top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Hypermodels in mathematical finance [[electronic resource] ] : modelling via infinitesimal analysis / / Siu-Ah Ng
Hypermodels in mathematical finance [[electronic resource] ] : modelling via infinitesimal analysis / / Siu-Ah Ng
Autore Ng Siu-Ah
Pubbl/distr/stampa River Edge, N.J., : World Scientific, c2003
Descrizione fisica 1 online resource (313 p.)
Disciplina 332.6
Soggetto topico Investments - Mathematical models
Securities - Mathematical models
Risk management - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-281-87690-9
9786611876906
981-256-452-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; NOTATION AND CONVENTION; Chapter 1 Basic Concepts and Practice in Finance; Chapter 2 Infinitesimal Analysis and Hypermodels; Chapter 3 Absence of Arbitrage; Chapter 4 Explicit Option Pricing; Chapter 5 Pricing with Binary Tree Hypermodels; Chapter 6 Further Applications; Chapter 7 The Mathematics of Hypermodels; Appendix A Mathematica Programs; Bibliography; Index
Record Nr. UNINA-9910450124503321
Ng Siu-Ah  
River Edge, N.J., : World Scientific, c2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hypermodels in mathematical finance [[electronic resource] ] : modelling via infinitesimal analysis / / Siu-Ah Ng
Hypermodels in mathematical finance [[electronic resource] ] : modelling via infinitesimal analysis / / Siu-Ah Ng
Autore Ng Siu-Ah
Pubbl/distr/stampa River Edge, N.J., : World Scientific, c2003
Descrizione fisica 1 online resource (313 p.)
Disciplina 332.6
Soggetto topico Investments - Mathematical models
Securities - Mathematical models
Risk management - Mathematical models
ISBN 1-281-87690-9
9786611876906
981-256-452-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; NOTATION AND CONVENTION; Chapter 1 Basic Concepts and Practice in Finance; Chapter 2 Infinitesimal Analysis and Hypermodels; Chapter 3 Absence of Arbitrage; Chapter 4 Explicit Option Pricing; Chapter 5 Pricing with Binary Tree Hypermodels; Chapter 6 Further Applications; Chapter 7 The Mathematics of Hypermodels; Appendix A Mathematica Programs; Bibliography; Index
Record Nr. UNINA-9910783227403321
Ng Siu-Ah  
River Edge, N.J., : World Scientific, c2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hypermodels in mathematical finance : modelling via infinitesimal analysis / / Siu-Ah Ng
Hypermodels in mathematical finance : modelling via infinitesimal analysis / / Siu-Ah Ng
Autore Ng Siu-Ah
Edizione [1st ed.]
Pubbl/distr/stampa River Edge, N.J., : World Scientific, c2003
Descrizione fisica 1 online resource (313 p.)
Disciplina 332.6
Soggetto topico Investments - Mathematical models
Securities - Mathematical models
Risk management - Mathematical models
ISBN 1-281-87690-9
9786611876906
981-256-452-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; NOTATION AND CONVENTION; Chapter 1 Basic Concepts and Practice in Finance; Chapter 2 Infinitesimal Analysis and Hypermodels; Chapter 3 Absence of Arbitrage; Chapter 4 Explicit Option Pricing; Chapter 5 Pricing with Binary Tree Hypermodels; Chapter 6 Further Applications; Chapter 7 The Mathematics of Hypermodels; Appendix A Mathematica Programs; Bibliography; Index
Record Nr. UNINA-9910819736203321
Ng Siu-Ah  
River Edge, N.J., : World Scientific, c2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
An introduction to stochastic orders / / Félix Belzunce, Universidad de Murcia, Spain, Carolina Martínez-Riquelme, Universidad de Murcia, Spain, Julio Mulero Universidad de Alicante, Spain
An introduction to stochastic orders / / Félix Belzunce, Universidad de Murcia, Spain, Carolina Martínez-Riquelme, Universidad de Murcia, Spain, Julio Mulero Universidad de Alicante, Spain
Autore Belzunce Félix
Pubbl/distr/stampa Amsterdam, [Netherlands] : , : Academic Press, , 2016
Descrizione fisica 1 online resource (175 p.)
Disciplina 332.6320724
Soggetto topico Securities - Mathematical models
Transaction costs - Mathematical models
Liquidity (Economics) - Mathematical models
ISBN 0-12-803826-8
0-12-803768-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910797650703321
Belzunce Félix  
Amsterdam, [Netherlands] : , : Academic Press, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
An introduction to stochastic orders / / Félix Belzunce, Universidad de Murcia, Spain, Carolina Martínez-Riquelme, Universidad de Murcia, Spain, Julio Mulero Universidad de Alicante, Spain
An introduction to stochastic orders / / Félix Belzunce, Universidad de Murcia, Spain, Carolina Martínez-Riquelme, Universidad de Murcia, Spain, Julio Mulero Universidad de Alicante, Spain
Autore Belzunce Félix
Pubbl/distr/stampa Amsterdam, [Netherlands] : , : Academic Press, , 2016
Descrizione fisica 1 online resource (175 p.)
Disciplina 332.6320724
Soggetto topico Securities - Mathematical models
Transaction costs - Mathematical models
Liquidity (Economics) - Mathematical models
ISBN 0-12-803826-8
0-12-803768-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910820775203321
Belzunce Félix  
Amsterdam, [Netherlands] : , : Academic Press, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical finance [[electronic resource] ] : theory, modeling, implementation / / Christian Fries
Mathematical finance [[electronic resource] ] : theory, modeling, implementation / / Christian Fries
Autore Fries Christian <1970->
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2007
Descrizione fisica 1 online resource (544 p.)
Disciplina 332.601
332.6015195
Soggetto topico Derivative securities - Prices - Mathematical models
Securities - Mathematical models
Investments - Mathematical models
ISBN 1-280-97434-6
9786610974344
0-470-17978-3
0-470-17977-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Mathematical Finance: Theory, Modeling, Implementation; Contents; 1 Introduction; 1.1 Theory, Modeling, and Implementation; 1.2 Interest Rate Models and Interest Rate Derivatives; 1.3 About This Book; 1.3.1 How to Read This Book; 1.3.2 Abridged Versions; 1.3.3 Special Sections; 1.3.4 Notation; 1.3.5 Feedback; 1.3.6 Resources; I Foundations; 2 Foundations; 2.1 Probability Theory; 2.2 Stochastic Processes; 2.3 Filtration; 2.4 Brownian Motion; 2.5 Wiener Measure, Canonical Setup; 2.6 Itô Calculus; 2.6.1 Itô Integral; 2.6.2 Itô Process; 2.6.3 Itô Lemma and Product Rule
2.7 Brownian Motion with Instantaneous Correlation2.8 Martingales; 2.8.1 Martingale Representation Theorem; 2.9 Change of Measure; 2.10 Stochastic Integration; 2.11 Partial Differential Equations (PDEs); 2.11.1 Feynman-Kač Theorem; 2.12 List of Symbols; 3 Replication; 3.1 Replication Strategies; 3.1.1 Introduction; 3.1.2 Replication in a Discrete Model; 3.2 Foundations: Equivalent Martingale Measure; 3.2.1 Challenge and Solution Outline; 3.2.2 Steps toward the Universal Pricing Theorem; 3.3 Excursus: Relative Prices and Risk-Neutral Measures; 3.3.1 Why relative prices?
3.3.2 Risk-Neutral MeasureII First Applications; 4 Pricing of a European Stock Option under the Black-Scholes Model; 5 Excursus: The Density of the Underlying of a European Call Option; 6 Excursus: Interpolation of European Option Prices; 6.1 No-Arbitrage Conditions for Interpolated Prices; 6.2 Arbitrage Violations through Interpolation; 6.2.1 Example 1 : Interpolation of Four Prices; 6.2.2 Example 2: Interpolation of Two Prices; 6.3 Arbitrage- Free Interpolation of European Option Prices; 7 Hedging in Continuous and Discrete Time and the Greeks; 7.1 Introduction
7.2 Deriving the Replications Strategy from Pricing Theory7.2.1 Deriving the Replication Strategy under the Assumption of a Locally Riskless Product; 7.2.2 Black-Scholes Differential Equation; 7.2.3 Derivative V(t) as a Function of Its Underlyings S i(t); 7.2.4 Example: Replication Portfolio and PDE under a Black-Scholes Model; 7.3 Greeks; 7.3.1 Greeks of a European Call-Option under the Black-Scholes Model; 7.4 Hedging in Discrete Time: Delta and Delta-Gamma Hedging; 7.4.1 Delta Hedging; 7.4.2 Error Propagation; 7.4.3 Delta-Gamma Hedging; 7.4.4 Vega Hedging
7.5 Hedging in Discrete Time: Minimizing the Residual Error (Bouchaud-Sornette Method)7.5.1 Minimizing the Residual Error at Maturity T; 7.5.2 Minimizing the Residual Error in Each Time Step; III Interest Rate Structures, Interest Rate Products, and Analytic Pricing Formulas; Motivation and Overview; 8 Interest Rate Structures; 8.1 Introduction; 8.1.1 Fixing Times and Tenor Times; 8.2 Definitions; 8.3 Interest Rate Curve Bootstrapping; 8.4 Interpolation of Interest Rate Curves; 8.5 Implementation; 9 Simple Interest Rate Products; 9.1 Interest Rate Products Part 1: Products without Optionality
9.1.1 Fix, Floating, and Swap
Record Nr. UNINA-9910144721403321
Fries Christian <1970->  
Hoboken, N.J., : Wiley-Interscience, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical finance [[electronic resource] ] : theory, modeling, implementation / / Christian Fries
Mathematical finance [[electronic resource] ] : theory, modeling, implementation / / Christian Fries
Autore Fries Christian <1970->
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2007
Descrizione fisica 1 online resource (544 p.)
Disciplina 332.601
332.6015195
Soggetto topico Derivative securities - Prices - Mathematical models
Securities - Mathematical models
Investments - Mathematical models
ISBN 1-280-97434-6
9786610974344
0-470-17978-3
0-470-17977-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Mathematical Finance: Theory, Modeling, Implementation; Contents; 1 Introduction; 1.1 Theory, Modeling, and Implementation; 1.2 Interest Rate Models and Interest Rate Derivatives; 1.3 About This Book; 1.3.1 How to Read This Book; 1.3.2 Abridged Versions; 1.3.3 Special Sections; 1.3.4 Notation; 1.3.5 Feedback; 1.3.6 Resources; I Foundations; 2 Foundations; 2.1 Probability Theory; 2.2 Stochastic Processes; 2.3 Filtration; 2.4 Brownian Motion; 2.5 Wiener Measure, Canonical Setup; 2.6 Itô Calculus; 2.6.1 Itô Integral; 2.6.2 Itô Process; 2.6.3 Itô Lemma and Product Rule
2.7 Brownian Motion with Instantaneous Correlation2.8 Martingales; 2.8.1 Martingale Representation Theorem; 2.9 Change of Measure; 2.10 Stochastic Integration; 2.11 Partial Differential Equations (PDEs); 2.11.1 Feynman-Kač Theorem; 2.12 List of Symbols; 3 Replication; 3.1 Replication Strategies; 3.1.1 Introduction; 3.1.2 Replication in a Discrete Model; 3.2 Foundations: Equivalent Martingale Measure; 3.2.1 Challenge and Solution Outline; 3.2.2 Steps toward the Universal Pricing Theorem; 3.3 Excursus: Relative Prices and Risk-Neutral Measures; 3.3.1 Why relative prices?
3.3.2 Risk-Neutral MeasureII First Applications; 4 Pricing of a European Stock Option under the Black-Scholes Model; 5 Excursus: The Density of the Underlying of a European Call Option; 6 Excursus: Interpolation of European Option Prices; 6.1 No-Arbitrage Conditions for Interpolated Prices; 6.2 Arbitrage Violations through Interpolation; 6.2.1 Example 1 : Interpolation of Four Prices; 6.2.2 Example 2: Interpolation of Two Prices; 6.3 Arbitrage- Free Interpolation of European Option Prices; 7 Hedging in Continuous and Discrete Time and the Greeks; 7.1 Introduction
7.2 Deriving the Replications Strategy from Pricing Theory7.2.1 Deriving the Replication Strategy under the Assumption of a Locally Riskless Product; 7.2.2 Black-Scholes Differential Equation; 7.2.3 Derivative V(t) as a Function of Its Underlyings S i(t); 7.2.4 Example: Replication Portfolio and PDE under a Black-Scholes Model; 7.3 Greeks; 7.3.1 Greeks of a European Call-Option under the Black-Scholes Model; 7.4 Hedging in Discrete Time: Delta and Delta-Gamma Hedging; 7.4.1 Delta Hedging; 7.4.2 Error Propagation; 7.4.3 Delta-Gamma Hedging; 7.4.4 Vega Hedging
7.5 Hedging in Discrete Time: Minimizing the Residual Error (Bouchaud-Sornette Method)7.5.1 Minimizing the Residual Error at Maturity T; 7.5.2 Minimizing the Residual Error in Each Time Step; III Interest Rate Structures, Interest Rate Products, and Analytic Pricing Formulas; Motivation and Overview; 8 Interest Rate Structures; 8.1 Introduction; 8.1.1 Fixing Times and Tenor Times; 8.2 Definitions; 8.3 Interest Rate Curve Bootstrapping; 8.4 Interpolation of Interest Rate Curves; 8.5 Implementation; 9 Simple Interest Rate Products; 9.1 Interest Rate Products Part 1: Products without Optionality
9.1.1 Fix, Floating, and Swap
Record Nr. UNINA-9910829940203321
Fries Christian <1970->  
Hoboken, N.J., : Wiley-Interscience, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical finance : theory, modeling, implementation / / Christian Fries
Mathematical finance : theory, modeling, implementation / / Christian Fries
Autore Fries Christian <1970->
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2007
Descrizione fisica 1 online resource (544 p.)
Disciplina 332.601/5195
Soggetto topico Derivative securities - Prices - Mathematical models
Securities - Mathematical models
Investments - Mathematical models
ISBN 1-280-97434-6
9786610974344
0-470-17978-3
0-470-17977-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Mathematical Finance: Theory, Modeling, Implementation; Contents; 1 Introduction; 1.1 Theory, Modeling, and Implementation; 1.2 Interest Rate Models and Interest Rate Derivatives; 1.3 About This Book; 1.3.1 How to Read This Book; 1.3.2 Abridged Versions; 1.3.3 Special Sections; 1.3.4 Notation; 1.3.5 Feedback; 1.3.6 Resources; I Foundations; 2 Foundations; 2.1 Probability Theory; 2.2 Stochastic Processes; 2.3 Filtration; 2.4 Brownian Motion; 2.5 Wiener Measure, Canonical Setup; 2.6 Itô Calculus; 2.6.1 Itô Integral; 2.6.2 Itô Process; 2.6.3 Itô Lemma and Product Rule
2.7 Brownian Motion with Instantaneous Correlation2.8 Martingales; 2.8.1 Martingale Representation Theorem; 2.9 Change of Measure; 2.10 Stochastic Integration; 2.11 Partial Differential Equations (PDEs); 2.11.1 Feynman-Kač Theorem; 2.12 List of Symbols; 3 Replication; 3.1 Replication Strategies; 3.1.1 Introduction; 3.1.2 Replication in a Discrete Model; 3.2 Foundations: Equivalent Martingale Measure; 3.2.1 Challenge and Solution Outline; 3.2.2 Steps toward the Universal Pricing Theorem; 3.3 Excursus: Relative Prices and Risk-Neutral Measures; 3.3.1 Why relative prices?
3.3.2 Risk-Neutral MeasureII First Applications; 4 Pricing of a European Stock Option under the Black-Scholes Model; 5 Excursus: The Density of the Underlying of a European Call Option; 6 Excursus: Interpolation of European Option Prices; 6.1 No-Arbitrage Conditions for Interpolated Prices; 6.2 Arbitrage Violations through Interpolation; 6.2.1 Example 1 : Interpolation of Four Prices; 6.2.2 Example 2: Interpolation of Two Prices; 6.3 Arbitrage- Free Interpolation of European Option Prices; 7 Hedging in Continuous and Discrete Time and the Greeks; 7.1 Introduction
7.2 Deriving the Replications Strategy from Pricing Theory7.2.1 Deriving the Replication Strategy under the Assumption of a Locally Riskless Product; 7.2.2 Black-Scholes Differential Equation; 7.2.3 Derivative V(t) as a Function of Its Underlyings S i(t); 7.2.4 Example: Replication Portfolio and PDE under a Black-Scholes Model; 7.3 Greeks; 7.3.1 Greeks of a European Call-Option under the Black-Scholes Model; 7.4 Hedging in Discrete Time: Delta and Delta-Gamma Hedging; 7.4.1 Delta Hedging; 7.4.2 Error Propagation; 7.4.3 Delta-Gamma Hedging; 7.4.4 Vega Hedging
7.5 Hedging in Discrete Time: Minimizing the Residual Error (Bouchaud-Sornette Method)7.5.1 Minimizing the Residual Error at Maturity T; 7.5.2 Minimizing the Residual Error in Each Time Step; III Interest Rate Structures, Interest Rate Products, and Analytic Pricing Formulas; Motivation and Overview; 8 Interest Rate Structures; 8.1 Introduction; 8.1.1 Fixing Times and Tenor Times; 8.2 Definitions; 8.3 Interest Rate Curve Bootstrapping; 8.4 Interpolation of Interest Rate Curves; 8.5 Implementation; 9 Simple Interest Rate Products; 9.1 Interest Rate Products Part 1: Products without Optionality
9.1.1 Fix, Floating, and Swap
Record Nr. UNINA-9910877137603321
Fries Christian <1970->  
Hoboken, N.J., : Wiley-Interscience, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical finance and probability : a discrete introduction / Pablo Koch Medina, Sandro Merino
Mathematical finance and probability : a discrete introduction / Pablo Koch Medina, Sandro Merino
Autore Koch Medina, Pablo
Pubbl/distr/stampa Basel ; Boston ; Berlin : Birkhäuser, c2003
Descrizione fisica viii, 328 p. ; 25 cm
Disciplina 332.601519
Altri autori (Persone) Merino, Sandroauthor
Soggetto topico Investments - Mathematics
Investments - Mathematical models
Probabilities
Securities - Mathematical models
ISBN 3764369213
Classificazione AMS 90-01
AMS 60-01
AMS 91-01
AMS 91B28
AMS 91B30
LC HG4515.3.K63
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000631879707536
Koch Medina, Pablo  
Basel ; Boston ; Berlin : Birkhäuser, c2003
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Stochastic volatility and realized stochastic volatility models / / Makoto Takahashi, Yasuhiro Omori, and Toshiaki Watanabe
Stochastic volatility and realized stochastic volatility models / / Makoto Takahashi, Yasuhiro Omori, and Toshiaki Watanabe
Autore Takahashi Makoto <1920-1976, >
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore Pte Ltd., , [2023]
Descrizione fisica 1 online resource (VIII, 113 p. 41 illus., 26 illus. in color.)
Disciplina 332.015195
Collana JSS Research Series in Statistics
Soggetto topico Securities - Mathematical models
Stochastic models
ISBN 981-9909-35-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Introduction -- 2 Stochastic Volatility Model -- 3 Asymmetric Stochastic Volatility Model -- 4 Stochastic Volatility Model with Generalized Hyperbolic Skew Student’s t Error -- 5 Realized Stochastic Volatility Model.
Record Nr. UNINA-9910698640503321
Takahashi Makoto <1920-1976, >  
Singapore : , : Springer Nature Singapore Pte Ltd., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui