top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
CTH analyses of fragment penetration through heat sink fins [[electronic resource] /] / by Anand Prakash
CTH analyses of fragment penetration through heat sink fins [[electronic resource] /] / by Anand Prakash
Autore Prakash Anand
Pubbl/distr/stampa Aberdeen Proving Ground, MD : , : Army Research Laboratory, , [2005]
Descrizione fisica 1 online resource (vi, 21 pages) : color illustrations
Collana ARL-TR
Soggetto topico Shock waves - Mathematical models
Penetration mechanics
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910697027403321
Prakash Anand  
Aberdeen Proving Ground, MD : , : Army Research Laboratory, , [2005]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
General relativistic self-similar waves that induce an anomalous acceleration into the standard model of cosmology / / Joel Smoller, Blake Temple
General relativistic self-similar waves that induce an anomalous acceleration into the standard model of cosmology / / Joel Smoller, Blake Temple
Autore Smoller Joel
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2011
Descrizione fisica 1 online resource (69 p.)
Disciplina 531/.1133
Collana Memoirs of the American Mathematical Society
Soggetto topico Einstein field equations
Shock waves - Mathematical models
Relativistic quantum theory
General relativity (Physics)
Soggetto genere / forma Electronic books.
ISBN 0-8218-9012-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""Chapter 2. Self-Similar Coordinates for the k=0 FRW Spacetime""; ""Chapter 3. The Expanding Wave Equations""; ""Chapter 4. Canonical Co-moving Coordinates and Comparison with the k=0 FRW Spacetimes""; ""Chapter 5. Leading Order Corrections to the Standard Model Induced by the Expanding Waves""; ""Chapter 6. A Foliation of the Expanding Wave Spacetimes into Flat Spacelike Hypersurfaces with Modified Scale Factor R(t)=ta.""; ""Chapter 7. Expanding Wave Corrections to the Standard Model in Approximate Co-moving Coordinates""
""Chapter 8. Redshift vs Luminosity Relations and the Anomalous Acceleration""""Chapter 9. Appendix: The Mirror Problem""; ""Chapter 10. Concluding Remarks""; ""Bibliography""
Record Nr. UNINA-9910478900403321
Smoller Joel  
Providence, Rhode Island : , : American Mathematical Society, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
General relativistic self-similar waves that induce an anomalous acceleration into the standard model of cosmology / / Joel Smoller, Blake Temple
General relativistic self-similar waves that induce an anomalous acceleration into the standard model of cosmology / / Joel Smoller, Blake Temple
Autore Smoller Joel
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2011
Descrizione fisica 1 online resource (69 p.)
Disciplina 531/.1133
Collana Memoirs of the American Mathematical Society
Soggetto topico Einstein field equations
Shock waves - Mathematical models
Relativistic quantum theory
General relativity (Physics)
ISBN 0-8218-9012-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""Chapter 2. Self-Similar Coordinates for the k=0 FRW Spacetime""; ""Chapter 3. The Expanding Wave Equations""; ""Chapter 4. Canonical Co-moving Coordinates and Comparison with the k=0 FRW Spacetimes""; ""Chapter 5. Leading Order Corrections to the Standard Model Induced by the Expanding Waves""; ""Chapter 6. A Foliation of the Expanding Wave Spacetimes into Flat Spacelike Hypersurfaces with Modified Scale Factor R(t)=ta.""; ""Chapter 7. Expanding Wave Corrections to the Standard Model in Approximate Co-moving Coordinates""
""Chapter 8. Redshift vs Luminosity Relations and the Anomalous Acceleration""""Chapter 9. Appendix: The Mirror Problem""; ""Chapter 10. Concluding Remarks""; ""Bibliography""
Record Nr. UNINA-9910788618703321
Smoller Joel  
Providence, Rhode Island : , : American Mathematical Society, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
General relativistic self-similar waves that induce an anomalous acceleration into the standard model of cosmology / / Joel Smoller, Blake Temple
General relativistic self-similar waves that induce an anomalous acceleration into the standard model of cosmology / / Joel Smoller, Blake Temple
Autore Smoller Joel
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2011
Descrizione fisica 1 online resource (69 p.)
Disciplina 531/.1133
Collana Memoirs of the American Mathematical Society
Soggetto topico Einstein field equations
Shock waves - Mathematical models
Relativistic quantum theory
General relativity (Physics)
ISBN 0-8218-9012-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""Chapter 2. Self-Similar Coordinates for the k=0 FRW Spacetime""; ""Chapter 3. The Expanding Wave Equations""; ""Chapter 4. Canonical Co-moving Coordinates and Comparison with the k=0 FRW Spacetimes""; ""Chapter 5. Leading Order Corrections to the Standard Model Induced by the Expanding Waves""; ""Chapter 6. A Foliation of the Expanding Wave Spacetimes into Flat Spacelike Hypersurfaces with Modified Scale Factor R(t)=ta.""; ""Chapter 7. Expanding Wave Corrections to the Standard Model in Approximate Co-moving Coordinates""
""Chapter 8. Redshift vs Luminosity Relations and the Anomalous Acceleration""""Chapter 9. Appendix: The Mirror Problem""; ""Chapter 10. Concluding Remarks""; ""Bibliography""
Record Nr. UNINA-9910812544403321
Smoller Joel  
Providence, Rhode Island : , : American Mathematical Society, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiscale mechanics of shock wave processes / / Yurii Meshcheryakov
Multiscale mechanics of shock wave processes / / Yurii Meshcheryakov
Autore Meshcheryakov Yurii
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (196 pages)
Disciplina 515.3535
Collana Shock wave and high pressure phenomena
Soggetto topico Shock waves - Mathematical models
ISBN 981-16-4530-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Description of the Proposed Book -- Contents -- Part I Multiscale Deformation Fundamentals -- 1 The Kinetic Theory of Continuously Distributed Dislocations -- 1.1 The Dislocation Velocity Distribution Function -- 1.2 The Diffusion Coefficients of the Fokker-Planck Equation -- 1.3 Transport Equations -- References -- 2 Decay of Sub-microsecond Stress Pulses -- 2.1 Introduction -- 2.2 Dislocation Kinetics and Structure of Shock Waves -- 2.3 Decay of Sub-microsecond Stress Pulses -- References -- 3 The Collectivisation of Dislocations and Formation of Mesoscale -- 3.1 Introduction -- 3.2 Formation of Dynamic Mesostructures -- 3.3 Accounting for the Processes of Multiplication and Annihilation of Dislocations -- References -- 4 Concept of the Mesoscale in Quasistatics and Dynamics -- 4.1 Introduction -- 4.2 Quasistatics -- 4.3 Dynamics -- References -- 5 The Mesoscale Velocity Distribution and Change of Regime of Shock Wave Propagation -- 5.1 Introduction -- 5.2 The Change of Regime of Shock Wave Propagation -- 5.3 Irreversible Momentum Exchange -- 5.4 Resonance Interaction of Structures and Shock Waves -- 5.5 Discussion -- 5.6 Conclusions -- References -- 6 Multiscale Modelling of Steady Shock Wave Propagation -- 6.1 Introduction -- 6.2 Coupling Between the Strain Rate and the Mesoparticle Velocity Distribution -- 6.3 The Relaxation Model for a Steady Shock Wave -- 6.4 Account for the Mesoscopic Effects -- 6.5 Conclusions -- References -- 7 On the Chaotic and Translational Motions of Elementary Carriers of Deformation at the Mesoscale -- 7.1 Introduction -- 7.2 The Oscillating Regime of the Dynamically Deformed Heterogeneous Medium -- References -- Part II Mesoscale Approach to the Dynamic Properties of Materials -- 8 Experimental Techniques for Shock Loading -- 8.1 Introduction.
8.2 Shock Loading Under Uniaxial Strain Conditions -- 8.3 The Pulse Loading of Plane Targets with a High-Power Electron Beam -- 8.4 The Penetration of Elongated Hard Rods into Plane Target -- References -- 9 How to Measure the Parameters of Mesoscale -- 9.1 Introduction -- 9.2 Experimental Techniques -- 9.3 Analysis of the Velocity Interferometer Under Conditions of Mesoparticle Velocity Distribution. -- 9.4 Investigation of Shock Wave Processes Using the Interference Technique -- 9.5 A Two-Channel Velocity Interferometer -- 9.6 The Asymmetry of the Mesoparticle Velocity Distribution Function -- 9.7 The Determination of the Velocity Distribution at Mesoscale 2 by Using a Line Imaging Velocity Interferometer (LIV) and a Multi-Point VISAR Interferometer -- 9.8 The Specific Features of the Diagnostic Technique Used -- References -- 10 On the Kinetic Nature of Structural Instability and Localisation of Dynamic Deformation -- 10.1 Introduction -- 10.2 Interscale Momentum Exchange and the Kinetic Criterion for Transition into a Structurally Unstable State -- 10.3 On the Resonance Excitation of Mesoscale -- 10.4 Scenario 1: Quasi-Equilibrium Dynamic Deformation Below Critical Strain Rate to Non-Equilibrium Dynamic Deformation Transition -- 10.5 Scenario 2: The Shock-Induced Non-equilibrium Dynamic Deformation to Quasi-Equilibrium Dynamic Deformation Transition. Large-Scale Formations at Small Spatio-Temporal Scales -- 10.6 Structural Instability Under Dynamic Compression and Resistance to High-Velocity Penetration -- 10.7 The Effect of Velocity Non-uniformity on Penetration Depth -- References -- 11 Mesoscopic Criteria for the Dynamic Strength of Materials -- 11.1 Introduction -- 11.2 Mesoscale Criteria for Dynamic Strength -- 11.2.1 40CrNiMo Steel -- 11.3 Microstructural Investigations -- 11.3.1 38CrNi3MoV Steel -- 11.3.2 4340 Steel.
11.3.3 16Cr11Ni2V2MoV Steel -- 11.3.4 28Cr3CNiMoV Steel -- 11.4 Analysis of the Strength Behaviour of Steels -- 11.5 The Meso-macro-energy Exchange and Spallation -- 11.6 Conclusions -- 12 A Mesoscale Approach to Dynamic Recrystallisation -- 12.1 Introduction -- 12.2 The Reloading Regime as a Matter for Providing the Mesoscale Scenario for the Dynamic Recrystallisation -- 12.2.1 D-16 Aluminium Alloy -- 12.2.2 38CrNi3MoV -- 12.3 Regimes of Shock Wave Propagation and Dynamic Recrystallisation -- References -- 13 Multiscale Mechanisms of Dynamic Deformation Under High-Velocity Penetration -- 13.1 Introduction -- 13.2 Structural Instability and Spall Strength -- 13.3 The Structural Instability Threshold and High-Velocity Penetration -- 13.4 Resistance to High-Velocity Penetration and Velocity Defect -- 13.5 Spall Strength, Resistance to High-Velocity Penetration and Velocity Variance -- 13.6 Microstructural Investigations -- 13.7 Conclusions.
Record Nr. UNINA-9910502653403321
Meshcheryakov Yurii  
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiscale mechanics of shock wave processes / / Yurii Meshcheryakov
Multiscale mechanics of shock wave processes / / Yurii Meshcheryakov
Autore Meshcheryakov Yurii
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (196 pages)
Disciplina 515.3535
Collana Shock wave and high pressure phenomena
Soggetto topico Shock waves - Mathematical models
ISBN 981-16-4530-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Description of the Proposed Book -- Contents -- Part I Multiscale Deformation Fundamentals -- 1 The Kinetic Theory of Continuously Distributed Dislocations -- 1.1 The Dislocation Velocity Distribution Function -- 1.2 The Diffusion Coefficients of the Fokker-Planck Equation -- 1.3 Transport Equations -- References -- 2 Decay of Sub-microsecond Stress Pulses -- 2.1 Introduction -- 2.2 Dislocation Kinetics and Structure of Shock Waves -- 2.3 Decay of Sub-microsecond Stress Pulses -- References -- 3 The Collectivisation of Dislocations and Formation of Mesoscale -- 3.1 Introduction -- 3.2 Formation of Dynamic Mesostructures -- 3.3 Accounting for the Processes of Multiplication and Annihilation of Dislocations -- References -- 4 Concept of the Mesoscale in Quasistatics and Dynamics -- 4.1 Introduction -- 4.2 Quasistatics -- 4.3 Dynamics -- References -- 5 The Mesoscale Velocity Distribution and Change of Regime of Shock Wave Propagation -- 5.1 Introduction -- 5.2 The Change of Regime of Shock Wave Propagation -- 5.3 Irreversible Momentum Exchange -- 5.4 Resonance Interaction of Structures and Shock Waves -- 5.5 Discussion -- 5.6 Conclusions -- References -- 6 Multiscale Modelling of Steady Shock Wave Propagation -- 6.1 Introduction -- 6.2 Coupling Between the Strain Rate and the Mesoparticle Velocity Distribution -- 6.3 The Relaxation Model for a Steady Shock Wave -- 6.4 Account for the Mesoscopic Effects -- 6.5 Conclusions -- References -- 7 On the Chaotic and Translational Motions of Elementary Carriers of Deformation at the Mesoscale -- 7.1 Introduction -- 7.2 The Oscillating Regime of the Dynamically Deformed Heterogeneous Medium -- References -- Part II Mesoscale Approach to the Dynamic Properties of Materials -- 8 Experimental Techniques for Shock Loading -- 8.1 Introduction.
8.2 Shock Loading Under Uniaxial Strain Conditions -- 8.3 The Pulse Loading of Plane Targets with a High-Power Electron Beam -- 8.4 The Penetration of Elongated Hard Rods into Plane Target -- References -- 9 How to Measure the Parameters of Mesoscale -- 9.1 Introduction -- 9.2 Experimental Techniques -- 9.3 Analysis of the Velocity Interferometer Under Conditions of Mesoparticle Velocity Distribution. -- 9.4 Investigation of Shock Wave Processes Using the Interference Technique -- 9.5 A Two-Channel Velocity Interferometer -- 9.6 The Asymmetry of the Mesoparticle Velocity Distribution Function -- 9.7 The Determination of the Velocity Distribution at Mesoscale 2 by Using a Line Imaging Velocity Interferometer (LIV) and a Multi-Point VISAR Interferometer -- 9.8 The Specific Features of the Diagnostic Technique Used -- References -- 10 On the Kinetic Nature of Structural Instability and Localisation of Dynamic Deformation -- 10.1 Introduction -- 10.2 Interscale Momentum Exchange and the Kinetic Criterion for Transition into a Structurally Unstable State -- 10.3 On the Resonance Excitation of Mesoscale -- 10.4 Scenario 1: Quasi-Equilibrium Dynamic Deformation Below Critical Strain Rate to Non-Equilibrium Dynamic Deformation Transition -- 10.5 Scenario 2: The Shock-Induced Non-equilibrium Dynamic Deformation to Quasi-Equilibrium Dynamic Deformation Transition. Large-Scale Formations at Small Spatio-Temporal Scales -- 10.6 Structural Instability Under Dynamic Compression and Resistance to High-Velocity Penetration -- 10.7 The Effect of Velocity Non-uniformity on Penetration Depth -- References -- 11 Mesoscopic Criteria for the Dynamic Strength of Materials -- 11.1 Introduction -- 11.2 Mesoscale Criteria for Dynamic Strength -- 11.2.1 40CrNiMo Steel -- 11.3 Microstructural Investigations -- 11.3.1 38CrNi3MoV Steel -- 11.3.2 4340 Steel.
11.3.3 16Cr11Ni2V2MoV Steel -- 11.3.4 28Cr3CNiMoV Steel -- 11.4 Analysis of the Strength Behaviour of Steels -- 11.5 The Meso-macro-energy Exchange and Spallation -- 11.6 Conclusions -- 12 A Mesoscale Approach to Dynamic Recrystallisation -- 12.1 Introduction -- 12.2 The Reloading Regime as a Matter for Providing the Mesoscale Scenario for the Dynamic Recrystallisation -- 12.2.1 D-16 Aluminium Alloy -- 12.2.2 38CrNi3MoV -- 12.3 Regimes of Shock Wave Propagation and Dynamic Recrystallisation -- References -- 13 Multiscale Mechanisms of Dynamic Deformation Under High-Velocity Penetration -- 13.1 Introduction -- 13.2 Structural Instability and Spall Strength -- 13.3 The Structural Instability Threshold and High-Velocity Penetration -- 13.4 Resistance to High-Velocity Penetration and Velocity Defect -- 13.5 Spall Strength, Resistance to High-Velocity Penetration and Velocity Variance -- 13.6 Microstructural Investigations -- 13.7 Conclusions.
Record Nr. UNISA-996466741303316
Meshcheryakov Yurii  
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Specification development / / Christian Lalanne
Specification development / / Christian Lalanne
Autore Lalanne Christian
Edizione [Third edition.]
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley and Sons, , 2014
Descrizione fisica 1 online resource (555 p.)
Disciplina 620.1054
Collana Mechanical Vibration and Shock Analysis
Soggetto topico Shock (Mechanics)
Shock waves - Mathematical models
ISBN 1-5231-1095-3
1-118-93123-8
1-118-93121-1
1-118-93122-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Foreword to Series; Introduction; List of Symbols; Chapter 1. Extreme Response Spectrum of a Sinusoidal Vibration; 1.1. The effects of vibration; 1.2. Extreme response spectrum of a sinusoidal vibration; 1.2.1. Definition; 1.2.2. Case of a single sinusoid; 1.2.3. General case; 1.2.4. Case of a periodic signal; 1.2.5. Case of n harmonic sinusoids; 1.2.6. Influence of the dephasing between the sinusoids; 1.3. Extreme response spectrum of a swept sine vibration; 1.3.1. Sinusoid of constant amplitude throughout the sweeping process
1.3.2. Swept sine composed of several constant levelsChapter 2. Extreme Response Spectrum of a Random Vibration; 2.1. Unspecified vibratory signal; 2.2. Gaussian stationary random signal; 2.2.1. Calculation from peak distribution; 2.2.2. Use of the largest peak distribution law; 2.2.3. Response spectrum defined by k times the rms response; 2.2.4. Other ERS calculation methods; 2.3. Limit of the ERS at the high frequencies; 2.4. Response spectrum with up-crossing risk; 2.4.1. Complete expression; 2.4.2. Approximate relation; 2.4.3. Approximate relation URS - PSD
2.4.4. Calculation in a hypothesis of independence of threshold overshoot2.4.5. Use of URS; 2.5. Comparison of the various formulae; 2.6. Effects of peak truncation on the acceleration time history; 2.6.1. Extreme response spectra calculated from the time history signal; 2.6.2. Extreme response spectra calculated from the power spectral densities; 2.6.3. Comparison of extreme response spectra calculated from time history signals and power spectral densities; 2.7. Sinusoidal vibration superimposed on a broadband random vibration; 2.7.1. Real environment
2.7.2. Case of a single sinusoid superimposed to a wideband noise2.7.3. Case of several sinusoidal lines superimposed on a broadband random vibration; 2.8. Swept sine superimposed on a broadband random vibration; 2.8.1. Real environment; 2.8.2. Case of a single swept sine superimposed to a wideband noise; 2.8.3. Case of several swept sines superimposed on a broadband random vibration; 2.9. Swept narrowbands on a wideband random vibration; 2.9.1. Real environment; 2.9.2. Extreme response spectrum; Chapter 3. Fatigue Damage Spectrum of a Sinusoidal Vibration
3.1. Fatigue damage spectrum definition3.2. Fatigue damage spectrum of a single sinusoid; 3.3. Fatigue damage spectrum of a periodic signal; 3.4. General expression for the damage; 3.5. Fatigue damage with other assumptions on the S-N curve; 3.5.1. Taking account of fatigue limit; 3.5.2. Cases where the S-N curve is approximated by a straight line in log-lin scales; 3.5.3. Comparison of the damage when the S-N curves are linear in either log-log or log-lin scales; 3.6. Fatigue damage generated by a swept sine vibration on a single-degree-of-freedom linear system; 3.6.1. General case
3.6.2. Linear sweep
Record Nr. UNINA-9910132211003321
Lalanne Christian  
London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley and Sons, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Specification development / / Christian Lalanne
Specification development / / Christian Lalanne
Autore Lalanne Christian
Edizione [Third edition.]
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley and Sons, , 2014
Descrizione fisica 1 online resource (555 p.)
Disciplina 620.1054
Collana Mechanical Vibration and Shock Analysis
Soggetto topico Shock (Mechanics)
Shock waves - Mathematical models
ISBN 1-5231-1095-3
1-118-93123-8
1-118-93121-1
1-118-93122-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Foreword to Series; Introduction; List of Symbols; Chapter 1. Extreme Response Spectrum of a Sinusoidal Vibration; 1.1. The effects of vibration; 1.2. Extreme response spectrum of a sinusoidal vibration; 1.2.1. Definition; 1.2.2. Case of a single sinusoid; 1.2.3. General case; 1.2.4. Case of a periodic signal; 1.2.5. Case of n harmonic sinusoids; 1.2.6. Influence of the dephasing between the sinusoids; 1.3. Extreme response spectrum of a swept sine vibration; 1.3.1. Sinusoid of constant amplitude throughout the sweeping process
1.3.2. Swept sine composed of several constant levelsChapter 2. Extreme Response Spectrum of a Random Vibration; 2.1. Unspecified vibratory signal; 2.2. Gaussian stationary random signal; 2.2.1. Calculation from peak distribution; 2.2.2. Use of the largest peak distribution law; 2.2.3. Response spectrum defined by k times the rms response; 2.2.4. Other ERS calculation methods; 2.3. Limit of the ERS at the high frequencies; 2.4. Response spectrum with up-crossing risk; 2.4.1. Complete expression; 2.4.2. Approximate relation; 2.4.3. Approximate relation URS - PSD
2.4.4. Calculation in a hypothesis of independence of threshold overshoot2.4.5. Use of URS; 2.5. Comparison of the various formulae; 2.6. Effects of peak truncation on the acceleration time history; 2.6.1. Extreme response spectra calculated from the time history signal; 2.6.2. Extreme response spectra calculated from the power spectral densities; 2.6.3. Comparison of extreme response spectra calculated from time history signals and power spectral densities; 2.7. Sinusoidal vibration superimposed on a broadband random vibration; 2.7.1. Real environment
2.7.2. Case of a single sinusoid superimposed to a wideband noise2.7.3. Case of several sinusoidal lines superimposed on a broadband random vibration; 2.8. Swept sine superimposed on a broadband random vibration; 2.8.1. Real environment; 2.8.2. Case of a single swept sine superimposed to a wideband noise; 2.8.3. Case of several swept sines superimposed on a broadband random vibration; 2.9. Swept narrowbands on a wideband random vibration; 2.9.1. Real environment; 2.9.2. Extreme response spectrum; Chapter 3. Fatigue Damage Spectrum of a Sinusoidal Vibration
3.1. Fatigue damage spectrum definition3.2. Fatigue damage spectrum of a single sinusoid; 3.3. Fatigue damage spectrum of a periodic signal; 3.4. General expression for the damage; 3.5. Fatigue damage with other assumptions on the S-N curve; 3.5.1. Taking account of fatigue limit; 3.5.2. Cases where the S-N curve is approximated by a straight line in log-lin scales; 3.5.3. Comparison of the damage when the S-N curves are linear in either log-log or log-lin scales; 3.6. Fatigue damage generated by a swept sine vibration on a single-degree-of-freedom linear system; 3.6.1. General case
3.6.2. Linear sweep
Record Nr. UNINA-9910829288703321
Lalanne Christian  
London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley and Sons, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui