top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Algorithms for Sparse Linear Systems / / Jennifer Scott, Miroslav Tůma
Algorithms for Sparse Linear Systems / / Jennifer Scott, Miroslav Tůma
Autore Scott Jennifer
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer International Publishing, , 2023
Descrizione fisica 1 online resource (xix, 242 pages) : illustrations (some color)
Disciplina 511.8
Collana Nečas Center Series
Soggetto topico Algorithms
Matrius disperses
Sistemes lineals
Algorismes
Soggetto genere / forma Llibres electrònics
ISBN 3-031-25820-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto An introduction to sparse matrices Sparse matrices and their graphs Introduction to matrix factorizations Sparse Cholesky sovler: The symbolic phase Sparse Cholesky solver: The factorization phase Sparse LU factorizations Stability, ill-conditioning and symmetric indefinite factorizations Sparse matrix ordering algorithms Algebraic preconditioning and approximate factorizations Incomplete factorizations Sparse approximate inverse preconditioners.
Record Nr. UNINA-9910717411903321
Scott Jennifer  
Cham : , : Springer International Publishing, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Controllability of singularly perturbed linear time delay systems / / Valery Y. Glizer
Controllability of singularly perturbed linear time delay systems / / Valery Y. Glizer
Autore Glizer Valery Y.
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2021]
Descrizione fisica 1 online resource (429 pages)
Disciplina 003.74
Collana Systems and Control: Foundations and Applications
Soggetto topico Linear systems
Control theory
Sistemes lineals
Teoria de control
Soggetto genere / forma Llibres electrònics
ISBN 3-030-65951-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Introduction -- 1.1 Real-Life Models -- 1.1.1 Neurosystem Model -- 1.1.2 Sunflower Equation -- 1.1.3 Model of Nuclear Reactor Dynamics -- 1.1.4 Model of Controlled Coupled-Core Nuclear Reactor -- 1.1.5 Car-Following Model: Lane as a Simple Open Curve -- 1.1.6 Car-Following Model: Lane as a Simple Closed Curve -- References -- 2 Singularly Perturbed Linear Time Delay Systems -- 2.1 Introduction -- 2.2 Singularly Perturbed Systems with Small Delays -- 2.2.1 Original System -- 2.2.2 Slow-Fast Decomposition of the Original System -- 2.2.3 Fundamental Matrix Solution -- 2.2.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Small Delays -- 2.2.5 Example 1 -- 2.2.6 Example 2: Tracking Model with Delay -- 2.2.7 Example 3: Analysis of Neurosystem Model -- 2.2.8 Example 4: Analysis of Sunflower Equation -- 2.2.9 Proof of Lemma 2.2 -- 2.2.10 Proof of Theorem 2.1 -- 2.2.10.1 Technical Proposition -- 2.2.10.2 Main Part of the Proof -- 2.3 Singularly Perturbed Systems with Delays of Two Scales -- 2.3.1 Original System -- 2.3.2 Slow-Fast Decomposition of the Original System -- 2.3.3 Fundamental Matrix Solution -- 2.3.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Delays of Two Scales -- 2.3.5 Example 5 -- 2.3.6 Example 6: Dynamics of Nuclear Reactor -- 2.3.7 Example 7: Analysis of Car-Following Model in a Simple Closed Lane -- 2.3.8 Proof of Theorem 2.2 -- 2.4 One Class of Singularly Perturbed Systems with NonsmallDelays -- 2.4.1 Original System -- 2.4.2 Slow-Fast Decomposition of the Original System -- 2.4.3 Fundamental Matrix Solution -- 2.4.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Nonsmall Delays -- 2.4.5 Example 8 -- 2.4.6 Proof of Lemma 2.4 -- 2.4.7 Proof of Theorem 2.4 -- 2.5 Concluding Remarks and Literature Review.
References -- 3 Euclidean Space Output Controllability of Linear Systems with State Delays -- 3.1 Introduction -- 3.2 Systems with Small Delays: Main Notions and Definitions -- 3.2.1 Original System -- 3.2.2 Asymptotic Decomposition of the Original System -- 3.3 Auxiliary Results -- 3.3.1 Output Controllability of a System with State Delays: Necessary and Sufficient Conditions -- 3.3.2 Linear Control Transformation in Systems with Small Delays -- 3.3.2.1 Control Transformation in the Original System -- 3.3.2.2 Asymptotic Decomposition of the Transformed System (3.30)-(3.31), (3.3) -- 3.3.3 Hybrid Set of Riccati-Type Matrix Equations -- 3.3.4 Proof of Lemma 3.1 -- 3.3.4.1 Sufficiency -- 3.3.4.2 Necessity -- 3.3.5 Proof of Lemma 3.5 -- 3.3.6 Proof of Lemma 3.7 -- 3.3.7 Proof of Lemma 3.8 -- 3.3.8 Proof of Lemma 3.9 -- 3.4 Parameter-Free Controllability Conditions for Systems with Small Delays -- 3.4.1 Case of the Standard System (3.1)-(3.2) -- 3.4.2 Case of the Nonstandard System (3.1)-(3.2) -- 3.4.3 Proofs of Theorems 3.1, 3.2, and 3.3 -- 3.4.3.1 Proof of Theorem 3.1 -- 3.4.3.2 Proof of Theorem 3.2 -- 3.4.3.3 Proof of Theorem 3.3 -- 3.5 Special Cases of Controllability for Systems with Small Delays -- 3.5.1 Complete Euclidean Space Controllability -- 3.5.2 Controllability with Respect to x(t) -- 3.5.3 Controllability with Respect to y(t) -- 3.6 Examples: Systems with Small Delays -- 3.6.1 Example 1 -- 3.6.2 Example 2 -- 3.6.3 Example 3 -- 3.6.4 Example 4 -- 3.6.5 Example 5 -- 3.6.6 Example 6: Pursuit-Evasion Engagement with Constant Speeds of Participants -- 3.6.7 Example 7: Pursuit-Evasion Engagement with Variable Speeds of Participants -- 3.6.8 Example 8: Analysis of Controlled Coupled-Core Nuclear Reactor Model -- 3.7 Systems with Delays of Two Scales: Main Notionsand Definitions -- 3.7.1 Original System.
3.7.2 Asymptotic Decomposition of the Original System -- 3.8 Linear Control Transformation in Systems with Delays of Two Scales -- 3.8.1 Control Transformation in the Original System -- 3.8.2 Asymptotic Decomposition of the Transformed System (3.196)-(3.197), (3.187) -- 3.9 Parameter-Free Controllability Conditions for Systems with Delays of Two Scales -- 3.9.1 Case of the Validity of the Assumption (AIII) -- 3.9.2 Case of the Validity of the Assumption (AIV) -- 3.9.3 Special Cases of Controllability -- 3.9.3.1 Complete Euclidean Space Controllability -- 3.9.3.2 Controllability with Respect to x(t) -- 3.9.3.3 Controllability with Respect to y(t) -- 3.9.4 Example 9 -- 3.9.5 Example 10 -- 3.9.6 Example 11: Controlled Car-Following Model in a Simple Open Lane -- 3.10 Concluding Remarks and Literature Review -- References -- 4 Complete Euclidean Space Controllability of Linear Systems with State and Control Delays -- 4.1 Introduction -- 4.2 System with Small State Delays: Main Notions and Definitions -- 4.2.1 Original System -- 4.2.2 Asymptotic Decomposition of the Original System -- 4.3 Preliminary Results -- 4.3.1 Auxiliary System with Small State Delays and Delay-Free Control -- 4.3.2 Output Controllability of the Auxiliary System and Its Slow and Fast Subsystems: Necessary and Sufficient Conditions -- 4.3.2.1 Equivalent Forms of the Auxiliary System -- 4.3.2.2 Output Controllability of the Auxiliary System -- 4.3.2.3 Output Controllability of the Slow and Fast Subsystems Associated with the Auxiliary System -- 4.3.3 Linear Control Transformation in the Original System with Small State Delays -- 4.3.4 Stabilizability of a Parameter-Dependent System with State and Control Delays by a Memory-Less Feedback Control -- 4.3.5 Proof of Lemma 4.8 -- 4.4 Parameter-Free Controllability Conditions for Systems with Small State Delays.
4.4.1 Case of the Standard System (4.1)-(4.2) -- 4.4.2 Case of the Nonstandard System (4.1)-(4.2) -- 4.4.3 Proof of Main Lemma (Lemma 4.9) -- 4.4.3.1 Auxiliary Propositions -- 4.4.3.2 Main Part of the Proof -- 4.4.4 Alternative Approach to Controllability Analysis of the Nonstandard System (4.1)-(4.2) -- 4.4.4.1 Linear Control Transformation in the Auxiliary System (4.40)-(4.42) -- 4.4.4.2 Proof of Lemma 4.10 -- 4.4.4.3 Hybrid Set of Riccati-Type Matrix Equations -- 4.4.4.4 Parameter-Free Controllability Conditions of the Nonstandard System (4.1)-(4.2) -- 4.5 Examples: Systems with Small State and Control Delays -- 4.5.1 Example 1 -- 4.5.2 Example 2 -- 4.5.3 Example 3 -- 4.6 Systems with State Delays of Two Scales: Main Notions and Definitions -- 4.6.1 Original System -- 4.6.2 Asymptotic Decomposition of the Original System -- 4.7 Auxiliary System with State Delays of Two Scales and Delay-Free Control -- 4.7.1 Description of the Auxiliary System and Some of Its Properties -- 4.7.2 Asymptotic Decomposition of the Auxiliary System (4.180)-(4.181) -- 4.7.3 Linear Control Transformation in the Auxiliary System (4.180)-(4.181) -- 4.8 Parameter-Free Controllability Conditions for Systems with Delays of Two Scales -- 4.8.1 Case of the Validity of the Assumption (AV) -- 4.8.2 Case of the Validity of the Assumption (AVI) -- 4.8.3 Example 4 -- 4.8.4 Example 5 -- 4.8.5 Example 6: Analysis of Car-Following Model with State and Control Delays -- 4.9 Concluding Remarks and Literature Review -- References -- 5 First-Order Euclidean Space Controllability Conditions for Linear Systems with Small State Delays -- 5.1 Introduction -- 5.2 Singularly Perturbed System: Main Notions and Definitions -- 5.2.1 Original System -- 5.2.2 Asymptotic Decomposition of the Original System -- 5.3 Auxiliary Results.
5.3.1 Estimates of Solutions to Some Singularly Perturbed Linear Time Delay Matrix Differential Equations -- 5.3.2 Proof of Lemma 5.1 -- 5.3.2.1 Technical Proposition -- 5.3.2.2 Main Part of the Proof -- 5.3.3 Complete Controllability of the Original System and Its Slow Subsystem: Necessary and SufficientConditions -- 5.4 Parameter-Free Controllability Conditions -- 5.4.1 Formulation of Main Assertions -- 5.4.2 Proof of Theorem 5.1 -- 5.4.3 Proof of Lemma 5.2 -- 5.4.4 Proof of Theorem 5.2 -- 5.4.4.1 Euclidean Space Controllability of a Pure Fast System -- 5.4.4.2 Main Part of the Proof -- 5.5 Examples -- 5.5.1 Example 1 -- 5.5.2 Example 2 -- 5.5.3 Example 3 -- 5.5.4 Example 4 -- 5.5.5 Example 5 -- 5.5.6 Example 6 -- 5.5.7 Example 7: Analysis of Controlled Car-Following Model in a Simple Open Lane -- 5.6 Concluding Remarks and Literature Review -- References -- 6 Miscellanies -- 6.1 Introduction -- 6.2 Euclidean Space Controllability of Linear Time Delay Systems with High Gain Control -- 6.2.1 High Gain Control System: Main Notionsand Definitions -- 6.2.1.1 Initial System -- 6.2.1.2 Transformation of the System (6.1) -- 6.2.2 High Dimension Controllability Condition for the System (6.5) -- 6.2.3 Asymptotic Decomposition of the System (6.5) -- 6.2.4 Auxiliary Results -- 6.2.4.1 Linear Control Transformation in the System (6.13)-(6.14) and Some of its Properties -- 6.2.4.2 Asymptotic Decomposition of the Transformed System (6.13), (6.21) -- 6.2.4.3 Block-Wise Estimate of the Solution to the Terminal-Value Problem (6.23) -- 6.2.5 Lower Dimension Parameter-Free Controllability Condition for the System (6.5) -- 6.2.6 Example -- 6.3 Euclidean Space Controllability of Linear Systems with Nonsmall Input Delay -- 6.3.1 Original System -- 6.3.2 Discussion on the Slow-Fast Decomposition of the Original System -- 6.3.3 Auxiliary Results.
6.3.3.1 Necessary and Sufficient Controllability Conditions of the Original System.
Record Nr. UNISA-996466544903316
Glizer Valery Y.  
Cham, Switzerland : , : Birkhäuser, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Controllability of singularly perturbed linear time delay systems / / Valery Y. Glizer
Controllability of singularly perturbed linear time delay systems / / Valery Y. Glizer
Autore Glizer Valery Y.
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2021]
Descrizione fisica 1 online resource (429 pages)
Disciplina 003.74
Collana Systems and Control: Foundations and Applications
Soggetto topico Linear systems
Control theory
Sistemes lineals
Teoria de control
Soggetto genere / forma Llibres electrònics
ISBN 3-030-65951-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Introduction -- 1.1 Real-Life Models -- 1.1.1 Neurosystem Model -- 1.1.2 Sunflower Equation -- 1.1.3 Model of Nuclear Reactor Dynamics -- 1.1.4 Model of Controlled Coupled-Core Nuclear Reactor -- 1.1.5 Car-Following Model: Lane as a Simple Open Curve -- 1.1.6 Car-Following Model: Lane as a Simple Closed Curve -- References -- 2 Singularly Perturbed Linear Time Delay Systems -- 2.1 Introduction -- 2.2 Singularly Perturbed Systems with Small Delays -- 2.2.1 Original System -- 2.2.2 Slow-Fast Decomposition of the Original System -- 2.2.3 Fundamental Matrix Solution -- 2.2.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Small Delays -- 2.2.5 Example 1 -- 2.2.6 Example 2: Tracking Model with Delay -- 2.2.7 Example 3: Analysis of Neurosystem Model -- 2.2.8 Example 4: Analysis of Sunflower Equation -- 2.2.9 Proof of Lemma 2.2 -- 2.2.10 Proof of Theorem 2.1 -- 2.2.10.1 Technical Proposition -- 2.2.10.2 Main Part of the Proof -- 2.3 Singularly Perturbed Systems with Delays of Two Scales -- 2.3.1 Original System -- 2.3.2 Slow-Fast Decomposition of the Original System -- 2.3.3 Fundamental Matrix Solution -- 2.3.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Delays of Two Scales -- 2.3.5 Example 5 -- 2.3.6 Example 6: Dynamics of Nuclear Reactor -- 2.3.7 Example 7: Analysis of Car-Following Model in a Simple Closed Lane -- 2.3.8 Proof of Theorem 2.2 -- 2.4 One Class of Singularly Perturbed Systems with NonsmallDelays -- 2.4.1 Original System -- 2.4.2 Slow-Fast Decomposition of the Original System -- 2.4.3 Fundamental Matrix Solution -- 2.4.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Nonsmall Delays -- 2.4.5 Example 8 -- 2.4.6 Proof of Lemma 2.4 -- 2.4.7 Proof of Theorem 2.4 -- 2.5 Concluding Remarks and Literature Review.
References -- 3 Euclidean Space Output Controllability of Linear Systems with State Delays -- 3.1 Introduction -- 3.2 Systems with Small Delays: Main Notions and Definitions -- 3.2.1 Original System -- 3.2.2 Asymptotic Decomposition of the Original System -- 3.3 Auxiliary Results -- 3.3.1 Output Controllability of a System with State Delays: Necessary and Sufficient Conditions -- 3.3.2 Linear Control Transformation in Systems with Small Delays -- 3.3.2.1 Control Transformation in the Original System -- 3.3.2.2 Asymptotic Decomposition of the Transformed System (3.30)-(3.31), (3.3) -- 3.3.3 Hybrid Set of Riccati-Type Matrix Equations -- 3.3.4 Proof of Lemma 3.1 -- 3.3.4.1 Sufficiency -- 3.3.4.2 Necessity -- 3.3.5 Proof of Lemma 3.5 -- 3.3.6 Proof of Lemma 3.7 -- 3.3.7 Proof of Lemma 3.8 -- 3.3.8 Proof of Lemma 3.9 -- 3.4 Parameter-Free Controllability Conditions for Systems with Small Delays -- 3.4.1 Case of the Standard System (3.1)-(3.2) -- 3.4.2 Case of the Nonstandard System (3.1)-(3.2) -- 3.4.3 Proofs of Theorems 3.1, 3.2, and 3.3 -- 3.4.3.1 Proof of Theorem 3.1 -- 3.4.3.2 Proof of Theorem 3.2 -- 3.4.3.3 Proof of Theorem 3.3 -- 3.5 Special Cases of Controllability for Systems with Small Delays -- 3.5.1 Complete Euclidean Space Controllability -- 3.5.2 Controllability with Respect to x(t) -- 3.5.3 Controllability with Respect to y(t) -- 3.6 Examples: Systems with Small Delays -- 3.6.1 Example 1 -- 3.6.2 Example 2 -- 3.6.3 Example 3 -- 3.6.4 Example 4 -- 3.6.5 Example 5 -- 3.6.6 Example 6: Pursuit-Evasion Engagement with Constant Speeds of Participants -- 3.6.7 Example 7: Pursuit-Evasion Engagement with Variable Speeds of Participants -- 3.6.8 Example 8: Analysis of Controlled Coupled-Core Nuclear Reactor Model -- 3.7 Systems with Delays of Two Scales: Main Notionsand Definitions -- 3.7.1 Original System.
3.7.2 Asymptotic Decomposition of the Original System -- 3.8 Linear Control Transformation in Systems with Delays of Two Scales -- 3.8.1 Control Transformation in the Original System -- 3.8.2 Asymptotic Decomposition of the Transformed System (3.196)-(3.197), (3.187) -- 3.9 Parameter-Free Controllability Conditions for Systems with Delays of Two Scales -- 3.9.1 Case of the Validity of the Assumption (AIII) -- 3.9.2 Case of the Validity of the Assumption (AIV) -- 3.9.3 Special Cases of Controllability -- 3.9.3.1 Complete Euclidean Space Controllability -- 3.9.3.2 Controllability with Respect to x(t) -- 3.9.3.3 Controllability with Respect to y(t) -- 3.9.4 Example 9 -- 3.9.5 Example 10 -- 3.9.6 Example 11: Controlled Car-Following Model in a Simple Open Lane -- 3.10 Concluding Remarks and Literature Review -- References -- 4 Complete Euclidean Space Controllability of Linear Systems with State and Control Delays -- 4.1 Introduction -- 4.2 System with Small State Delays: Main Notions and Definitions -- 4.2.1 Original System -- 4.2.2 Asymptotic Decomposition of the Original System -- 4.3 Preliminary Results -- 4.3.1 Auxiliary System with Small State Delays and Delay-Free Control -- 4.3.2 Output Controllability of the Auxiliary System and Its Slow and Fast Subsystems: Necessary and Sufficient Conditions -- 4.3.2.1 Equivalent Forms of the Auxiliary System -- 4.3.2.2 Output Controllability of the Auxiliary System -- 4.3.2.3 Output Controllability of the Slow and Fast Subsystems Associated with the Auxiliary System -- 4.3.3 Linear Control Transformation in the Original System with Small State Delays -- 4.3.4 Stabilizability of a Parameter-Dependent System with State and Control Delays by a Memory-Less Feedback Control -- 4.3.5 Proof of Lemma 4.8 -- 4.4 Parameter-Free Controllability Conditions for Systems with Small State Delays.
4.4.1 Case of the Standard System (4.1)-(4.2) -- 4.4.2 Case of the Nonstandard System (4.1)-(4.2) -- 4.4.3 Proof of Main Lemma (Lemma 4.9) -- 4.4.3.1 Auxiliary Propositions -- 4.4.3.2 Main Part of the Proof -- 4.4.4 Alternative Approach to Controllability Analysis of the Nonstandard System (4.1)-(4.2) -- 4.4.4.1 Linear Control Transformation in the Auxiliary System (4.40)-(4.42) -- 4.4.4.2 Proof of Lemma 4.10 -- 4.4.4.3 Hybrid Set of Riccati-Type Matrix Equations -- 4.4.4.4 Parameter-Free Controllability Conditions of the Nonstandard System (4.1)-(4.2) -- 4.5 Examples: Systems with Small State and Control Delays -- 4.5.1 Example 1 -- 4.5.2 Example 2 -- 4.5.3 Example 3 -- 4.6 Systems with State Delays of Two Scales: Main Notions and Definitions -- 4.6.1 Original System -- 4.6.2 Asymptotic Decomposition of the Original System -- 4.7 Auxiliary System with State Delays of Two Scales and Delay-Free Control -- 4.7.1 Description of the Auxiliary System and Some of Its Properties -- 4.7.2 Asymptotic Decomposition of the Auxiliary System (4.180)-(4.181) -- 4.7.3 Linear Control Transformation in the Auxiliary System (4.180)-(4.181) -- 4.8 Parameter-Free Controllability Conditions for Systems with Delays of Two Scales -- 4.8.1 Case of the Validity of the Assumption (AV) -- 4.8.2 Case of the Validity of the Assumption (AVI) -- 4.8.3 Example 4 -- 4.8.4 Example 5 -- 4.8.5 Example 6: Analysis of Car-Following Model with State and Control Delays -- 4.9 Concluding Remarks and Literature Review -- References -- 5 First-Order Euclidean Space Controllability Conditions for Linear Systems with Small State Delays -- 5.1 Introduction -- 5.2 Singularly Perturbed System: Main Notions and Definitions -- 5.2.1 Original System -- 5.2.2 Asymptotic Decomposition of the Original System -- 5.3 Auxiliary Results.
5.3.1 Estimates of Solutions to Some Singularly Perturbed Linear Time Delay Matrix Differential Equations -- 5.3.2 Proof of Lemma 5.1 -- 5.3.2.1 Technical Proposition -- 5.3.2.2 Main Part of the Proof -- 5.3.3 Complete Controllability of the Original System and Its Slow Subsystem: Necessary and SufficientConditions -- 5.4 Parameter-Free Controllability Conditions -- 5.4.1 Formulation of Main Assertions -- 5.4.2 Proof of Theorem 5.1 -- 5.4.3 Proof of Lemma 5.2 -- 5.4.4 Proof of Theorem 5.2 -- 5.4.4.1 Euclidean Space Controllability of a Pure Fast System -- 5.4.4.2 Main Part of the Proof -- 5.5 Examples -- 5.5.1 Example 1 -- 5.5.2 Example 2 -- 5.5.3 Example 3 -- 5.5.4 Example 4 -- 5.5.5 Example 5 -- 5.5.6 Example 6 -- 5.5.7 Example 7: Analysis of Controlled Car-Following Model in a Simple Open Lane -- 5.6 Concluding Remarks and Literature Review -- References -- 6 Miscellanies -- 6.1 Introduction -- 6.2 Euclidean Space Controllability of Linear Time Delay Systems with High Gain Control -- 6.2.1 High Gain Control System: Main Notionsand Definitions -- 6.2.1.1 Initial System -- 6.2.1.2 Transformation of the System (6.1) -- 6.2.2 High Dimension Controllability Condition for the System (6.5) -- 6.2.3 Asymptotic Decomposition of the System (6.5) -- 6.2.4 Auxiliary Results -- 6.2.4.1 Linear Control Transformation in the System (6.13)-(6.14) and Some of its Properties -- 6.2.4.2 Asymptotic Decomposition of the Transformed System (6.13), (6.21) -- 6.2.4.3 Block-Wise Estimate of the Solution to the Terminal-Value Problem (6.23) -- 6.2.5 Lower Dimension Parameter-Free Controllability Condition for the System (6.5) -- 6.2.6 Example -- 6.3 Euclidean Space Controllability of Linear Systems with Nonsmall Input Delay -- 6.3.1 Original System -- 6.3.2 Discussion on the Slow-Fast Decomposition of the Original System -- 6.3.3 Auxiliary Results.
6.3.3.1 Necessary and Sufficient Controllability Conditions of the Original System.
Record Nr. UNINA-9910483576203321
Glizer Valery Y.  
Cham, Switzerland : , : Birkhäuser, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Descriptor systems of integer and fractional orders / / Tadeusz Kaczorek, Kamil Borawski
Descriptor systems of integer and fractional orders / / Tadeusz Kaczorek, Kamil Borawski
Autore Kaczorek T (Tadeusz), <1932->
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (xiv, 252 pages) : illustrations
Disciplina 003.83
Collana Studies in systems, decision and control
Soggetto topico Discrete-time systems
Linear time invariant systems
Sistemes de temps discret
Sistemes lineals
Soggetto genere / forma Llibres electrònics
ISBN 3-030-72480-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Descriptor Linear Systems Fractional Descriptor Linear Systems Stability of Positive Descriptor Systems Appendix
Record Nr. UNINA-9910483065503321
Kaczorek T (Tadeusz), <1932->  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Krylov Subspace Methods for Linear Systems : Principles of Algorithms / / by Tomohiro Sogabe
Krylov Subspace Methods for Linear Systems : Principles of Algorithms / / by Tomohiro Sogabe
Autore Sogabe Tomohiro
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (233 pages)
Disciplina 518.1
Collana Springer Series in Computational Mathematics
Soggetto topico Numerical analysis
Mathematical models
Algorithms
Numerical Analysis
Mathematical Modeling and Industrial Mathematics
Sistemes lineals
Anàlisi numèrica
Algorismes
Soggetto genere / forma Llibres electrònics
ISBN 9789811985324
9789811985317
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Numerical Methods for Solving Linear Systems -- Some Applications to Computational Science and Data Science -- Classification and Theory of Krylov Subspace Methods -- Applications to Shifted Linear Systems -- Applications to Matrix Functions.
Record Nr. UNINA-9910645887403321
Sogabe Tomohiro  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Linear systems / / Gordon Blower
Linear systems / / Gordon Blower
Autore Blower G (Gordon)
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer International Publishing, , [2023]
Descrizione fisica 1 online resource (417 pages)
Disciplina 629.8
Collana Mathematical Engineering
Soggetto topico Automatic control
Automatic control - Data processing
Sistemes lineals
Soggetto genere / forma Llibres electrònics
ISBN 9783031212406
9783031212390
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Linear Systems and Their Description -- 1.1 Linear Systems and Their Description -- 1.2 Feedback -- 1.3 Linear Differential Equations -- 1.4 Damped Harmonic Oscillator -- 1.5 Reduction of Order of Linear ODE -- 1.6 Exercises -- 2 Solving Linear Systems by Matrix Theory -- 2.1 Matrix Terminology -- 2.2 Characteristic Polynomial -- 2.3 Norm of a Vector -- 2.4 Cauchy-Schwarz Inequality -- 2.5 Matrix Exponential exp(A) or expm (A) -- 2.6 Exponential of a Diagonable Matrix -- 2.7 Solving MIMO (A,B,C,D) -- 2.8 Rational Functions -- 2.9 Block Matrices -- 2.10 The Transfer Function of (A,B,C,D) -- 2.11 Realization with a SISO -- 2.12 Exercises -- 3 Eigenvalues and Block Decompositions of Matrices -- 3.1 The Transfer Function of Similar SISOs (A,B,C,D) -- 3.2 Jordan Blocks -- 3.3 Exponentials and Eigenvalues of Complex Matrices -- 3.4 Exponentials and the Resolvent -- 3.5 Schur Complements -- 3.6 Self-adjoint Matrices -- 3.7 Positive Definite Matrices -- 3.8 Linear Fractional Transformations -- 3.9 Stable Matrices -- 3.10 Dissipative Matrices -- 3.11 A Determinant Formula -- 3.12 Observability and Controllability -- 3.13 Kalman's Decomposition -- 3.14 Kronecker Product of Matrices -- 3.15 Exercises -- 4 Laplace Transforms -- 4.1 Laplace Transforms -- 4.2 Laplace Convolution -- 4.3 Laplace Uniqueness Theorem -- 4.4 Laplace Transform of a Differential Equation -- 4.5 Solving MIMO by Laplace Transforms -- 4.6 Partial Fractions -- 4.7 Dirichlet's Integral and Heaviside's Expansions -- 4.8 Final Value Theorem -- 4.9 Laplace Transforms of Periodic Functions -- 4.10 Fourier Cosine Transform -- 4.11 Impulse Response -- 4.12 Transmitting Signals -- 4.13 Exercises -- 5 Transfer Functions, Frequency Response, Realization and Stability -- 5.1 Winding Numbers -- 5.2 Realization -- 5.3 Frequency Response -- 5.4 Nyquist's Locus.
5.5 Gain and Phase -- 5.6 BIBO Stability -- 5.7 Undamped Harmonic Oscillator: Marginal Stability and Resonance -- 5.8 BIBO Stability in Terms of Eigenvalues of A -- 5.9 Maxwell's Stability Problem -- 5.10 Stable Rational Transfer Functions -- 5.11 Nyquist's Criterion for Stability of T -- 5.12 Nyquist's Criterion Proof -- 5.13 M and N Circles -- 5.14 Exercises -- 6 Algebraic Characterizations of Stability -- 6.1 Feedback Control -- 6.2 PID Controllers -- 6.3 Stable Cubics -- 6.4 Hurwitz's Stability Criterion -- 6.5 Units and Factors -- 6.6 Euclidean Algorithm and Principal Ideal Domains -- 6.7 Ideals in the Complex Polynomials -- 6.8 Highest Common Factor and Common Zeros -- 6.9 Rings of Fractions -- 6.10 Coprime Factorization in the Stable Rational Functions -- 6.11 Controlling Rational Systems -- 6.12 Invariant Factors -- 6.13 Matrix Factorizations to Stabilize MIMO -- 6.14 Inverse Laplace Transforms of Strictly Proper Rational Functions -- 6.15 Differential Rings -- 6.16 Bessel Functions of Integral Order -- 6.17 Exercises -- 7 Stability and Transfer Functions via Linear Algebra -- 7.1 Lyapunov's Criterion -- 7.2 Sylvester's Equation AY+YB+C=0 -- 7.3 A Solution of Lyapunov's Equation AL+LA' +P=0 -- 7.4 Stable and Dissipative Linear Systems -- 7.5 Almost Stable Linear Systems -- 7.6 Simultaneous Diagonalization -- 7.7 A Linear Matrix Inequality -- 7.8 Differential Equations Relating to Sylvester's Equation -- 7.9 Transfer Functions tf -- 7.10 Small Groups of Matrices -- 7.11 How to Convert Complex Matrices into Real Matrices -- 7.12 Periods -- 7.13 Discrete Fourier Transform -- 7.14 Exercises -- 8 Discrete Time Systems -- 8.1 Discrete-Time Linear Systems -- 8.2 Transfer Function for a Discrete Time Linear System -- 8.3 Correspondence Between Continuous- and Discrete-Time Systems -- 8.4 Chebyshev Polynomials and Filters.
8.5 Hankel Matrices and Moments -- 8.6 Orthogonal Polynomials -- 8.7 Hankel Determinants -- 8.8 Laguerre Polynomials -- 8.9 Three-Term Recurrence Relation -- 8.10 Moments via Discrete Time Linear Systems -- 8.11 Floquet Multipliers -- 8.12 Exercises -- 9 Random Linear Systems and Green's Functions -- 9.1 ARMA Process -- 9.2 Distributions on a Bounded Interval -- 9.3 Cauchy Transforms -- 9.4 Herglotz Functions -- 9.5 Green's Functions -- 9.6 Random Diagonal Transformations -- 9.7 Wigner Matrices -- 9.8 Pastur's Theorem -- 9.9 May-Wigner Model -- 9.10 Semicircle Addition Law -- 9.11 Matrix Version of Pastur's Fixed Point Equation -- 9.12 Rank One Perturbations on Green's Functions -- 9.13 Exercises -- 10 Hilbert Spaces -- 10.1 Hilbert Sequence Space -- 10.2 Hardy Space on the Disc -- 10.3 Subspaces and Blocks -- 10.4 Shifts and Multiplication Operators -- 10.5 Canonical Model -- 10.6 Hardy Space on the Right Half-Plane -- 10.7 Paley-Wiener Theorem -- 10.8 Rational Filters -- 10.9 Shifts on L2 -- 10.10 The Telegraph Equation as a Linear System -- 10.11 Exercises -- 11 Wireless Transmission and Wavelets -- 11.1 Frequency Band Limited Functions and Sampling -- 11.2 The Shannon Wavelet -- 11.3 Telatar's Model of Wireless Communication -- 11.4 Exercises -- 12 Solutions to Selected Exercises -- Glossary of Linear Systems Terminology -- A MATLAB Commands for Matrices -- B SciLab Matrix Operations -- References -- Index.
Record Nr. UNISA-996508571903316
Blower G (Gordon)  
Cham, Switzerland : , : Springer International Publishing, , [2023]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui