CTH analyses of fragment penetration through heat sink fins [[electronic resource] /] / by Anand Prakash
| CTH analyses of fragment penetration through heat sink fins [[electronic resource] /] / by Anand Prakash |
| Autore | Prakash Anand |
| Pubbl/distr/stampa | Aberdeen Proving Ground, MD : , : Army Research Laboratory, , [2005] |
| Descrizione fisica | 1 online resource (vi, 21 pages) : color illustrations |
| Collana | ARL-TR |
| Soggetto topico |
Shock waves - Mathematical models
Penetration mechanics |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910697027403321 |
Prakash Anand
|
||
| Aberdeen Proving Ground, MD : , : Army Research Laboratory, , [2005] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
General relativistic self-similar waves that induce an anomalous acceleration into the standard model of cosmology / / Joel Smoller, Blake Temple
| General relativistic self-similar waves that induce an anomalous acceleration into the standard model of cosmology / / Joel Smoller, Blake Temple |
| Autore | Smoller Joel |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2011 |
| Descrizione fisica | 1 online resource (69 p.) |
| Disciplina | 531/.1133 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Einstein field equations
Shock waves - Mathematical models Relativistic quantum theory General relativity (Physics) |
| Soggetto genere / forma | Electronic books. |
| ISBN | 0-8218-9012-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""Chapter 2. Self-Similar Coordinates for the k=0 FRW Spacetime""; ""Chapter 3. The Expanding Wave Equations""; ""Chapter 4. Canonical Co-moving Coordinates and Comparison with the k=0 FRW Spacetimes""; ""Chapter 5. Leading Order Corrections to the Standard Model Induced by the Expanding Waves""; ""Chapter 6. A Foliation of the Expanding Wave Spacetimes into Flat Spacelike Hypersurfaces with Modified Scale Factor R(t)=ta.""; ""Chapter 7. Expanding Wave Corrections to the Standard Model in Approximate Co-moving Coordinates""
""Chapter 8. Redshift vs Luminosity Relations and the Anomalous Acceleration""""Chapter 9. Appendix: The Mirror Problem""; ""Chapter 10. Concluding Remarks""; ""Bibliography"" |
| Record Nr. | UNINA-9910478900403321 |
Smoller Joel
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
General relativistic self-similar waves that induce an anomalous acceleration into the standard model of cosmology / / Joel Smoller, Blake Temple
| General relativistic self-similar waves that induce an anomalous acceleration into the standard model of cosmology / / Joel Smoller, Blake Temple |
| Autore | Smoller Joel |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2011 |
| Descrizione fisica | 1 online resource (69 p.) |
| Disciplina | 531/.1133 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Einstein field equations
Shock waves - Mathematical models Relativistic quantum theory General relativity (Physics) |
| ISBN | 0-8218-9012-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""Chapter 2. Self-Similar Coordinates for the k=0 FRW Spacetime""; ""Chapter 3. The Expanding Wave Equations""; ""Chapter 4. Canonical Co-moving Coordinates and Comparison with the k=0 FRW Spacetimes""; ""Chapter 5. Leading Order Corrections to the Standard Model Induced by the Expanding Waves""; ""Chapter 6. A Foliation of the Expanding Wave Spacetimes into Flat Spacelike Hypersurfaces with Modified Scale Factor R(t)=ta.""; ""Chapter 7. Expanding Wave Corrections to the Standard Model in Approximate Co-moving Coordinates""
""Chapter 8. Redshift vs Luminosity Relations and the Anomalous Acceleration""""Chapter 9. Appendix: The Mirror Problem""; ""Chapter 10. Concluding Remarks""; ""Bibliography"" |
| Record Nr. | UNINA-9910788618703321 |
Smoller Joel
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
General relativistic self-similar waves that induce an anomalous acceleration into the standard model of cosmology / / Joel Smoller, Blake Temple
| General relativistic self-similar waves that induce an anomalous acceleration into the standard model of cosmology / / Joel Smoller, Blake Temple |
| Autore | Smoller Joel |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2011 |
| Descrizione fisica | 1 online resource (69 p.) |
| Disciplina | 531/.1133 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Einstein field equations
Shock waves - Mathematical models Relativistic quantum theory General relativity (Physics) |
| ISBN | 0-8218-9012-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""Chapter 2. Self-Similar Coordinates for the k=0 FRW Spacetime""; ""Chapter 3. The Expanding Wave Equations""; ""Chapter 4. Canonical Co-moving Coordinates and Comparison with the k=0 FRW Spacetimes""; ""Chapter 5. Leading Order Corrections to the Standard Model Induced by the Expanding Waves""; ""Chapter 6. A Foliation of the Expanding Wave Spacetimes into Flat Spacelike Hypersurfaces with Modified Scale Factor R(t)=ta.""; ""Chapter 7. Expanding Wave Corrections to the Standard Model in Approximate Co-moving Coordinates""
""Chapter 8. Redshift vs Luminosity Relations and the Anomalous Acceleration""""Chapter 9. Appendix: The Mirror Problem""; ""Chapter 10. Concluding Remarks""; ""Bibliography"" |
| Record Nr. | UNINA-9910812544403321 |
Smoller Joel
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Multiscale mechanics of shock wave processes / / Yurii Meshcheryakov
| Multiscale mechanics of shock wave processes / / Yurii Meshcheryakov |
| Autore | Meshcheryakov Yurii |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (196 pages) |
| Disciplina | 515.3535 |
| Collana | Shock wave and high pressure phenomena |
| Soggetto topico | Shock waves - Mathematical models |
| ISBN | 981-16-4530-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Description of the Proposed Book -- Contents -- Part I Multiscale Deformation Fundamentals -- 1 The Kinetic Theory of Continuously Distributed Dislocations -- 1.1 The Dislocation Velocity Distribution Function -- 1.2 The Diffusion Coefficients of the Fokker-Planck Equation -- 1.3 Transport Equations -- References -- 2 Decay of Sub-microsecond Stress Pulses -- 2.1 Introduction -- 2.2 Dislocation Kinetics and Structure of Shock Waves -- 2.3 Decay of Sub-microsecond Stress Pulses -- References -- 3 The Collectivisation of Dislocations and Formation of Mesoscale -- 3.1 Introduction -- 3.2 Formation of Dynamic Mesostructures -- 3.3 Accounting for the Processes of Multiplication and Annihilation of Dislocations -- References -- 4 Concept of the Mesoscale in Quasistatics and Dynamics -- 4.1 Introduction -- 4.2 Quasistatics -- 4.3 Dynamics -- References -- 5 The Mesoscale Velocity Distribution and Change of Regime of Shock Wave Propagation -- 5.1 Introduction -- 5.2 The Change of Regime of Shock Wave Propagation -- 5.3 Irreversible Momentum Exchange -- 5.4 Resonance Interaction of Structures and Shock Waves -- 5.5 Discussion -- 5.6 Conclusions -- References -- 6 Multiscale Modelling of Steady Shock Wave Propagation -- 6.1 Introduction -- 6.2 Coupling Between the Strain Rate and the Mesoparticle Velocity Distribution -- 6.3 The Relaxation Model for a Steady Shock Wave -- 6.4 Account for the Mesoscopic Effects -- 6.5 Conclusions -- References -- 7 On the Chaotic and Translational Motions of Elementary Carriers of Deformation at the Mesoscale -- 7.1 Introduction -- 7.2 The Oscillating Regime of the Dynamically Deformed Heterogeneous Medium -- References -- Part II Mesoscale Approach to the Dynamic Properties of Materials -- 8 Experimental Techniques for Shock Loading -- 8.1 Introduction.
8.2 Shock Loading Under Uniaxial Strain Conditions -- 8.3 The Pulse Loading of Plane Targets with a High-Power Electron Beam -- 8.4 The Penetration of Elongated Hard Rods into Plane Target -- References -- 9 How to Measure the Parameters of Mesoscale -- 9.1 Introduction -- 9.2 Experimental Techniques -- 9.3 Analysis of the Velocity Interferometer Under Conditions of Mesoparticle Velocity Distribution. -- 9.4 Investigation of Shock Wave Processes Using the Interference Technique -- 9.5 A Two-Channel Velocity Interferometer -- 9.6 The Asymmetry of the Mesoparticle Velocity Distribution Function -- 9.7 The Determination of the Velocity Distribution at Mesoscale 2 by Using a Line Imaging Velocity Interferometer (LIV) and a Multi-Point VISAR Interferometer -- 9.8 The Specific Features of the Diagnostic Technique Used -- References -- 10 On the Kinetic Nature of Structural Instability and Localisation of Dynamic Deformation -- 10.1 Introduction -- 10.2 Interscale Momentum Exchange and the Kinetic Criterion for Transition into a Structurally Unstable State -- 10.3 On the Resonance Excitation of Mesoscale -- 10.4 Scenario 1: Quasi-Equilibrium Dynamic Deformation Below Critical Strain Rate to Non-Equilibrium Dynamic Deformation Transition -- 10.5 Scenario 2: The Shock-Induced Non-equilibrium Dynamic Deformation to Quasi-Equilibrium Dynamic Deformation Transition. Large-Scale Formations at Small Spatio-Temporal Scales -- 10.6 Structural Instability Under Dynamic Compression and Resistance to High-Velocity Penetration -- 10.7 The Effect of Velocity Non-uniformity on Penetration Depth -- References -- 11 Mesoscopic Criteria for the Dynamic Strength of Materials -- 11.1 Introduction -- 11.2 Mesoscale Criteria for Dynamic Strength -- 11.2.1 40CrNiMo Steel -- 11.3 Microstructural Investigations -- 11.3.1 38CrNi3MoV Steel -- 11.3.2 4340 Steel. 11.3.3 16Cr11Ni2V2MoV Steel -- 11.3.4 28Cr3CNiMoV Steel -- 11.4 Analysis of the Strength Behaviour of Steels -- 11.5 The Meso-macro-energy Exchange and Spallation -- 11.6 Conclusions -- 12 A Mesoscale Approach to Dynamic Recrystallisation -- 12.1 Introduction -- 12.2 The Reloading Regime as a Matter for Providing the Mesoscale Scenario for the Dynamic Recrystallisation -- 12.2.1 D-16 Aluminium Alloy -- 12.2.2 38CrNi3MoV -- 12.3 Regimes of Shock Wave Propagation and Dynamic Recrystallisation -- References -- 13 Multiscale Mechanisms of Dynamic Deformation Under High-Velocity Penetration -- 13.1 Introduction -- 13.2 Structural Instability and Spall Strength -- 13.3 The Structural Instability Threshold and High-Velocity Penetration -- 13.4 Resistance to High-Velocity Penetration and Velocity Defect -- 13.5 Spall Strength, Resistance to High-Velocity Penetration and Velocity Variance -- 13.6 Microstructural Investigations -- 13.7 Conclusions. |
| Record Nr. | UNINA-9910502653403321 |
Meshcheryakov Yurii
|
||
| Singapore : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Multiscale mechanics of shock wave processes / / Yurii Meshcheryakov
| Multiscale mechanics of shock wave processes / / Yurii Meshcheryakov |
| Autore | Meshcheryakov Yurii |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (196 pages) |
| Disciplina | 515.3535 |
| Collana | Shock wave and high pressure phenomena |
| Soggetto topico | Shock waves - Mathematical models |
| ISBN | 981-16-4530-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Description of the Proposed Book -- Contents -- Part I Multiscale Deformation Fundamentals -- 1 The Kinetic Theory of Continuously Distributed Dislocations -- 1.1 The Dislocation Velocity Distribution Function -- 1.2 The Diffusion Coefficients of the Fokker-Planck Equation -- 1.3 Transport Equations -- References -- 2 Decay of Sub-microsecond Stress Pulses -- 2.1 Introduction -- 2.2 Dislocation Kinetics and Structure of Shock Waves -- 2.3 Decay of Sub-microsecond Stress Pulses -- References -- 3 The Collectivisation of Dislocations and Formation of Mesoscale -- 3.1 Introduction -- 3.2 Formation of Dynamic Mesostructures -- 3.3 Accounting for the Processes of Multiplication and Annihilation of Dislocations -- References -- 4 Concept of the Mesoscale in Quasistatics and Dynamics -- 4.1 Introduction -- 4.2 Quasistatics -- 4.3 Dynamics -- References -- 5 The Mesoscale Velocity Distribution and Change of Regime of Shock Wave Propagation -- 5.1 Introduction -- 5.2 The Change of Regime of Shock Wave Propagation -- 5.3 Irreversible Momentum Exchange -- 5.4 Resonance Interaction of Structures and Shock Waves -- 5.5 Discussion -- 5.6 Conclusions -- References -- 6 Multiscale Modelling of Steady Shock Wave Propagation -- 6.1 Introduction -- 6.2 Coupling Between the Strain Rate and the Mesoparticle Velocity Distribution -- 6.3 The Relaxation Model for a Steady Shock Wave -- 6.4 Account for the Mesoscopic Effects -- 6.5 Conclusions -- References -- 7 On the Chaotic and Translational Motions of Elementary Carriers of Deformation at the Mesoscale -- 7.1 Introduction -- 7.2 The Oscillating Regime of the Dynamically Deformed Heterogeneous Medium -- References -- Part II Mesoscale Approach to the Dynamic Properties of Materials -- 8 Experimental Techniques for Shock Loading -- 8.1 Introduction.
8.2 Shock Loading Under Uniaxial Strain Conditions -- 8.3 The Pulse Loading of Plane Targets with a High-Power Electron Beam -- 8.4 The Penetration of Elongated Hard Rods into Plane Target -- References -- 9 How to Measure the Parameters of Mesoscale -- 9.1 Introduction -- 9.2 Experimental Techniques -- 9.3 Analysis of the Velocity Interferometer Under Conditions of Mesoparticle Velocity Distribution. -- 9.4 Investigation of Shock Wave Processes Using the Interference Technique -- 9.5 A Two-Channel Velocity Interferometer -- 9.6 The Asymmetry of the Mesoparticle Velocity Distribution Function -- 9.7 The Determination of the Velocity Distribution at Mesoscale 2 by Using a Line Imaging Velocity Interferometer (LIV) and a Multi-Point VISAR Interferometer -- 9.8 The Specific Features of the Diagnostic Technique Used -- References -- 10 On the Kinetic Nature of Structural Instability and Localisation of Dynamic Deformation -- 10.1 Introduction -- 10.2 Interscale Momentum Exchange and the Kinetic Criterion for Transition into a Structurally Unstable State -- 10.3 On the Resonance Excitation of Mesoscale -- 10.4 Scenario 1: Quasi-Equilibrium Dynamic Deformation Below Critical Strain Rate to Non-Equilibrium Dynamic Deformation Transition -- 10.5 Scenario 2: The Shock-Induced Non-equilibrium Dynamic Deformation to Quasi-Equilibrium Dynamic Deformation Transition. Large-Scale Formations at Small Spatio-Temporal Scales -- 10.6 Structural Instability Under Dynamic Compression and Resistance to High-Velocity Penetration -- 10.7 The Effect of Velocity Non-uniformity on Penetration Depth -- References -- 11 Mesoscopic Criteria for the Dynamic Strength of Materials -- 11.1 Introduction -- 11.2 Mesoscale Criteria for Dynamic Strength -- 11.2.1 40CrNiMo Steel -- 11.3 Microstructural Investigations -- 11.3.1 38CrNi3MoV Steel -- 11.3.2 4340 Steel. 11.3.3 16Cr11Ni2V2MoV Steel -- 11.3.4 28Cr3CNiMoV Steel -- 11.4 Analysis of the Strength Behaviour of Steels -- 11.5 The Meso-macro-energy Exchange and Spallation -- 11.6 Conclusions -- 12 A Mesoscale Approach to Dynamic Recrystallisation -- 12.1 Introduction -- 12.2 The Reloading Regime as a Matter for Providing the Mesoscale Scenario for the Dynamic Recrystallisation -- 12.2.1 D-16 Aluminium Alloy -- 12.2.2 38CrNi3MoV -- 12.3 Regimes of Shock Wave Propagation and Dynamic Recrystallisation -- References -- 13 Multiscale Mechanisms of Dynamic Deformation Under High-Velocity Penetration -- 13.1 Introduction -- 13.2 Structural Instability and Spall Strength -- 13.3 The Structural Instability Threshold and High-Velocity Penetration -- 13.4 Resistance to High-Velocity Penetration and Velocity Defect -- 13.5 Spall Strength, Resistance to High-Velocity Penetration and Velocity Variance -- 13.6 Microstructural Investigations -- 13.7 Conclusions. |
| Record Nr. | UNISA-996466741303316 |
Meshcheryakov Yurii
|
||
| Singapore : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Specification development / / Christian Lalanne
| Specification development / / Christian Lalanne |
| Autore | Lalanne Christian |
| Edizione | [Third edition.] |
| Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley and Sons, , 2014 |
| Descrizione fisica | 1 online resource (555 p.) |
| Disciplina | 620.1054 |
| Collana | Mechanical Vibration and Shock Analysis |
| Soggetto topico |
Shock (Mechanics)
Shock waves - Mathematical models |
| ISBN |
1-5231-1095-3
1-118-93123-8 1-118-93121-1 1-118-93122-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Copyright; Contents; Foreword to Series; Introduction; List of Symbols; Chapter 1. Extreme Response Spectrum of a Sinusoidal Vibration; 1.1. The effects of vibration; 1.2. Extreme response spectrum of a sinusoidal vibration; 1.2.1. Definition; 1.2.2. Case of a single sinusoid; 1.2.3. General case; 1.2.4. Case of a periodic signal; 1.2.5. Case of n harmonic sinusoids; 1.2.6. Influence of the dephasing between the sinusoids; 1.3. Extreme response spectrum of a swept sine vibration; 1.3.1. Sinusoid of constant amplitude throughout the sweeping process
1.3.2. Swept sine composed of several constant levelsChapter 2. Extreme Response Spectrum of a Random Vibration; 2.1. Unspecified vibratory signal; 2.2. Gaussian stationary random signal; 2.2.1. Calculation from peak distribution; 2.2.2. Use of the largest peak distribution law; 2.2.3. Response spectrum defined by k times the rms response; 2.2.4. Other ERS calculation methods; 2.3. Limit of the ERS at the high frequencies; 2.4. Response spectrum with up-crossing risk; 2.4.1. Complete expression; 2.4.2. Approximate relation; 2.4.3. Approximate relation URS - PSD 2.4.4. Calculation in a hypothesis of independence of threshold overshoot2.4.5. Use of URS; 2.5. Comparison of the various formulae; 2.6. Effects of peak truncation on the acceleration time history; 2.6.1. Extreme response spectra calculated from the time history signal; 2.6.2. Extreme response spectra calculated from the power spectral densities; 2.6.3. Comparison of extreme response spectra calculated from time history signals and power spectral densities; 2.7. Sinusoidal vibration superimposed on a broadband random vibration; 2.7.1. Real environment 2.7.2. Case of a single sinusoid superimposed to a wideband noise2.7.3. Case of several sinusoidal lines superimposed on a broadband random vibration; 2.8. Swept sine superimposed on a broadband random vibration; 2.8.1. Real environment; 2.8.2. Case of a single swept sine superimposed to a wideband noise; 2.8.3. Case of several swept sines superimposed on a broadband random vibration; 2.9. Swept narrowbands on a wideband random vibration; 2.9.1. Real environment; 2.9.2. Extreme response spectrum; Chapter 3. Fatigue Damage Spectrum of a Sinusoidal Vibration 3.1. Fatigue damage spectrum definition3.2. Fatigue damage spectrum of a single sinusoid; 3.3. Fatigue damage spectrum of a periodic signal; 3.4. General expression for the damage; 3.5. Fatigue damage with other assumptions on the S-N curve; 3.5.1. Taking account of fatigue limit; 3.5.2. Cases where the S-N curve is approximated by a straight line in log-lin scales; 3.5.3. Comparison of the damage when the S-N curves are linear in either log-log or log-lin scales; 3.6. Fatigue damage generated by a swept sine vibration on a single-degree-of-freedom linear system; 3.6.1. General case 3.6.2. Linear sweep |
| Record Nr. | UNINA-9910132211003321 |
Lalanne Christian
|
||
| London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley and Sons, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Specification development / / Christian Lalanne
| Specification development / / Christian Lalanne |
| Autore | Lalanne Christian |
| Edizione | [Third edition.] |
| Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley and Sons, , 2014 |
| Descrizione fisica | 1 online resource (555 p.) |
| Disciplina | 620.1054 |
| Collana | Mechanical Vibration and Shock Analysis |
| Soggetto topico |
Shock (Mechanics)
Shock waves - Mathematical models |
| ISBN |
1-5231-1095-3
1-118-93123-8 1-118-93121-1 1-118-93122-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Copyright; Contents; Foreword to Series; Introduction; List of Symbols; Chapter 1. Extreme Response Spectrum of a Sinusoidal Vibration; 1.1. The effects of vibration; 1.2. Extreme response spectrum of a sinusoidal vibration; 1.2.1. Definition; 1.2.2. Case of a single sinusoid; 1.2.3. General case; 1.2.4. Case of a periodic signal; 1.2.5. Case of n harmonic sinusoids; 1.2.6. Influence of the dephasing between the sinusoids; 1.3. Extreme response spectrum of a swept sine vibration; 1.3.1. Sinusoid of constant amplitude throughout the sweeping process
1.3.2. Swept sine composed of several constant levelsChapter 2. Extreme Response Spectrum of a Random Vibration; 2.1. Unspecified vibratory signal; 2.2. Gaussian stationary random signal; 2.2.1. Calculation from peak distribution; 2.2.2. Use of the largest peak distribution law; 2.2.3. Response spectrum defined by k times the rms response; 2.2.4. Other ERS calculation methods; 2.3. Limit of the ERS at the high frequencies; 2.4. Response spectrum with up-crossing risk; 2.4.1. Complete expression; 2.4.2. Approximate relation; 2.4.3. Approximate relation URS - PSD 2.4.4. Calculation in a hypothesis of independence of threshold overshoot2.4.5. Use of URS; 2.5. Comparison of the various formulae; 2.6. Effects of peak truncation on the acceleration time history; 2.6.1. Extreme response spectra calculated from the time history signal; 2.6.2. Extreme response spectra calculated from the power spectral densities; 2.6.3. Comparison of extreme response spectra calculated from time history signals and power spectral densities; 2.7. Sinusoidal vibration superimposed on a broadband random vibration; 2.7.1. Real environment 2.7.2. Case of a single sinusoid superimposed to a wideband noise2.7.3. Case of several sinusoidal lines superimposed on a broadband random vibration; 2.8. Swept sine superimposed on a broadband random vibration; 2.8.1. Real environment; 2.8.2. Case of a single swept sine superimposed to a wideband noise; 2.8.3. Case of several swept sines superimposed on a broadband random vibration; 2.9. Swept narrowbands on a wideband random vibration; 2.9.1. Real environment; 2.9.2. Extreme response spectrum; Chapter 3. Fatigue Damage Spectrum of a Sinusoidal Vibration 3.1. Fatigue damage spectrum definition3.2. Fatigue damage spectrum of a single sinusoid; 3.3. Fatigue damage spectrum of a periodic signal; 3.4. General expression for the damage; 3.5. Fatigue damage with other assumptions on the S-N curve; 3.5.1. Taking account of fatigue limit; 3.5.2. Cases where the S-N curve is approximated by a straight line in log-lin scales; 3.5.3. Comparison of the damage when the S-N curves are linear in either log-log or log-lin scales; 3.6. Fatigue damage generated by a swept sine vibration on a single-degree-of-freedom linear system; 3.6.1. General case 3.6.2. Linear sweep |
| Record Nr. | UNINA-9910829288703321 |
Lalanne Christian
|
||
| London, England ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley and Sons, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||