Complex function theory, operator theory, Schur analysis and systems theory : a volume in honor of V. E. Katsnelson / / Daniel Alpay, Bernd Fritzsche, Bernd Kirstein, editor
| Complex function theory, operator theory, Schur analysis and systems theory : a volume in honor of V. E. Katsnelson / / Daniel Alpay, Bernd Fritzsche, Bernd Kirstein, editor |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2020] |
| Descrizione fisica | 1 online resource (VI, 581 p. 34 illus., 24 illus. in color.) |
| Disciplina | 515.724 |
| Collana | Operator theory, advances and applications |
| Soggetto topico |
Operator theory
Schur functions Functional analysis System theory |
| ISBN | 3-030-44819-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Victor comes to Rehovot -- My Teacher Viktor Emmanuilovich Katsnelson -- Some impressions of Viktor Emmanuilovich Katsnelson -- The good fortune of maintaining a long-lasting close friendship and scientic collaboration with V. E. Katsnelson -- A piece of Victor Katsnelsons mathematical biography -- Interpolation by contractive multipliers between Fock spaces -- Regular extensions and defect functions of contractive measurable operator-valued functions -- Free-homomorphic relations induced by certain free semicircular families -- Self-adjoint extensions of a symmetric linear relation with nite defect: compressions and Straus subspaces -- On conditions for complete indeterminacy of the matricial Hamburger moment problem -- On a Blaschke-type condition for subharmonic function with two sets of singularities on the boundary -- Exponential Taylor domination -- A closer look at the solution of the truncated matricial moment problem -- On a class of sectorial relations and the associated closed forms -- Spectral decompositions of selfadjoint relations in Pontryagin spaces and factorizations of generalized Nevanlinna functions -- Martin functions of Fuchsian groups and character automorphic subspaces of the Hardy space in the upper half-plane. |
| Record Nr. | UNISA-996418256603316 |
| Cham, Switzerland : , : Birkhäuser, , [2020] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
An introduction to quasisymmetric Schur functions : HOPF algebras, quasisymmetric functions, and young composition tableaux / / Kurt Luoto, Stefan Mykytiuk, Stephanie van Willigenburg
| An introduction to quasisymmetric Schur functions : HOPF algebras, quasisymmetric functions, and young composition tableaux / / Kurt Luoto, Stefan Mykytiuk, Stephanie van Willigenburg |
| Autore | Luoto Kurt |
| Edizione | [1st ed. 2013.] |
| Pubbl/distr/stampa | New York, : Springer, c2013 |
| Descrizione fisica | 1 online resource (xiv, 89 pages) : illustrations |
| Disciplina | 511.6 |
| Altri autori (Persone) |
MykytiukStefan
WilligenburgStephanie van |
| Collana | SpringerBriefs in mathematics |
| Soggetto topico |
Schur functions
Hopf algebras Combinatorial analysis |
| ISBN |
9781461473008
1461473004 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Introduction -- 2. Classical combinatorial concepts -- 3. Hopf algebras -- 4. Composition tableaux and further combinatorial concepts -- 5. Quasisymmetric Schur functions -- References -- Index. |
| Record Nr. | UNINA-9910739419803321 |
Luoto Kurt
|
||
| New York, : Springer, c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
On boundary interpolation for matrix valued Schur functions / / Vladimir Bolotnikov, Harry Dym
| On boundary interpolation for matrix valued Schur functions / / Vladimir Bolotnikov, Harry Dym |
| Autore | Bolotnikov Vladimir <1962-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2006] |
| Descrizione fisica | 1 online resource (122 p.) |
| Disciplina |
510 s
515/.73 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Schur functions
Interpolataion spaces Moment problems (Mathematics) Lyapunov functions |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0460-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | ""Bibliography"" |
| Record Nr. | UNINA-9910481045803321 |
Bolotnikov Vladimir <1962->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2006] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
On boundary interpolation for matrix valued Schur functions / / Vladimir Bolotnikov, Harry Dym
| On boundary interpolation for matrix valued Schur functions / / Vladimir Bolotnikov, Harry Dym |
| Autore | Bolotnikov Vladimir <1962-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2006] |
| Descrizione fisica | 1 online resource (122 p.) |
| Disciplina |
510 s
515/.73 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Schur functions
Interpolataion spaces Moment problems (Mathematics) Lyapunov functions |
| ISBN | 1-4704-0460-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | ""Bibliography"" |
| Record Nr. | UNINA-9910788742303321 |
Bolotnikov Vladimir <1962->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2006] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
On boundary interpolation for matrix valued Schur functions / / Vladimir Bolotnikov, Harry Dym
| On boundary interpolation for matrix valued Schur functions / / Vladimir Bolotnikov, Harry Dym |
| Autore | Bolotnikov Vladimir <1962-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2006] |
| Descrizione fisica | 1 online resource (122 p.) |
| Disciplina |
510 s
515/.73 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Schur functions
Interpolataion spaces Moment problems (Mathematics) Lyapunov functions |
| ISBN | 1-4704-0460-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | ""Bibliography"" |
| Record Nr. | UNINA-9910819098103321 |
Bolotnikov Vladimir <1962->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2006] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The poset of k-shapes and branching rules for k-Schur functions / / Thomas Lam [and three others]
| The poset of k-shapes and branching rules for k-Schur functions / / Thomas Lam [and three others] |
| Autore | Lam Thomas <1980-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2012 |
| Descrizione fisica | 1 online resource (101 p.) |
| Disciplina | 516.3/5 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Partially ordered sets
Schur functions |
| ISBN | 0-8218-9874-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""1.1. -Schur functions and branching coefficients""; ""1.2. The poset of -shapes""; ""1.3. -shape functions""; ""1.4. Geometric meaning of branching coefficients""; ""1.5. -branching polynomials and strong -tableaux""; ""1.6. Tableaux atoms and bijection (1.20)""; ""1.7. Connection with representation theory""; ""1.8. Outline""; ""Acknowledgments""; ""Chapter 2. The poset of -shapes""; ""2.1. Partitions""; ""2.2. -shapes""; ""2.3. Strings""; ""2.4. Moves""; ""2.5. Poset structure on -shapes""
""2.6. String and move miscellany""""Chapter 3. Equivalence of paths in the poset of -shapes""; ""3.1. Diamond equivalences""; ""3.2. Elementary equivalences""; ""3.3. Mixed elementary equivalence""; ""3.4. Interfering row moves and perfections""; ""3.5. Row elementary equivalence""; ""3.6. Column elementary equivalence""; ""3.7. Diamond equivalences are generated by elementary equivalences""; ""3.8. Proving properties of mixed equivalence""; ""3.9. Proving properties of row equivalence""; ""3.10. Proofs of Lemma 3.18 and Lemma 3.19""; ""Chapter 4. Strips and tableaux for -shapes"" ""4.1. Strips for cores""""4.2. Strips for -shapes""; ""4.3. Maximal strips and tableaux""; ""4.4. Elementary properties of \ _{\ }^{( )}[ ] and \ _{\ }^{( )}[ ]""; ""4.5. Basics on strips""; ""4.6. Augmentation of strips""; ""4.7. Maximal strips for cores""; ""4.8. Equivalence of maximal augmentation paths""; ""4.9. Canonical maximization of a strip""; ""Chapter 5. Pushout of strips and row moves""; ""5.1. Reasonableness""; ""5.2. Contiguity""; ""5.3. Interference of strips and row moves""; ""5.4. Row-type pushout: non-interfering case"" ""5.5. Row-type pushout: interfering case""""5.6. Alternative description of pushouts (row moves)""; ""Chapter 6. Pushout of strips and column moves""; ""6.1. Reasonableness""; ""6.2. Normality""; ""6.3. Contiguity""; ""6.4. Interference of strips and column moves""; ""6.5. Column-type pushout: non-interfering case""; ""6.6. Column-type pushout: interfering case""; ""6.7. Alternative description of pushouts (column moves)""; ""Chapter 7. Pushout sequences""; ""7.1. Canonical pushout sequence""; ""7.2. Pushout sequences from ( , ) are equivalent"" ""Chapter 8. Pushouts of equivalent paths are equivalent""""8.1. Pushout of equivalences""; ""8.2. Commuting cube (non-degenerate case)""; ""8.3. Commuting cube (degenerate case =â??)""; ""8.4. Commuting cube (degenerate case =â??)""; ""8.5. Commuting cube (degenerate case =â??)""; ""Chapter 9. Pullbacks""; ""9.1. Equivalences in the reverse case""; ""9.2. Reverse operations on strips""; ""9.3. Pullback of strips and moves""; ""9.4. Pullbacks sequences are all equivalent""; ""9.5. Pullbacks of equivalent paths are equivalent""; ""9.6. Pullbacks are inverse to pushouts"" ""Appendix A. Tables of branching polynomials"" |
| Record Nr. | UNINA-9910796038703321 |
Lam Thomas <1980->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The poset of k-shapes and branching rules for k-Schur functions / / Thomas Lam [and three others]
| The poset of k-shapes and branching rules for k-Schur functions / / Thomas Lam [and three others] |
| Autore | Lam Thomas <1980-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2012 |
| Descrizione fisica | 1 online resource (101 p.) |
| Disciplina | 516.3/5 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Partially ordered sets
Schur functions |
| ISBN | 0-8218-9874-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""1.1. -Schur functions and branching coefficients""; ""1.2. The poset of -shapes""; ""1.3. -shape functions""; ""1.4. Geometric meaning of branching coefficients""; ""1.5. -branching polynomials and strong -tableaux""; ""1.6. Tableaux atoms and bijection (1.20)""; ""1.7. Connection with representation theory""; ""1.8. Outline""; ""Acknowledgments""; ""Chapter 2. The poset of -shapes""; ""2.1. Partitions""; ""2.2. -shapes""; ""2.3. Strings""; ""2.4. Moves""; ""2.5. Poset structure on -shapes""
""2.6. String and move miscellany""""Chapter 3. Equivalence of paths in the poset of -shapes""; ""3.1. Diamond equivalences""; ""3.2. Elementary equivalences""; ""3.3. Mixed elementary equivalence""; ""3.4. Interfering row moves and perfections""; ""3.5. Row elementary equivalence""; ""3.6. Column elementary equivalence""; ""3.7. Diamond equivalences are generated by elementary equivalences""; ""3.8. Proving properties of mixed equivalence""; ""3.9. Proving properties of row equivalence""; ""3.10. Proofs of Lemma 3.18 and Lemma 3.19""; ""Chapter 4. Strips and tableaux for -shapes"" ""4.1. Strips for cores""""4.2. Strips for -shapes""; ""4.3. Maximal strips and tableaux""; ""4.4. Elementary properties of \ _{\ }^{( )}[ ] and \ _{\ }^{( )}[ ]""; ""4.5. Basics on strips""; ""4.6. Augmentation of strips""; ""4.7. Maximal strips for cores""; ""4.8. Equivalence of maximal augmentation paths""; ""4.9. Canonical maximization of a strip""; ""Chapter 5. Pushout of strips and row moves""; ""5.1. Reasonableness""; ""5.2. Contiguity""; ""5.3. Interference of strips and row moves""; ""5.4. Row-type pushout: non-interfering case"" ""5.5. Row-type pushout: interfering case""""5.6. Alternative description of pushouts (row moves)""; ""Chapter 6. Pushout of strips and column moves""; ""6.1. Reasonableness""; ""6.2. Normality""; ""6.3. Contiguity""; ""6.4. Interference of strips and column moves""; ""6.5. Column-type pushout: non-interfering case""; ""6.6. Column-type pushout: interfering case""; ""6.7. Alternative description of pushouts (column moves)""; ""Chapter 7. Pushout sequences""; ""7.1. Canonical pushout sequence""; ""7.2. Pushout sequences from ( , ) are equivalent"" ""Chapter 8. Pushouts of equivalent paths are equivalent""""8.1. Pushout of equivalences""; ""8.2. Commuting cube (non-degenerate case)""; ""8.3. Commuting cube (degenerate case =â??)""; ""8.4. Commuting cube (degenerate case =â??)""; ""8.5. Commuting cube (degenerate case =â??)""; ""Chapter 9. Pullbacks""; ""9.1. Equivalences in the reverse case""; ""9.2. Reverse operations on strips""; ""9.3. Pullback of strips and moves""; ""9.4. Pullbacks sequences are all equivalent""; ""9.5. Pullbacks of equivalent paths are equivalent""; ""9.6. Pullbacks are inverse to pushouts"" ""Appendix A. Tables of branching polynomials"" |
| Record Nr. | UNINA-9910827633703321 |
Lam Thomas <1980->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The poset of k-shapes and branching rules for k-Schur functions / / Thomas Lam [and three others]
| The poset of k-shapes and branching rules for k-Schur functions / / Thomas Lam [and three others] |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2012 |
| Descrizione fisica | 1 online resource (101 p.) |
| Disciplina | 516.3/5 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Partially ordered sets
Schur functions |
| Soggetto genere / forma | Electronic books. |
| ISBN | 0-8218-9874-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""1.1. -Schur functions and branching coefficients""; ""1.2. The poset of -shapes""; ""1.3. -shape functions""; ""1.4. Geometric meaning of branching coefficients""; ""1.5. -branching polynomials and strong -tableaux""; ""1.6. Tableaux atoms and bijection (1.20)""; ""1.7. Connection with representation theory""; ""1.8. Outline""; ""Acknowledgments""; ""Chapter 2. The poset of -shapes""; ""2.1. Partitions""; ""2.2. -shapes""; ""2.3. Strings""; ""2.4. Moves""; ""2.5. Poset structure on -shapes""
""2.6. String and move miscellany""""Chapter 3. Equivalence of paths in the poset of -shapes""; ""3.1. Diamond equivalences""; ""3.2. Elementary equivalences""; ""3.3. Mixed elementary equivalence""; ""3.4. Interfering row moves and perfections""; ""3.5. Row elementary equivalence""; ""3.6. Column elementary equivalence""; ""3.7. Diamond equivalences are generated by elementary equivalences""; ""3.8. Proving properties of mixed equivalence""; ""3.9. Proving properties of row equivalence""; ""3.10. Proofs of Lemma 3.18 and Lemma 3.19""; ""Chapter 4. Strips and tableaux for -shapes"" ""4.1. Strips for cores""""4.2. Strips for -shapes""; ""4.3. Maximal strips and tableaux""; ""4.4. Elementary properties of \ _{\ }^{( )}[ ] and \ _{\ }^{( )}[ ]""; ""4.5. Basics on strips""; ""4.6. Augmentation of strips""; ""4.7. Maximal strips for cores""; ""4.8. Equivalence of maximal augmentation paths""; ""4.9. Canonical maximization of a strip""; ""Chapter 5. Pushout of strips and row moves""; ""5.1. Reasonableness""; ""5.2. Contiguity""; ""5.3. Interference of strips and row moves""; ""5.4. Row-type pushout: non-interfering case"" ""5.5. Row-type pushout: interfering case""""5.6. Alternative description of pushouts (row moves)""; ""Chapter 6. Pushout of strips and column moves""; ""6.1. Reasonableness""; ""6.2. Normality""; ""6.3. Contiguity""; ""6.4. Interference of strips and column moves""; ""6.5. Column-type pushout: non-interfering case""; ""6.6. Column-type pushout: interfering case""; ""6.7. Alternative description of pushouts (column moves)""; ""Chapter 7. Pushout sequences""; ""7.1. Canonical pushout sequence""; ""7.2. Pushout sequences from ( , ) are equivalent"" ""Chapter 8. Pushouts of equivalent paths are equivalent""""8.1. Pushout of equivalences""; ""8.2. Commuting cube (non-degenerate case)""; ""8.3. Commuting cube (degenerate case =â??)""; ""8.4. Commuting cube (degenerate case =â??)""; ""8.5. Commuting cube (degenerate case =â??)""; ""Chapter 9. Pullbacks""; ""9.1. Equivalences in the reverse case""; ""9.2. Reverse operations on strips""; ""9.3. Pullback of strips and moves""; ""9.4. Pullbacks sequences are all equivalent""; ""9.5. Pullbacks of equivalent paths are equivalent""; ""9.6. Pullbacks are inverse to pushouts"" ""Appendix A. Tables of branching polynomials"" |
| Record Nr. | UNINA-9910480595203321 |
| Providence, Rhode Island : , : American Mathematical Society, , 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||