8342
Collana Behaviormetrics: Quantitative Approaches to Human Behavior
Soggetto topico Social sciences - Statistical methods
Statistics
Consumer behavior
Information visualization
Sociology - Methodology
Psychometrics
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Statistical Theory and Methods
Consumer Behavior
Data and Information Visualization
Sociological Methods
ISBN 981-15-2700-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Co-clustering for object by variable data matrices -- How to use the Hermitian Form Model for asymmetric MDS -- Asymmetric scaling models for square contingency tables: points, circles, arrows, and odds ratios -- Comparing partitions of the Petersen graph -- Minkowski distances and standardisation for clustering and classification on high dimensional data. .
Record Nr. UNINA-9910484981703321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Contemporary Statistics and Econometrics : Festschrift in Honor of Christine Thomas-Agnan / / edited by Abdelaati Daouia, Anne Ruiz-Gazen
Advances in Contemporary Statistics and Econometrics : Festschrift in Honor of Christine Thomas-Agnan / / edited by Abdelaati Daouia, Anne Ruiz-Gazen
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (713 pages)
Disciplina 330.015195
Soggetto topico Statistics
Econometrics
Social sciences - Statistical methods
Statistical Theory and Methods
Statistics in Business, Management, Economics, Finance, Insurance
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
ISBN 3-030-73249-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Acknowledgements -- Contents -- Contributors -- Nonparametric Statistics and Econometrics -- Profile Least Squares Estimators in the Monotone Single Index Model -- 1 Introduction -- 2 General Conditions and the Functions n, and ψ -- 3 The Limit Theory for the SSE -- 4 The Limit Theory for ESE and Cubic Spline Estimator -- 5 Simulation and Comparisons with Other Estimators -- 6 Concluding Remarks -- References -- Optimization by Gradient Boosting -- 1 Introduction -- 2 Gradient Boosting -- 2.1 Mathematical Context -- 2.2 Some Examples -- 2.3 Two Algorithms -- 3 Convergence of the Algorithms -- 3.1 Algorithm 1 -- 3.2 Algorithm 2 -- 4 Large Sample Properties -- References -- Nonparametric Model-Based Estimators for the Cumulative Distribution Function of a Right Censored Variable in a Small Area -- 1 Introduction -- 2 Estimation of the Cdf of a Censored Variable in a Small Area -- 2.1 Framework -- 2.2 Direct Estimators -- 2.3 The New Small Area Estimator -- 3 Model-Based Simulations -- 3.1 Description -- 3.2 Results -- 4 Example -- 5 Concluding Remarks -- References -- Relaxing Monotonicity in Endogenous Selection Models and Application to Surveys -- 1 Introduction -- 2 Preliminaries -- 2.1 Notations -- 2.2 Baseline Setup -- 2.3 NMAR Missing Data -- 3 Models with One Unobservable in the Endogenous Selection -- 4 Monotonicity -- 5 A Random Coefficients Model for the Selection Equation -- 5.1 Scaling to Handle Genuine Non Instrument Monotonicity -- 5.2 Alternative Scaling Under a Weak Version of Monotonicity -- 6 Application to Missing Data in Surveys -- References -- B-Spline Estimation in a Survey Sampling Framework -- 1 Introduction -- 2 B-Spline Model-Assisted Estimator for Finite Population Totals -- 2.1 B-Spline Model-Assisted Estimation -- 2.2 B-Spline Calibration Estimator.
3 B-Spline Model-Assisted Estimator for Complex Parameters -- 4 B-Spline Imputation for Handling Item Nonresponse -- References -- Computational Outlier Detection Methods in Sliced Inverse Regression -- 1 Introduction -- 2 A Brief Review on Usual SIR -- 3 Outlier Detection Methods in SIR -- 3.1 A Naive Method -- 3.2 TTR Method -- 3.3 BOOT Method -- 4 A Numerical Example -- 4.1 Description of the Simulated Dataset -- 4.2 Numerical Results -- 5 Simulation Results -- 6 A Real Data Application -- 7 Concluding Remarks and Extensions -- References -- Uncoupled Isotonic Regression with Discrete Errors -- 1 Introduction -- 2 Estimation in Uncoupled Regression with Discrete Errors -- 3 Comparison with Coupled Isotonic Regression -- 4 Additional Proofs -- References -- Quantiles and Expectiles -- Partially Linear Expectile Regression Using Local Polynomial Fitting -- 1 Introduction -- 2 Partially Linear Expectile Regression -- 3 Statistical Estimation Methodology -- 3.1 Estimation of the Vector of Regression Coefficients -- 3.2 Estimation of the Nonparametric Part -- 4 Asymptotic Properties and Bandwidth Selection -- 4.1 Optimal Theoretical Bandwidth (Matrix) -- 4.2 Rule-of-Thumb (ROT) Bandwidth Selector -- 5 Simulation Study -- 5.1 Simulation Results for Model 1 -- 5.2 Simulation Results for Model 2 -- 6 Real Data Application -- 7 Further Reading -- References -- Piecewise Linear Continuous Estimators of the Quantile Function -- 1 Introduction -- 2 The Piecewise Quantile Estimators -- 2.1 Definition -- 2.2 First Properties -- 2.3 Mean Integrated Squared Error -- 3 Discussion -- Appendix -- References -- Single-Index Quantile Regression Models for Censored Data -- 1 Introduction -- 2 Model and Estimation -- 3 Asymptotic Results -- 4 Bandwidth Selection -- 5 Numerical Results -- 6 Case Study -- References -- Extreme Lp-quantile Kernel Regression.
1 Introduction -- 2 Lp-quantile Kernel Regression -- 3 Main Results -- 3.1 Intermediate Lp-quantile Regression -- 3.2 Extreme Lp-quantile Regression -- 3.3 Lp-quantile-Based Estimation of the Conditional Tail Index -- 4 Simulation Study -- 5 Real Data Example -- 6 Appendix -- 6.1 Preliminary Results -- 6.2 Proofs of Main Results -- References -- Robust Efficiency Analysis of Public Hospitals in Queensland, Australia -- 1 Introduction -- 2 Methodology -- 2.1 Theoretical Concepts -- 2.2 Nonparametric Estimators -- 3 Variables and Data -- 4 Results and Discussions -- 4.1 Univariate Input-Output Illustration -- 4.2 Main Analysis: Multiple Inputs Case -- 5 Concluding Remarks -- References -- On the Behavior of Extreme d-dimensional Spatial Quantiles Under Minimal Assumptions -- 1 Introduction -- 2 Results -- 3 Proofs -- References -- Modelling Flow in Gas Transmission Networks Using Shape-Constrained Expectile Regression -- 1 Introduction -- 2 Description of Data and Motivation -- 2.1 Data -- 2.2 Previous Models and Advantages of the New Approach -- 3 Methods -- 3.1 Geoadditive Regression Models -- 3.2 Shape-Constrained P-splines -- 3.3 Semiparametric Expectile Regression -- 4 Estimating and Forecasting Gas Flow -- 4.1 Results -- 4.2 Risk Analysis -- 5 Conclusion -- References -- Spatial Statistics and Econometrics -- Asymptotic Analysis of Maximum Likelihood Estimation of Covariance Parameters for Gaussian Processes: An Introduction with Proofs -- 1 Introduction -- 2 Framework and Notations -- 2.1 Gaussian Processes and Covariance Functions -- 2.2 Classical Families of Covariance Functions -- 2.3 Maximum Likelihood -- 3 Increasing-Domain Asymptotics -- 3.1 Consistency -- 3.2 Asymptotic Normality -- 4 Fixed-Domain Asymptotics -- 4.1 What Changes -- 4.2 Microergodic and Non-microergodic Parameters.
4.3 Consistent Estimation of the Microergodic Parameter of the Isotropic Matérn Model -- 5 Conclusion -- References -- Global Scan Methods for Comparing Two Spatial Point Processes -- 1 Introduction -- 2 Methodology -- 2.1 Spatial Scan Statistics for Bivariate Data -- 2.2 Significance Issues -- 3 Applications -- 3.1 Simulation Study -- 3.2 Forest Fire Occurrences -- 4 Discussion -- References -- Assessing Spillover Effects of Spatial Policies with Semiparametric Zero-Inflated Models and Random Forests -- 1 Introduction -- 2 Conditional Average Treatment Effect, Identification and Model Specification -- 2.1 Identification Issues and Conditional Independence Assumption -- 2.2 Zero Inflation and Conditional Mixtures -- 3 Econometric Modeling and Estimation Procedures -- 3.1 A Flexible Semi-parametric Modeling Approach Based on Additive Models and Conditional Mixtures -- 3.2 Estimation of the Conditional Treatment Effect with Random Forests -- 4 An Illustration on the Estimation of the Effect of Local Development Policies in France -- 4.1 Description of the Policy and Data -- 4.2 Estimation Results and Counterfactual Analysis at the Municipality Level -- 5 Conclusion -- References -- Spatial Autocorrelation in Econometric Land Use Models: An Overview -- 1 Introduction -- 2 Econometric Land Use Models -- 3 Linear Land Use Models -- 3.1 Land Use Share Models -- 3.2 Spatial Autocorrelation in Linear Models -- 3.3 Example of Spatial Land Studies with Linear Models -- 4 Discrete Choice Land Use Models -- 4.1 Individual Choice Land Use Model -- 4.2 Spatial Autocorrelation in Discrete Choice Models -- 4.3 Examples of Spatial Land Use Studies with Discrete Choice Models -- 5 Land Use and Its Impacts on the Environment -- 5.1 Land Use and ES -- 5.2 Land Use and Water Quality -- 5.3 Land Use and Climate Change -- 6 Conclusion -- References.
Modeling Dependence in Spatio-Temporal Econometrics -- 1 Introduction -- 2 Spatio-Temporal Statistics -- 2.1 Uncertainty and Data -- 2.2 Uncertainty and Models -- 2.3 Conditional Probabilities in a Hierarchical Statistical Model (HM) -- 2.4 ``Classical'' Statistical Modeling -- 3 Spatio-Temporal-Econometric Modeling -- 3.1 Spatial Description and Temporal Dynamics: A Simple Example -- 3.2 Time Series of Spatial Processes -- 3.3 Space-Time Autoregressive Moving Average (STARMA) Models -- 4 Spatial-Econometric Modeling -- 5 Modern Spatio-Temporal-Econometric Hierarchical Models -- 6 Concluding Remarks -- References -- Guidelines on Areal Interpolation Methods -- 1 Introduction -- 1.1 Motivation -- 1.2 Context -- 2 Notations -- 3 Data -- 3.1 Target Zones -- 3.2 First Source Scale: The Cells -- 3.3 Second Source Scale: The Iris -- 3.4 Variables to Estimate -- 4 Point-in-Polygon Method -- 4.1 Extensive Variables -- 4.2 Intensive Variables -- 4.3 Limitation of the Point-in Polygon Method -- 5 Areal Weighting Interpolation Method -- 5.1 Extensive Variable -- 5.2 Intensive Variable -- 6 Dasymetric Method with Auxiliary Variable X -- 6.1 Extensive Variables -- 6.2 Intensive Variables -- 7 Dasymetric Method with Control Zones -- 7.1 Presentation of the Method -- 7.2 Comparison Between DAC and DAX -- 8 Regression Modelling -- 8.1 Covariates and Exploratory Analysis -- 8.2 Linear Modelling -- 8.3 Regression Tree -- References -- Predictions in Spatial Econometric Models: Application to Unemployment Data -- 1 Introduction -- 1.1 Related Literature -- 2 Notation, Models, and Prediction Formula -- 2.1 Notation and the Spatial Autoregressive Durbin Model -- 2.2 In-Sample and Out-of-Sample Units -- 2.3 In-Sample Prediction Formulas -- 2.4 Out-of-Sample Prediction Formulas -- 3 Application -- 3.1 Theoretical Explanations for Regional Unemployment Differentials.
3.2 Data and Definition of Neighborhood Structure.
Record Nr. UNINA-9910485587103321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Quantitative Approaches to Sociological Issues / / edited by Miki Nakai
Advances in Quantitative Approaches to Sociological Issues / / edited by Miki Nakai
Autore Nakai Miki
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (225 pages)
Disciplina 300.727
Collana Behaviormetrics: Quantitative Approaches to Human Behavior
Soggetto topico Social sciences - Statistical methods
Statistics
Labor economics
Social policy
Political science
Economics
Culture
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Statistics in Business, Management, Economics, Finance, Insurance
Labor Economics
Social Policy
Political Science
Cultural Economics
ISBN 981-9671-09-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Foreword -- 1 Modeling the structure of social phenomena -- 2 Discrete latent variable models -- 3 High-dimensional data analysis -- 4 Approaches to analysis with missing data -- 5 Longitudinal data analysis -- 6 Attitudinal data analysis -- 7 Time series and cross-national comparisons of occupational segregation -- 8 Visualization of social mechanisms -- 9 Statistical approaches to the characteristics of the occupational structure.
Record Nr. UNINA-9911011818403321
Nakai Miki  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Rasch Analyses in the Human Sciences / / by William J. Boone, John R. Staver
Advances in Rasch Analyses in the Human Sciences / / by William J. Boone, John R. Staver
Autore Boone William J
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (315 pages) : illustrations
Disciplina 150.15195
Soggetto topico Education - Research
Education
Science - Study and teaching
Social sciences - Statistical methods
Educational psychology
Research Methods in Education
Science Education
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Educational Psychology
ISBN 9783030434205
3030434206
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction — For the Second Time -- Chapter 2. Principal Component Analysis of Residuals (PCAR) -- Chapter 3. Point Measure Correlation -- Chapter 4. Test Information Function (TIF) -- Chapter 5. Disattenuated Correlation -- Chapter 6. Understanding and Utilizing Item Characteristic Curves (ICC) to Further Evaluate the Functioning of a Scale -- Chapter 7. How Well Are Your Instrument Items Helping You to Discriminate and Communicate? -- Chapter 8. Partial Credit Part 1 -- Chapter 9. Partial Credit Part II (How to Anchor a Partial Credit Test) -- Chapter 10. The Hills…with the Partial Credit Model -- Chapter 11. Common Person Test Equating -- Chapter 12. Virtual Equating of Test Forms -- Chapter 13. Computing and Utilizing an Equating Constant to Explore Items for Linking a Test to an Item Bank -- Chapter 14. Rasch Measurement Estimation Procedures -- Chapter 15. The Importance of Cross Plots for Your Rasch Analysis -- Chapter 16. Wright Maps (Part 3 and counting…) -- Chapter 17. Raschand Forms of Validity Evidence -- Chapter 18. Using Rasch Theory to Develop a Test and a Survey -- Chapter 19. Presentation and Explanation Techniques to Use in Rasch Articles -- Chapter 20. Some Concluding Thoughts.
Record Nr. UNINA-9910416094403321
Boone William J  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Statistical Models for Data Analysis / / edited by Isabella Morlini, Tommaso Minerva, Maurizio Vichi
Advances in Statistical Models for Data Analysis / / edited by Isabella Morlini, Tommaso Minerva, Maurizio Vichi
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (264 p.)
Disciplina 519.5
Collana Studies in Classification, Data Analysis, and Knowledge Organization
Soggetto topico Statistics
Mathematical statistics - Data processing
Social sciences - Statistical methods
Statistical Theory and Methods
Statistics and Computing
Statistics in Business, Management, Economics, Finance, Insurance
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
ISBN 3-319-17377-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Using the dglars Package to Estimate a Sparse Generalized Linear Model -- A Depth function for Geostatistical Functional Data -- Robust Clustering of EU Banking Data -- Sovereign Risk and Contagion Effects in the Eurozone: a Bayesian Stochastic Correlation Model -- Female Labour Force Participation and Selection Effect: Southern vs Eastern European Countries -- Asymptotics in Survey Sampling for High Entropy Sampling Design -- A Note On the Use of Recursive Partitioning in Causal Inference -- Meta-Analysis of Poll Accuracy Measures: A Multilevel Approach -- Families of Parsimonious Finite Mixtures of Regression Models -- Quantile Regression for Clustering and Modeling Data -- Non-metric MDS Consensus Community Detection -- The performance of the Gradient-like Influence Measure in Generalized Linear Mixed Models -- New Flexible Probability Distributions for Ranking Data -- Robust Estimation of Regime Switching Models -- Incremental Visualization of Categorical Data -- A new Proposal for Tree Model Selection and Visualization -- Object-Oriented Bayesian Network to Deal with Measurement Error in Household Surveys -- Comparing Fuzzy and Multidimensional Methods to Evaluate Well-being in European Regions -- Cluster Analysis of Three-way Atmospheric Data -- Asymmetric CLUster Analysis Based on SKEW-symmetry: ACLUSKEW -- Parsimonious Generalized Linear Gaussian Cluster-Weighted Models -- New perspectives for the MDC Index in Social Research Fields -- Clustering Methods for Ordinal Data: A Comparison Between Standard and New Approaches -- Novelty Detection with One-class Support Vector Machines -- Using Discrete-time  Multi-State Models to Analyze  Students' University Pathways.
Record Nr. UNINA-9910300242403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Theoretical and Applied Statistics / / edited by Nicola Torelli, Fortunato Pesarin, Avner Bar-Hen
Advances in Theoretical and Applied Statistics / / edited by Nicola Torelli, Fortunato Pesarin, Avner Bar-Hen
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (524 p.)
Disciplina 001.422
Altri autori (Persone) TorelliNicola
PesarinFortunato
Bar-HenAvner
Collana Selected Papers of the Statistical Societies
Soggetto topico Statistics
Biometry
Social sciences - Statistical methods
Statistical Theory and Methods
Statistics in Business, Management, Economics, Finance, Insurance
Biostatistics
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
ISBN 3-642-35588-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I Statistical Theory: Default Priors Based on Pseudo-likelihoods for the Poisson-GPD Model (Stefano Cabras) -- Robustness, Dispersion and Local Functions in Data Depth (Mario Romanazzi and Claudio Agostinelli).-  New Distribution-free Plotting Position Through an Approximation to the Beta Median (Pasquale Erto and Antonio Lepore) -- On Gaussian Compound Poisson Type Limiting Likelihood Ratio Process (Sergueï Dachian and Ilia Negri) -- Archetypal Symbolic Objects (M.R. D’Esposito, F. Palumbo, G. Ragozini) -- Lorenz Zonoids and Dependence Measures: A Proposal (Emanuela Raffinetti, Paolo Giudici) -- Algebraic Generation of Orthogonal Fractional Factorial Designs (Roberto Fontana and Giovanni Pistone) -- Part II Methods for Time Series, Spatial and Functional Data: A Functional Spatio-Temporal Model for Geometric Shape Analysis (Lara Fontanella, Luigi Ippoliti and Pasquale Valentini) -- Vector Threshold Moving Average Models: Model Specification and Invertibility (Marcella Niglio, Cosimo Damiano Vitale) -- A Regionalization Method for Spatial Functional Data Based on Variogram Models: An Application on Environmental Data (Elvira Romano, Antonio Balzanella, and Rosanna Verde) -- Spectral Decomposition of the AR Metric (Maria Iannario and Domenico Piccolo) -- Nonlinear Nonstationary Model Building by Genetic Algorithms (Francesco Battaglia and Mattheos K. Protopapas) -- Using the Autodependogram in Model Diagnostic Checking (Luca Bagnato and Antonio Punzo) -- Part III Statistical Modelling and Data Analysis: Refined Estimation of a Light Tail: an Application to Environmental Data (M. Ivette Gomes, Lígia Henriques-Rodrigues and FredericoCaeiro) -- Model-based Classification of Clustered Binary Data with Non Ignorable Missing Values (Francesco Lagona) -- A Model for Correlated Paired Comparison Data (Manuela Cattelan and Cristiano Varin) -- Closed Skew Normal Stochastic Frontier Models for Panel Data (Roberto Colombi) -- How far can Man go? (Isabel Fraga Alves, Laurens de Haan and Cláudia Neves) -- Joint Modelling of Longitudinal and Time-to-Event Data: Challenges and Future Directions (Dimitris Rizopoulos) -- A Class of Linear Regression Models for Imprecise Random Elements (Renato Coppi, Maria Brigida Ferraro and Paolo Giordani) -- A Model-based Dimension Reduction Approach to Classification of Gene Expression Data (Luca Scrucca and Avner Bar-Hen) -- Exploiting Multivariate Outcomes in Bayesian Inference for Causal Effects With Noncompliance (Alessandra Mattei, Fabrizia Mealli and Barbara Pacini) -- Fuzzy Composite Indicators: An Application for Measuring Customer Satisfaction (Sergio Zani, Maria Adele Milioli, Isabella Morlini) -- Part IV Survey Methodology and Official Statistics: Symmetric Association Measures in Effect-control Sampling (Riccardo Borgoni, Piero Quatto and Donata Marasini) -- Spatial Misalignment Models for Small Area Estimation: A Simulation Study (Matilde Trevisani and Alan Gelfand) -- Scrambled Response Models Based on Auxiliary Variables (Giancarlo Diana and Pier Francesco Perri) -- Using Auxiliary Information and Nonparametric Methods in Weighting Adjustments (Emilia Rocco) -- Open Source Integer Linear Programming Solvers for Error Localization in Numerical Data (Gianpiero Bianchi, Renato Bruni, Alessandra Reale) -- Integrating Business Surveys: Guidelines and Principles Based on the Belgian Experience (Maria Caterina Bramati) -- Part V SocialStatistics and Demography: A Measure of Poverty Based on the Rasch Model (Maria Cristiana Martini and Cristiano Vanin) -- Chronic Poverty in European Mediterranean Countries (Daria Mendola and Annalisa Busetta) -- Do Union Formation and Childbearing Improve Subjective Well-being? An application of Propensity Score Matching to a Bulgarian Banel (Emiliano Sironi and Francesco C. Billari) -- Health and Functional Status in Elderly Patients Living in Residential Facilities in Italy (Giulia Cavrini, Claudia Di Priamo, Lorella Sicuro, Alessandra Battisti, Alessandro  Solipaca  and Giovanni de Girolamo) -- Dementia in the Elderly:. Health Consequences on Household Members (Egidi V., Salvatore M.A., Gargiulo L., Iannucci L., Sebastiani G., Tinto A.) -- Asset Ownership of the Elderly Across Europe: A multilevel Latent Class Analysis to Segment Countries and Households (Omar Paccagnella and Roberta Varriale) -- The Longevity Pattern in Emilia Romagna, Italy: A Spatio-temporal Analysis (Giulia Roli, Rossella Miglio, Rosella Rettaroli and Alessandra Samoggia) -- Material Deprivation and Incidence of Lung Cancer: A Census Block Analysis (Laura Grisotto, Dolores Catelan and Annibale Biggeri) -- Mining Administrative Health Databases for Epidemiological Purposes: A Case Study on Acute Myocardial Infarctions Diagnoses (Francesca Ieva, Anna Maria Paganoni and Piercesare Secchi) -- Part VI Economic Statistics and Econometrics: Fractional Integration Models for Italian Electricity Zonal Prices (Angelica Gianfreda andLuigi Grossi) -- A Generalized Composite Index Based on the Non-Substitutability of Individual Indicators (Matteo Mazziotta and Adriano Pareto) -- Evaluating the Efficiency of the Italian University Educational Processes Through Frontier Production Methods (Luigi Biggeri, Tiziana Laureti, Luca Secondi) -- Modeling and Forecasting Realized Range Volatility (Massimiliano Caporin and Gabriel G. Velo) -- Clusters and Equivalence Scales (Gustavo De Santis and Mauro Maltagliati) -- The Determinants of Income Dynamics (Gustavo De Santis and Giambattista Salinari) -- Benchmarking and Movement Preservation: Evidences From Real-life and Simulated Series (Tommaso Di Fonzo and Marco Marini) -- Cumulation of Poverty Measures to Meet New Policy Needs (Vijay Verma, Francesca Gagliardi, Caterina Ferretti) -- Long Memory in Integrated and Realized Variance (Eduardo Rossi and Paolo Santucci de Magistris).
Record Nr. UNINA-9910739403603321
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Data di pubblicazione

Altro...