top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced signal integrity for high-speed digital designs / / Stephen H. Hall, Howard L. Heck
Advanced signal integrity for high-speed digital designs / / Stephen H. Hall, Howard L. Heck
Autore Hall Stephen H.
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2009
Descrizione fisica 1 online resource (680 p.)
Disciplina 621.381
Altri autori (Persone) HeckHoward L
Soggetto topico Digital electronics
Logic design
Signal integrity (Electronics)
ISBN 1-118-21068-9
1-282-13710-7
9786612137105
0-470-42389-7
0-470-42388-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Acknowledgments -- Chapter 1: Introduction: The importance of signal integrity -- 1.1 Computing Power: Past and Future -- 1.2 The problem -- 1.3 The Basics -- 1.4 A new realm of bus design -- 1.5 Scope -- 1.6 Summary -- 1.7 References -- Chapter 2: Electromagnetic Fundamentals for Signal Integrity -- 2.1 Introduction -- 2.2 Maxwell's Equations -- 2.3 Common Vector Operators -- 2.4 Wave Propagation -- 2.5 Electrostatics -- 2.6 Magnetostatics -- 2.7 Power Flow and the Poynting Vector -- 2.8 Reflections of Electromagnetic Waves -- 2.9 References -- 2.10 Problems -- Chapter 3: Ideal Transmission Line Fundamentals -- 3.1 Transmission Line Structures -- 3.2 Wave propagation on loss free transmission lines -- 3.3 Transmission line properties -- 3.4 Transmission line parameters for the loss free case -- 3.5 Transmission line reflections -- 3.6 Time domain Reflectometry -- 3.7 References -- 3.8 Problems -- Chapter 4: Crosstalk -- 4.1 Mutual Inductance and Capacitance -- 4.2 Coupled Wave Equations -- 4.3 Coupled Line Analysis -- 4.4 Modal Analysis -- 4.5 Crosstalk Minimization -- 4.6 Summary -- 4.7 References -- 4.8 Problems -- Chapter 5: Non-ideal conductor models for transmission lines -- 5.1 Signals propagating in an unbounded conductive media -- 5.2 Classic conductor model for transmission lines -- 5.3 Surface Roughness -- 5.4 Transmission line parameters with a non-ideal conductor -- 5.5 Problems -- Chapter 6: Electrical properties of dielectrics -- 6.1 Polarization of dielectrics -- 6.2 Classification of dielectric materials -- 6.3 Frequency dependent dielectric behavior -- 6.4 Properties of a physical dielectric model -- 6.5 The fiber-weave effect -- 6.6 Environmental variation in dielectric behavior -- 6.7 Transmission line parameters for lossy dielectrics and realistic conductors -- 6.8 References -- 6.9 Problems -- Chapter 7: Differential signaling -- 7.1 Removal of common mode noise -- 7.2 Differential Crosstalk -- 7.3 Virtual reference plane -- 7.4 Propagation of Modal Voltages.
7.5 Common terminology -- 7.6 Drawbacks of differential signaling -- 7.7 References -- 7.8 Problems -- Chapter 8: Mathematical Requirements of Physical Channels -- 8.1 Frequency domain effects in time domain simulations -- 8.2 Requirements for a physical Channel -- 8.3 References -- 8.4 Problems -- Chapter 9: Network Analysis for Digital Engineers -- 9.1 High frequency voltage and current waves -- 9.2 Network Theory -- 9.3 Properties of Physical S-parameters -- 9.4 References -- 9.5 Problems -- Chapter 10: Topics in High-Speed Channel Modeling -- 10.1 Creating a physical transmission line mode -- 10.2 Non-Ideal Return Paths -- 10.3 Vias -- 10.4 References -- 10.5 Problems -- Chapter 11: I/O Circuits and Models -- 11.1 Introduction -- 11.2 Push-Pull Transmitters -- 11.3 CMOS Receivers -- 11.4 ESD Protection Circuits -- 11.5 On-Chip Termination -- 11.6 Bergeron Diagrams -- 11.7 Open Drain Transmitters -- 11.8 Differential Current Mode Transmitters -- 11.9 Low Swing/Differential Receivers -- 11.10 IBIS Models -- 11.11 Summary -- 11.12 References -- 11.13 Problems -- Chapter 12: Equalization -- 12.1 Introduction -- 12.2 Continuous Time Linear Equalizers -- 12.3 Discrete Linear Equalizers -- 12.4 Decision Feedback Equalization -- 12.5 Summary -- 12.6 References -- 12.7 Problems -- Chapter 13: Modeling and Budgeting of Timing Jitter and Noise -- 13.1 The Eye Diagram -- 13.2 Bit Error Rate -- 13.3 Jitter Sources and Budgets -- 13.4 Noise Sources and Budgets -- 13.5 Peak Distortion Analysis Methods -- 13.6 Summary -- 13.7 References -- 13.8 Problems -- Chapter 14: System Analysis Using Response Surface Modeling -- 14.1 Introduction -- 14.2 Case Study: 10 Gb/s differential PCB interface -- 14.3 RSM Construction by Least Squares Fitting -- 14.4 Measures of Fit -- 14.5 Significance Testing -- 14.6 Confidence Intervals -- 14.7 Sensitivity Analysis and Design Optimization -- 14.8 Defect Rate Prediction Using Monte Carlo Simulation -- 14.9 Additional RSM Considerations -- 14.10 Summary.
14.11 References -- 14.12 Problems -- Appendix A: Useful formulae, identities, units and constants -- Appendix B: 4-port Conversions between T and S-parameters -- Appendix C: Critical values of the F-statistic -- Appendix D: Critical values of the t-statistic -- Appendix E: Derivation of the internal inductance using the Hilbert Transform.
Record Nr. UNINA-9910145958803321
Hall Stephen H.  
Hoboken, New Jersey : , : John Wiley & Sons, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced signal integrity for high-speed digital designs / / Stephen H. Hall, Howard L. Heck
Advanced signal integrity for high-speed digital designs / / Stephen H. Hall, Howard L. Heck
Autore Hall Stephen H.
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2009
Descrizione fisica 1 online resource (680 p.)
Disciplina 621.381
Altri autori (Persone) HeckHoward L
Soggetto topico Digital electronics
Logic design
Signal integrity (Electronics)
ISBN 1-118-21068-9
1-282-13710-7
9786612137105
0-470-42389-7
0-470-42388-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Acknowledgments -- Chapter 1: Introduction: The importance of signal integrity -- 1.1 Computing Power: Past and Future -- 1.2 The problem -- 1.3 The Basics -- 1.4 A new realm of bus design -- 1.5 Scope -- 1.6 Summary -- 1.7 References -- Chapter 2: Electromagnetic Fundamentals for Signal Integrity -- 2.1 Introduction -- 2.2 Maxwell's Equations -- 2.3 Common Vector Operators -- 2.4 Wave Propagation -- 2.5 Electrostatics -- 2.6 Magnetostatics -- 2.7 Power Flow and the Poynting Vector -- 2.8 Reflections of Electromagnetic Waves -- 2.9 References -- 2.10 Problems -- Chapter 3: Ideal Transmission Line Fundamentals -- 3.1 Transmission Line Structures -- 3.2 Wave propagation on loss free transmission lines -- 3.3 Transmission line properties -- 3.4 Transmission line parameters for the loss free case -- 3.5 Transmission line reflections -- 3.6 Time domain Reflectometry -- 3.7 References -- 3.8 Problems -- Chapter 4: Crosstalk -- 4.1 Mutual Inductance and Capacitance -- 4.2 Coupled Wave Equations -- 4.3 Coupled Line Analysis -- 4.4 Modal Analysis -- 4.5 Crosstalk Minimization -- 4.6 Summary -- 4.7 References -- 4.8 Problems -- Chapter 5: Non-ideal conductor models for transmission lines -- 5.1 Signals propagating in an unbounded conductive media -- 5.2 Classic conductor model for transmission lines -- 5.3 Surface Roughness -- 5.4 Transmission line parameters with a non-ideal conductor -- 5.5 Problems -- Chapter 6: Electrical properties of dielectrics -- 6.1 Polarization of dielectrics -- 6.2 Classification of dielectric materials -- 6.3 Frequency dependent dielectric behavior -- 6.4 Properties of a physical dielectric model -- 6.5 The fiber-weave effect -- 6.6 Environmental variation in dielectric behavior -- 6.7 Transmission line parameters for lossy dielectrics and realistic conductors -- 6.8 References -- 6.9 Problems -- Chapter 7: Differential signaling -- 7.1 Removal of common mode noise -- 7.2 Differential Crosstalk -- 7.3 Virtual reference plane -- 7.4 Propagation of Modal Voltages.
7.5 Common terminology -- 7.6 Drawbacks of differential signaling -- 7.7 References -- 7.8 Problems -- Chapter 8: Mathematical Requirements of Physical Channels -- 8.1 Frequency domain effects in time domain simulations -- 8.2 Requirements for a physical Channel -- 8.3 References -- 8.4 Problems -- Chapter 9: Network Analysis for Digital Engineers -- 9.1 High frequency voltage and current waves -- 9.2 Network Theory -- 9.3 Properties of Physical S-parameters -- 9.4 References -- 9.5 Problems -- Chapter 10: Topics in High-Speed Channel Modeling -- 10.1 Creating a physical transmission line mode -- 10.2 Non-Ideal Return Paths -- 10.3 Vias -- 10.4 References -- 10.5 Problems -- Chapter 11: I/O Circuits and Models -- 11.1 Introduction -- 11.2 Push-Pull Transmitters -- 11.3 CMOS Receivers -- 11.4 ESD Protection Circuits -- 11.5 On-Chip Termination -- 11.6 Bergeron Diagrams -- 11.7 Open Drain Transmitters -- 11.8 Differential Current Mode Transmitters -- 11.9 Low Swing/Differential Receivers -- 11.10 IBIS Models -- 11.11 Summary -- 11.12 References -- 11.13 Problems -- Chapter 12: Equalization -- 12.1 Introduction -- 12.2 Continuous Time Linear Equalizers -- 12.3 Discrete Linear Equalizers -- 12.4 Decision Feedback Equalization -- 12.5 Summary -- 12.6 References -- 12.7 Problems -- Chapter 13: Modeling and Budgeting of Timing Jitter and Noise -- 13.1 The Eye Diagram -- 13.2 Bit Error Rate -- 13.3 Jitter Sources and Budgets -- 13.4 Noise Sources and Budgets -- 13.5 Peak Distortion Analysis Methods -- 13.6 Summary -- 13.7 References -- 13.8 Problems -- Chapter 14: System Analysis Using Response Surface Modeling -- 14.1 Introduction -- 14.2 Case Study: 10 Gb/s differential PCB interface -- 14.3 RSM Construction by Least Squares Fitting -- 14.4 Measures of Fit -- 14.5 Significance Testing -- 14.6 Confidence Intervals -- 14.7 Sensitivity Analysis and Design Optimization -- 14.8 Defect Rate Prediction Using Monte Carlo Simulation -- 14.9 Additional RSM Considerations -- 14.10 Summary.
14.11 References -- 14.12 Problems -- Appendix A: Useful formulae, identities, units and constants -- Appendix B: 4-port Conversions between T and S-parameters -- Appendix C: Critical values of the F-statistic -- Appendix D: Critical values of the t-statistic -- Appendix E: Derivation of the internal inductance using the Hilbert Transform.
Record Nr. UNINA-9910830770003321
Hall Stephen H.  
Hoboken, New Jersey : , : John Wiley & Sons, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced signal integrity for high-speed digital designs / / Stephen H. Hall, Howard L. Heck
Advanced signal integrity for high-speed digital designs / / Stephen H. Hall, Howard L. Heck
Autore Hall Stephen H
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, N.J., : John Wiley & Sons, 2009
Descrizione fisica 1 online resource (680 p.)
Disciplina 621.381
Altri autori (Persone) HeckHoward L
Soggetto topico Digital electronics
Logic design
Signal integrity (Electronics)
ISBN 1-118-21068-9
1-282-13710-7
9786612137105
0-470-42389-7
0-470-42388-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Acknowledgments -- Chapter 1: Introduction: The importance of signal integrity -- 1.1 Computing Power: Past and Future -- 1.2 The problem -- 1.3 The Basics -- 1.4 A new realm of bus design -- 1.5 Scope -- 1.6 Summary -- 1.7 References -- Chapter 2: Electromagnetic Fundamentals for Signal Integrity -- 2.1 Introduction -- 2.2 Maxwell's Equations -- 2.3 Common Vector Operators -- 2.4 Wave Propagation -- 2.5 Electrostatics -- 2.6 Magnetostatics -- 2.7 Power Flow and the Poynting Vector -- 2.8 Reflections of Electromagnetic Waves -- 2.9 References -- 2.10 Problems -- Chapter 3: Ideal Transmission Line Fundamentals -- 3.1 Transmission Line Structures -- 3.2 Wave propagation on loss free transmission lines -- 3.3 Transmission line properties -- 3.4 Transmission line parameters for the loss free case -- 3.5 Transmission line reflections -- 3.6 Time domain Reflectometry -- 3.7 References -- 3.8 Problems -- Chapter 4: Crosstalk -- 4.1 Mutual Inductance and Capacitance -- 4.2 Coupled Wave Equations -- 4.3 Coupled Line Analysis -- 4.4 Modal Analysis -- 4.5 Crosstalk Minimization -- 4.6 Summary -- 4.7 References -- 4.8 Problems -- Chapter 5: Non-ideal conductor models for transmission lines -- 5.1 Signals propagating in an unbounded conductive media -- 5.2 Classic conductor model for transmission lines -- 5.3 Surface Roughness -- 5.4 Transmission line parameters with a non-ideal conductor -- 5.5 Problems -- Chapter 6: Electrical properties of dielectrics -- 6.1 Polarization of dielectrics -- 6.2 Classification of dielectric materials -- 6.3 Frequency dependent dielectric behavior -- 6.4 Properties of a physical dielectric model -- 6.5 The fiber-weave effect -- 6.6 Environmental variation in dielectric behavior -- 6.7 Transmission line parameters for lossy dielectrics and realistic conductors -- 6.8 References -- 6.9 Problems -- Chapter 7: Differential signaling -- 7.1 Removal of common mode noise -- 7.2 Differential Crosstalk -- 7.3 Virtual reference plane -- 7.4 Propagation of Modal Voltages.
7.5 Common terminology -- 7.6 Drawbacks of differential signaling -- 7.7 References -- 7.8 Problems -- Chapter 8: Mathematical Requirements of Physical Channels -- 8.1 Frequency domain effects in time domain simulations -- 8.2 Requirements for a physical Channel -- 8.3 References -- 8.4 Problems -- Chapter 9: Network Analysis for Digital Engineers -- 9.1 High frequency voltage and current waves -- 9.2 Network Theory -- 9.3 Properties of Physical S-parameters -- 9.4 References -- 9.5 Problems -- Chapter 10: Topics in High-Speed Channel Modeling -- 10.1 Creating a physical transmission line mode -- 10.2 Non-Ideal Return Paths -- 10.3 Vias -- 10.4 References -- 10.5 Problems -- Chapter 11: I/O Circuits and Models -- 11.1 Introduction -- 11.2 Push-Pull Transmitters -- 11.3 CMOS Receivers -- 11.4 ESD Protection Circuits -- 11.5 On-Chip Termination -- 11.6 Bergeron Diagrams -- 11.7 Open Drain Transmitters -- 11.8 Differential Current Mode Transmitters -- 11.9 Low Swing/Differential Receivers -- 11.10 IBIS Models -- 11.11 Summary -- 11.12 References -- 11.13 Problems -- Chapter 12: Equalization -- 12.1 Introduction -- 12.2 Continuous Time Linear Equalizers -- 12.3 Discrete Linear Equalizers -- 12.4 Decision Feedback Equalization -- 12.5 Summary -- 12.6 References -- 12.7 Problems -- Chapter 13: Modeling and Budgeting of Timing Jitter and Noise -- 13.1 The Eye Diagram -- 13.2 Bit Error Rate -- 13.3 Jitter Sources and Budgets -- 13.4 Noise Sources and Budgets -- 13.5 Peak Distortion Analysis Methods -- 13.6 Summary -- 13.7 References -- 13.8 Problems -- Chapter 14: System Analysis Using Response Surface Modeling -- 14.1 Introduction -- 14.2 Case Study: 10 Gb/s differential PCB interface -- 14.3 RSM Construction by Least Squares Fitting -- 14.4 Measures of Fit -- 14.5 Significance Testing -- 14.6 Confidence Intervals -- 14.7 Sensitivity Analysis and Design Optimization -- 14.8 Defect Rate Prediction Using Monte Carlo Simulation -- 14.9 Additional RSM Considerations -- 14.10 Summary.
14.11 References -- 14.12 Problems -- Appendix A: Useful formulae, identities, units and constants -- Appendix B: 4-port Conversions between T and S-parameters -- Appendix C: Critical values of the F-statistic -- Appendix D: Critical values of the t-statistic -- Appendix E: Derivation of the internal inductance using the Hilbert Transform.
Record Nr. UNINA-9910877672003321
Hall Stephen H  
Hoboken, N.J., : John Wiley & Sons, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
EMC, SI & PI : 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity : July 30-August 3, 2018, Long Beach, CA / / Institute of Electrical and Electronics Engineers
EMC, SI & PI : 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity : July 30-August 3, 2018, Long Beach, CA / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2018
Descrizione fisica 1 online resource (532 pages)
Disciplina 621.38224
Soggetto topico Electromagnetic compatibility
Signal integrity (Electronics)
ISBN 1-5386-6621-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996280111803316
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2018
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
EMC, SI & PI : 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity : July 30-August 3, 2018, Long Beach, CA / / Institute of Electrical and Electronics Engineers
EMC, SI & PI : 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity : July 30-August 3, 2018, Long Beach, CA / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2018
Descrizione fisica 1 online resource (532 pages)
Disciplina 621.38224
Soggetto topico Electromagnetic compatibility
Signal integrity (Electronics)
ISBN 1-5386-6621-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910289355503321
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The foundations of signal integrity / / Paul G. Huray
The foundations of signal integrity / / Paul G. Huray
Autore Huray Paul G. <1941->
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press, , c2010
Descrizione fisica 1 online resource (363 p.)
Disciplina 530.141
621.3822
Soggetto topico Signal integrity (Electronics)
Electromagnetic interference - Prevention
Electric lines
ISBN 1-282-34836-1
9786612348365
0-470-54348-5
0-470-54346-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Intent of the Book -- 1. Plane Electromagnetic Waves -- Introduction -- 1.1 Propagating Plane Waves -- 1.2 Polarized Plane Waves -- 1.3 Doppler Shift -- 1.4 Plane Waves in a Lossy Medium -- 1.5 Dispersion and Group Velocity -- 1.6 Power and Energy Propagation -- 1.7 Momentum Propagation -- Endnotes -- 2. Plane Waves in Compound Media -- Introduction -- 2.1 Plane Wave Propagating in a Material as It Orthogonally Interacts with a Second Material -- 2.2 Electromagnetic Boundary Conditions -- 2.3 Plane Wave Propagating in a Material as It Orthogonally Interacts with Two Boundaries -- 2.4 Plane Wave Propagating in a Material as It Orthogonally Interacts with Multiple Boundaries -- 2.5 Polarized Plane Waves Propagating in a Material as They Interact Obliquely with a Boundary -- 2.6 Brewster's Law -- 2.7 Applications of Snell's Law and Brewster's Law -- Endnote -- 3. Transmission Lines and Waveguides -- 3.1 Infi nitely Long Transmission Lines -- 3.2 Governing Equations -- 3.3 Special Cases -- 3.4 Power Transmission -- 3.5 Finite Transmission Lines -- 3.6 Harmonic Waves in Finite Transmission Lines -- 3.7 Using AC Spice Models -- 3.8 Transient Waves in Finite Transmission Lines -- 4. Ideal Models vs Real-World Systems -- Introduction -- 4.1 Ideal Transmission Lines -- 4.2 Ideal Model Transmission Line Input and Output -- 4.3 Real-World Transmission Lines -- 4.4 Effects of Surface Roughness -- 4.5 Effects of the Propagating Material -- 4.6 Effects of Grain Boundaries -- 4.7 Effects of Permeability -- 4.8 Effects of Board Complexity -- 4.9 Final Conclusions for an Ideal versus a Real-World Transmission Line -- Endnotes -- 5. Complex Permittivity of Propagating Media -- Introduction -- 5.1 Basic Mechanisms of the Propagating Material -- 5.2 Permittivity of Permanent Polar Molecules -- 5.3 Induced Dipole Moments -- 5.4 Induced Dipole Response Function, G(τ) -- 5.5 Frequency Character of the Permittivity -- 5.6 Kramers-Kronig Relations for Induced Moments -- 5.7 Arbitrary Time Stimulus.
5.8 Conduction Electron Permittivity -- 5.9 Conductivity Response Function -- 5.10 Permittivity of Plasma Oscillations -- 5.11 Permittivity Summary -- 5.12 Empirical Permittivity -- 5.13 Theory Applied to Empirical Permittivity -- 5.14 Dispersion of a Signal Propagating through a Medium with Complex Permittivity -- Endnotes -- 6. Surface Roughness -- Introduction -- 6.1 Snowball Model for Surface Roughness -- 6.2 Perfect Electric Conductors in Static Fields -- 6.3 Spherical Conductors in Time-Varying Fields -- 6.4 The Far-Field Region -- 6.5 Electrodynamics in Good Conducting Spheres -- 6.6 Spherical Coordinate Analysis -- 6.7 Vector Helmholtz Equation Solutions -- 6.8 Multipole Moment Analysis -- 6.9 Scattering of Electromagnetic Waves -- 6.10 Power Scattered and Absorbed by Good Conducting Spheres -- 6.11 Applications of Fundamental Scattering -- Endnotes -- 7. Advanced Signal Integrity -- Introduction -- 7.1 Induced Surface Charges and Currents -- 7.2 Reduced Magnetic Dipole Moment Due to Field Penetration -- 7.3 Infl uence of a Surface Alloy Distribution -- 7.4 Screening of Neighboring Snowballs and Form Factors -- 7.5 Pulse Phase Delay and Signal Dispersion -- Chapter Conclusions -- Endnotes -- 8. Signal Integrity Simulations -- Introduction -- 8.1 Defi nition of Terms and Techniques -- 8.2 Circuit Simulation -- 8.3 Transient SPICE Simulation -- 8.4 Emerging SPICE Simulation Methods -- 8.5 Fast Convolution Analysis -- 8.6 Quasi-Static Field Solvers -- 8.7 Full-Wave 3-D FEM Field Solvers -- 8.8 Conclusions -- Endnotes -- Bibliography -- Index.
Record Nr. UNISA-996216181703316
Huray Paul G. <1941->  
Hoboken, New Jersey : , : IEEE Press, , c2010
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
The foundations of signal integrity / / Paul G. Huray
The foundations of signal integrity / / Paul G. Huray
Autore Huray Paul G. <1941->
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press, , c2010
Descrizione fisica 1 online resource (363 p.)
Disciplina 530.141
621.3822
Soggetto topico Signal integrity (Electronics)
Electromagnetic interference - Prevention
Electric lines
ISBN 1-282-34836-1
9786612348365
0-470-54348-5
0-470-54346-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Intent of the Book -- 1. Plane Electromagnetic Waves -- Introduction -- 1.1 Propagating Plane Waves -- 1.2 Polarized Plane Waves -- 1.3 Doppler Shift -- 1.4 Plane Waves in a Lossy Medium -- 1.5 Dispersion and Group Velocity -- 1.6 Power and Energy Propagation -- 1.7 Momentum Propagation -- Endnotes -- 2. Plane Waves in Compound Media -- Introduction -- 2.1 Plane Wave Propagating in a Material as It Orthogonally Interacts with a Second Material -- 2.2 Electromagnetic Boundary Conditions -- 2.3 Plane Wave Propagating in a Material as It Orthogonally Interacts with Two Boundaries -- 2.4 Plane Wave Propagating in a Material as It Orthogonally Interacts with Multiple Boundaries -- 2.5 Polarized Plane Waves Propagating in a Material as They Interact Obliquely with a Boundary -- 2.6 Brewster's Law -- 2.7 Applications of Snell's Law and Brewster's Law -- Endnote -- 3. Transmission Lines and Waveguides -- 3.1 Infi nitely Long Transmission Lines -- 3.2 Governing Equations -- 3.3 Special Cases -- 3.4 Power Transmission -- 3.5 Finite Transmission Lines -- 3.6 Harmonic Waves in Finite Transmission Lines -- 3.7 Using AC Spice Models -- 3.8 Transient Waves in Finite Transmission Lines -- 4. Ideal Models vs Real-World Systems -- Introduction -- 4.1 Ideal Transmission Lines -- 4.2 Ideal Model Transmission Line Input and Output -- 4.3 Real-World Transmission Lines -- 4.4 Effects of Surface Roughness -- 4.5 Effects of the Propagating Material -- 4.6 Effects of Grain Boundaries -- 4.7 Effects of Permeability -- 4.8 Effects of Board Complexity -- 4.9 Final Conclusions for an Ideal versus a Real-World Transmission Line -- Endnotes -- 5. Complex Permittivity of Propagating Media -- Introduction -- 5.1 Basic Mechanisms of the Propagating Material -- 5.2 Permittivity of Permanent Polar Molecules -- 5.3 Induced Dipole Moments -- 5.4 Induced Dipole Response Function, G(τ) -- 5.5 Frequency Character of the Permittivity -- 5.6 Kramers-Kronig Relations for Induced Moments -- 5.7 Arbitrary Time Stimulus.
5.8 Conduction Electron Permittivity -- 5.9 Conductivity Response Function -- 5.10 Permittivity of Plasma Oscillations -- 5.11 Permittivity Summary -- 5.12 Empirical Permittivity -- 5.13 Theory Applied to Empirical Permittivity -- 5.14 Dispersion of a Signal Propagating through a Medium with Complex Permittivity -- Endnotes -- 6. Surface Roughness -- Introduction -- 6.1 Snowball Model for Surface Roughness -- 6.2 Perfect Electric Conductors in Static Fields -- 6.3 Spherical Conductors in Time-Varying Fields -- 6.4 The Far-Field Region -- 6.5 Electrodynamics in Good Conducting Spheres -- 6.6 Spherical Coordinate Analysis -- 6.7 Vector Helmholtz Equation Solutions -- 6.8 Multipole Moment Analysis -- 6.9 Scattering of Electromagnetic Waves -- 6.10 Power Scattered and Absorbed by Good Conducting Spheres -- 6.11 Applications of Fundamental Scattering -- Endnotes -- 7. Advanced Signal Integrity -- Introduction -- 7.1 Induced Surface Charges and Currents -- 7.2 Reduced Magnetic Dipole Moment Due to Field Penetration -- 7.3 Infl uence of a Surface Alloy Distribution -- 7.4 Screening of Neighboring Snowballs and Form Factors -- 7.5 Pulse Phase Delay and Signal Dispersion -- Chapter Conclusions -- Endnotes -- 8. Signal Integrity Simulations -- Introduction -- 8.1 Defi nition of Terms and Techniques -- 8.2 Circuit Simulation -- 8.3 Transient SPICE Simulation -- 8.4 Emerging SPICE Simulation Methods -- 8.5 Fast Convolution Analysis -- 8.6 Quasi-Static Field Solvers -- 8.7 Full-Wave 3-D FEM Field Solvers -- 8.8 Conclusions -- Endnotes -- Bibliography -- Index.
Record Nr. UNINA-9910139886103321
Huray Paul G. <1941->  
Hoboken, New Jersey : , : IEEE Press, , c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The foundations of signal integrity / / Paul G. Huray
The foundations of signal integrity / / Paul G. Huray
Autore Huray Paul G. <1941->
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press, , c2010
Descrizione fisica 1 online resource (363 p.)
Disciplina 530.141
621.3822
Soggetto topico Signal integrity (Electronics)
Electromagnetic interference - Prevention
Electric lines
ISBN 1-282-34836-1
9786612348365
0-470-54348-5
0-470-54346-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Intent of the Book -- 1. Plane Electromagnetic Waves -- Introduction -- 1.1 Propagating Plane Waves -- 1.2 Polarized Plane Waves -- 1.3 Doppler Shift -- 1.4 Plane Waves in a Lossy Medium -- 1.5 Dispersion and Group Velocity -- 1.6 Power and Energy Propagation -- 1.7 Momentum Propagation -- Endnotes -- 2. Plane Waves in Compound Media -- Introduction -- 2.1 Plane Wave Propagating in a Material as It Orthogonally Interacts with a Second Material -- 2.2 Electromagnetic Boundary Conditions -- 2.3 Plane Wave Propagating in a Material as It Orthogonally Interacts with Two Boundaries -- 2.4 Plane Wave Propagating in a Material as It Orthogonally Interacts with Multiple Boundaries -- 2.5 Polarized Plane Waves Propagating in a Material as They Interact Obliquely with a Boundary -- 2.6 Brewster's Law -- 2.7 Applications of Snell's Law and Brewster's Law -- Endnote -- 3. Transmission Lines and Waveguides -- 3.1 Infi nitely Long Transmission Lines -- 3.2 Governing Equations -- 3.3 Special Cases -- 3.4 Power Transmission -- 3.5 Finite Transmission Lines -- 3.6 Harmonic Waves in Finite Transmission Lines -- 3.7 Using AC Spice Models -- 3.8 Transient Waves in Finite Transmission Lines -- 4. Ideal Models vs Real-World Systems -- Introduction -- 4.1 Ideal Transmission Lines -- 4.2 Ideal Model Transmission Line Input and Output -- 4.3 Real-World Transmission Lines -- 4.4 Effects of Surface Roughness -- 4.5 Effects of the Propagating Material -- 4.6 Effects of Grain Boundaries -- 4.7 Effects of Permeability -- 4.8 Effects of Board Complexity -- 4.9 Final Conclusions for an Ideal versus a Real-World Transmission Line -- Endnotes -- 5. Complex Permittivity of Propagating Media -- Introduction -- 5.1 Basic Mechanisms of the Propagating Material -- 5.2 Permittivity of Permanent Polar Molecules -- 5.3 Induced Dipole Moments -- 5.4 Induced Dipole Response Function, G(τ) -- 5.5 Frequency Character of the Permittivity -- 5.6 Kramers-Kronig Relations for Induced Moments -- 5.7 Arbitrary Time Stimulus.
5.8 Conduction Electron Permittivity -- 5.9 Conductivity Response Function -- 5.10 Permittivity of Plasma Oscillations -- 5.11 Permittivity Summary -- 5.12 Empirical Permittivity -- 5.13 Theory Applied to Empirical Permittivity -- 5.14 Dispersion of a Signal Propagating through a Medium with Complex Permittivity -- Endnotes -- 6. Surface Roughness -- Introduction -- 6.1 Snowball Model for Surface Roughness -- 6.2 Perfect Electric Conductors in Static Fields -- 6.3 Spherical Conductors in Time-Varying Fields -- 6.4 The Far-Field Region -- 6.5 Electrodynamics in Good Conducting Spheres -- 6.6 Spherical Coordinate Analysis -- 6.7 Vector Helmholtz Equation Solutions -- 6.8 Multipole Moment Analysis -- 6.9 Scattering of Electromagnetic Waves -- 6.10 Power Scattered and Absorbed by Good Conducting Spheres -- 6.11 Applications of Fundamental Scattering -- Endnotes -- 7. Advanced Signal Integrity -- Introduction -- 7.1 Induced Surface Charges and Currents -- 7.2 Reduced Magnetic Dipole Moment Due to Field Penetration -- 7.3 Infl uence of a Surface Alloy Distribution -- 7.4 Screening of Neighboring Snowballs and Form Factors -- 7.5 Pulse Phase Delay and Signal Dispersion -- Chapter Conclusions -- Endnotes -- 8. Signal Integrity Simulations -- Introduction -- 8.1 Defi nition of Terms and Techniques -- 8.2 Circuit Simulation -- 8.3 Transient SPICE Simulation -- 8.4 Emerging SPICE Simulation Methods -- 8.5 Fast Convolution Analysis -- 8.6 Quasi-Static Field Solvers -- 8.7 Full-Wave 3-D FEM Field Solvers -- 8.8 Conclusions -- Endnotes -- Bibliography -- Index.
Record Nr. UNINA-9910829838503321
Huray Paul G. <1941->  
Hoboken, New Jersey : , : IEEE Press, , c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The foundations of signal integrity / / Paul G. Huray
The foundations of signal integrity / / Paul G. Huray
Autore Huray Paul G. <1941->
Pubbl/distr/stampa Hoboken, NJ, : J. Wiley, 2009
Descrizione fisica 1 online resource (363 p.)
Disciplina 530.141
621.3822
Soggetto topico Signal integrity (Electronics)
Electromagnetic interference - Prevention
Electric lines
ISBN 1-282-34836-1
9786612348365
0-470-54348-5
0-470-54346-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Intent of the Book -- 1. Plane Electromagnetic Waves -- Introduction -- 1.1 Propagating Plane Waves -- 1.2 Polarized Plane Waves -- 1.3 Doppler Shift -- 1.4 Plane Waves in a Lossy Medium -- 1.5 Dispersion and Group Velocity -- 1.6 Power and Energy Propagation -- 1.7 Momentum Propagation -- Endnotes -- 2. Plane Waves in Compound Media -- Introduction -- 2.1 Plane Wave Propagating in a Material as It Orthogonally Interacts with a Second Material -- 2.2 Electromagnetic Boundary Conditions -- 2.3 Plane Wave Propagating in a Material as It Orthogonally Interacts with Two Boundaries -- 2.4 Plane Wave Propagating in a Material as It Orthogonally Interacts with Multiple Boundaries -- 2.5 Polarized Plane Waves Propagating in a Material as They Interact Obliquely with a Boundary -- 2.6 Brewster's Law -- 2.7 Applications of Snell's Law and Brewster's Law -- Endnote -- 3. Transmission Lines and Waveguides -- 3.1 Infi nitely Long Transmission Lines -- 3.2 Governing Equations -- 3.3 Special Cases -- 3.4 Power Transmission -- 3.5 Finite Transmission Lines -- 3.6 Harmonic Waves in Finite Transmission Lines -- 3.7 Using AC Spice Models -- 3.8 Transient Waves in Finite Transmission Lines -- 4. Ideal Models vs Real-World Systems -- Introduction -- 4.1 Ideal Transmission Lines -- 4.2 Ideal Model Transmission Line Input and Output -- 4.3 Real-World Transmission Lines -- 4.4 Effects of Surface Roughness -- 4.5 Effects of the Propagating Material -- 4.6 Effects of Grain Boundaries -- 4.7 Effects of Permeability -- 4.8 Effects of Board Complexity -- 4.9 Final Conclusions for an Ideal versus a Real-World Transmission Line -- Endnotes -- 5. Complex Permittivity of Propagating Media -- Introduction -- 5.1 Basic Mechanisms of the Propagating Material -- 5.2 Permittivity of Permanent Polar Molecules -- 5.3 Induced Dipole Moments -- 5.4 Induced Dipole Response Function, G(τ) -- 5.5 Frequency Character of the Permittivity -- 5.6 Kramers-Kronig Relations for Induced Moments -- 5.7 Arbitrary Time Stimulus.
5.8 Conduction Electron Permittivity -- 5.9 Conductivity Response Function -- 5.10 Permittivity of Plasma Oscillations -- 5.11 Permittivity Summary -- 5.12 Empirical Permittivity -- 5.13 Theory Applied to Empirical Permittivity -- 5.14 Dispersion of a Signal Propagating through a Medium with Complex Permittivity -- Endnotes -- 6. Surface Roughness -- Introduction -- 6.1 Snowball Model for Surface Roughness -- 6.2 Perfect Electric Conductors in Static Fields -- 6.3 Spherical Conductors in Time-Varying Fields -- 6.4 The Far-Field Region -- 6.5 Electrodynamics in Good Conducting Spheres -- 6.6 Spherical Coordinate Analysis -- 6.7 Vector Helmholtz Equation Solutions -- 6.8 Multipole Moment Analysis -- 6.9 Scattering of Electromagnetic Waves -- 6.10 Power Scattered and Absorbed by Good Conducting Spheres -- 6.11 Applications of Fundamental Scattering -- Endnotes -- 7. Advanced Signal Integrity -- Introduction -- 7.1 Induced Surface Charges and Currents -- 7.2 Reduced Magnetic Dipole Moment Due to Field Penetration -- 7.3 Infl uence of a Surface Alloy Distribution -- 7.4 Screening of Neighboring Snowballs and Form Factors -- 7.5 Pulse Phase Delay and Signal Dispersion -- Chapter Conclusions -- Endnotes -- 8. Signal Integrity Simulations -- Introduction -- 8.1 Defi nition of Terms and Techniques -- 8.2 Circuit Simulation -- 8.3 Transient SPICE Simulation -- 8.4 Emerging SPICE Simulation Methods -- 8.5 Fast Convolution Analysis -- 8.6 Quasi-Static Field Solvers -- 8.7 Full-Wave 3-D FEM Field Solvers -- 8.8 Conclusions -- Endnotes -- Bibliography -- Index.
Record Nr. UNINA-9910876661603321
Huray Paul G. <1941->  
Hoboken, NJ, : J. Wiley, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE transactions on signal and power integrity
IEEE transactions on signal and power integrity
Pubbl/distr/stampa [New York, New York] : , : IEEE, , 2022-
Disciplina 621
Soggetto topico Signal integrity (Electronics)
Integrated circuits - Design and construction
Soggetto genere / forma Periodicals.
ISSN 2768-1866
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti (T-SPI)
Transactions on signal and power integrity
TSPI
Record Nr. UNISA-996597072603316
[New York, New York] : , : IEEE, , 2022-
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui