top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Scanning probe microscopy for energy research [[electronic resource] /] / editors, Dawn A. Bonnell, Sergei V. Kalinin
Scanning probe microscopy for energy research [[electronic resource] /] / editors, Dawn A. Bonnell, Sergei V. Kalinin
Pubbl/distr/stampa [Hackensack] N.J., : World Scientific, c2013
Descrizione fisica 1 online resource (619 p.)
Disciplina 621.31/2028
Altri autori (Persone) BonnellDawn A
KalininSergei V
Collana World scientific series in nanoscience and nanotechnology
Soggetto topico Electric batteries - Research
Scanning probe microscopy - Industrial applications
Soggetto genere / forma Electronic books.
ISBN 1-299-46258-8
981-4434-71-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; CONTENTS; List of Color Plates; Introduction; Chapter 1 Local Probes in the Next Decade of Energy Research: Bridging Macroscopic and Atomic Worlds D. A. Bonnell and S. V. Kalinin; 1. The Energy Challenge; 2. The Need for Local Characterization; 3. Science and Technology of Renewable and Sustainable Options; 3.1. Solar cells and photo voltaic devices; Fuel cells; Batteries; 4. Frontiers of Scanning Probe Microscopy; 4.1. Probing local electrical properties; 4.2. Probing local dielectric properties; 4.3. Probing local electrochemical properties
4.4. Future impact of SPM in energy research Acknowledgments; References; I. Scanning Probes for Energy Harvesting Systems: Photovoltaics and Solar Cells; Chapter 2 Electrical Scanning Probe Microscopy on Solar Cell Materials R. Giridharagopal, G. E. Rayermann and D. S. Ginger; 1. Introduction; 2. Conducting Atomic Force Microscopy (cAFM); 3. Photoconductive Atomic Force Microscopy (pcAFM); 4. AC-Mode AFM; 5. Electrostatic Force Microscopy (EFM); 6. Scanning Kelvin Probe Microscopy (SKPM); 7. Time-Resolved Electrostatic Force Microscopy (trEFM); 8. Conclusions and Future Outlook
Acknowledgments References; Chapter 3 Organic Solar Cell Materials and Devices Characterized by Conductive and Photoconductive Atomic Force Microscopy X.-D. Dang, M. Guide and T.-Q. Nguyen; 1. Introduction; 2. Basic Operation of Organic Solar Cells; 3. Fundamental Principles of Conductive and Photoconductive AFM; 3.1. Conductive atomic force microscopy; 3.2. Photoconductive atomic force microscopy; 3.3. pc-AFM devices versus bulk solar cell devices; 4. Applications of c-AFM and pc-AFM for Characterization of Organic Solar Cell Materials and Devices
4.1. Local conductivity variation and charge transport 4.2. Probing internal structure of photoactive layers; 4.3. Assigning phase separation in BHJ organic solar cells; 4.4. Local incident photon conversion efficiency; 4.5. Origin of open-circuit voltage of organic solar cells; 5. Summary and Outlook; Acknowledgments; References; Chapter 4 Kelvin Probe Force Microscopy for Solar Cell Applications T. Glatzel; 1. Introduction; 2. Experimental Technique and Working Modes; 2.1. The Kelvin Principle; 2.2. Technical realization; 3. Application to Solar Cells
3.1. Cu(In, Ga)(S, Se)2 based solar cells 3.1.1. Surface properties; 3.1.2. Grain boundaries; 3.1.3. Surface photovoltage analysis; 3.1.4. Interface properties; 3.2. Organic solar cells; 3.2.1. Polymer/fullerene solar cells; 3.2.2. Dye-sensitized solar cells; References; Chapter 5 Reversible Rectification in Sub-Monolayer Molecular P-N Junctions: Towards Nanoscale Photovoltaic Studies J. A. Smerdon, N. C. Giebink and J. R. Guest; 1. Introduction; 2. Transport in a D-A HJ at the Molecular Scale; 3. Ultrahigh Vacuum Scanning Tunneling Microscopy and Spectroscopy
4. Promise and Challenges of Laser-Assisted STM
Record Nr. UNINA-9910452336103321
[Hackensack] N.J., : World Scientific, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Scanning probe microscopy for energy research / / editors, Dawn A. Bonnell, The University of Pennsylvania, USA, Sergei V. Kalinin, Oak Ridge National Laboratory, USA
Scanning probe microscopy for energy research / / editors, Dawn A. Bonnell, The University of Pennsylvania, USA, Sergei V. Kalinin, Oak Ridge National Laboratory, USA
Pubbl/distr/stampa [Hackensack] N.J., : World Scientific, c2013
Descrizione fisica 1 online resource (xvi, 602 pages, 21 pages of plates) : illustrations (some color)
Disciplina 621.31/2028
Collana World scientific series in nanoscience and nanotechnology
Soggetto topico Electric batteries - Research
Scanning probe microscopy - Industrial applications
ISBN 1-299-46258-8
981-4434-71-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; CONTENTS; List of Color Plates; Introduction; Chapter 1 Local Probes in the Next Decade of Energy Research: Bridging Macroscopic and Atomic Worlds D. A. Bonnell and S. V. Kalinin; 1. The Energy Challenge; 2. The Need for Local Characterization; 3. Science and Technology of Renewable and Sustainable Options; 3.1. Solar cells and photo voltaic devices; Fuel cells; Batteries; 4. Frontiers of Scanning Probe Microscopy; 4.1. Probing local electrical properties; 4.2. Probing local dielectric properties; 4.3. Probing local electrochemical properties
4.4. Future impact of SPM in energy research Acknowledgments; References; I. Scanning Probes for Energy Harvesting Systems: Photovoltaics and Solar Cells; Chapter 2 Electrical Scanning Probe Microscopy on Solar Cell Materials R. Giridharagopal, G. E. Rayermann and D. S. Ginger; 1. Introduction; 2. Conducting Atomic Force Microscopy (cAFM); 3. Photoconductive Atomic Force Microscopy (pcAFM); 4. AC-Mode AFM; 5. Electrostatic Force Microscopy (EFM); 6. Scanning Kelvin Probe Microscopy (SKPM); 7. Time-Resolved Electrostatic Force Microscopy (trEFM); 8. Conclusions and Future Outlook
Acknowledgments References; Chapter 3 Organic Solar Cell Materials and Devices Characterized by Conductive and Photoconductive Atomic Force Microscopy X.-D. Dang, M. Guide and T.-Q. Nguyen; 1. Introduction; 2. Basic Operation of Organic Solar Cells; 3. Fundamental Principles of Conductive and Photoconductive AFM; 3.1. Conductive atomic force microscopy; 3.2. Photoconductive atomic force microscopy; 3.3. pc-AFM devices versus bulk solar cell devices; 4. Applications of c-AFM and pc-AFM for Characterization of Organic Solar Cell Materials and Devices
4.1. Local conductivity variation and charge transport 4.2. Probing internal structure of photoactive layers; 4.3. Assigning phase separation in BHJ organic solar cells; 4.4. Local incident photon conversion efficiency; 4.5. Origin of open-circuit voltage of organic solar cells; 5. Summary and Outlook; Acknowledgments; References; Chapter 4 Kelvin Probe Force Microscopy for Solar Cell Applications T. Glatzel; 1. Introduction; 2. Experimental Technique and Working Modes; 2.1. The Kelvin Principle; 2.2. Technical realization; 3. Application to Solar Cells
3.1. Cu(In, Ga)(S, Se)2 based solar cells 3.1.1. Surface properties; 3.1.2. Grain boundaries; 3.1.3. Surface photovoltage analysis; 3.1.4. Interface properties; 3.2. Organic solar cells; 3.2.1. Polymer/fullerene solar cells; 3.2.2. Dye-sensitized solar cells; References; Chapter 5 Reversible Rectification in Sub-Monolayer Molecular P-N Junctions: Towards Nanoscale Photovoltaic Studies J. A. Smerdon, N. C. Giebink and J. R. Guest; 1. Introduction; 2. Transport in a D-A HJ at the Molecular Scale; 3. Ultrahigh Vacuum Scanning Tunneling Microscopy and Spectroscopy
4. Promise and Challenges of Laser-Assisted STM
Record Nr. UNINA-9910779692803321
[Hackensack] N.J., : World Scientific, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Scanning probe microscopy for energy research / / editors, Dawn A. Bonnell, The University of Pennsylvania, USA, Sergei V. Kalinin, Oak Ridge National Laboratory, USA
Scanning probe microscopy for energy research / / editors, Dawn A. Bonnell, The University of Pennsylvania, USA, Sergei V. Kalinin, Oak Ridge National Laboratory, USA
Pubbl/distr/stampa [Hackensack] N.J., : World Scientific, c2013
Descrizione fisica 1 online resource (xvi, 602 pages, 21 pages of plates) : illustrations (some color)
Disciplina 621.31/2028
Collana World scientific series in nanoscience and nanotechnology
Soggetto topico Electric batteries - Research
Scanning probe microscopy - Industrial applications
ISBN 1-299-46258-8
981-4434-71-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; CONTENTS; List of Color Plates; Introduction; Chapter 1 Local Probes in the Next Decade of Energy Research: Bridging Macroscopic and Atomic Worlds D. A. Bonnell and S. V. Kalinin; 1. The Energy Challenge; 2. The Need for Local Characterization; 3. Science and Technology of Renewable and Sustainable Options; 3.1. Solar cells and photo voltaic devices; Fuel cells; Batteries; 4. Frontiers of Scanning Probe Microscopy; 4.1. Probing local electrical properties; 4.2. Probing local dielectric properties; 4.3. Probing local electrochemical properties
4.4. Future impact of SPM in energy research Acknowledgments; References; I. Scanning Probes for Energy Harvesting Systems: Photovoltaics and Solar Cells; Chapter 2 Electrical Scanning Probe Microscopy on Solar Cell Materials R. Giridharagopal, G. E. Rayermann and D. S. Ginger; 1. Introduction; 2. Conducting Atomic Force Microscopy (cAFM); 3. Photoconductive Atomic Force Microscopy (pcAFM); 4. AC-Mode AFM; 5. Electrostatic Force Microscopy (EFM); 6. Scanning Kelvin Probe Microscopy (SKPM); 7. Time-Resolved Electrostatic Force Microscopy (trEFM); 8. Conclusions and Future Outlook
Acknowledgments References; Chapter 3 Organic Solar Cell Materials and Devices Characterized by Conductive and Photoconductive Atomic Force Microscopy X.-D. Dang, M. Guide and T.-Q. Nguyen; 1. Introduction; 2. Basic Operation of Organic Solar Cells; 3. Fundamental Principles of Conductive and Photoconductive AFM; 3.1. Conductive atomic force microscopy; 3.2. Photoconductive atomic force microscopy; 3.3. pc-AFM devices versus bulk solar cell devices; 4. Applications of c-AFM and pc-AFM for Characterization of Organic Solar Cell Materials and Devices
4.1. Local conductivity variation and charge transport 4.2. Probing internal structure of photoactive layers; 4.3. Assigning phase separation in BHJ organic solar cells; 4.4. Local incident photon conversion efficiency; 4.5. Origin of open-circuit voltage of organic solar cells; 5. Summary and Outlook; Acknowledgments; References; Chapter 4 Kelvin Probe Force Microscopy for Solar Cell Applications T. Glatzel; 1. Introduction; 2. Experimental Technique and Working Modes; 2.1. The Kelvin Principle; 2.2. Technical realization; 3. Application to Solar Cells
3.1. Cu(In, Ga)(S, Se)2 based solar cells 3.1.1. Surface properties; 3.1.2. Grain boundaries; 3.1.3. Surface photovoltage analysis; 3.1.4. Interface properties; 3.2. Organic solar cells; 3.2.1. Polymer/fullerene solar cells; 3.2.2. Dye-sensitized solar cells; References; Chapter 5 Reversible Rectification in Sub-Monolayer Molecular P-N Junctions: Towards Nanoscale Photovoltaic Studies J. A. Smerdon, N. C. Giebink and J. R. Guest; 1. Introduction; 2. Transport in a D-A HJ at the Molecular Scale; 3. Ultrahigh Vacuum Scanning Tunneling Microscopy and Spectroscopy
4. Promise and Challenges of Laser-Assisted STM
Record Nr. UNINA-9910819743903321
[Hackensack] N.J., : World Scientific, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Scanning probe microscopy for industrial applications : nanomechanical characterization / / edited by Dalia G. Yablon
Scanning probe microscopy for industrial applications : nanomechanical characterization / / edited by Dalia G. Yablon
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2014
Descrizione fisica 1 online resource (385 p.)
Disciplina 620.1/127
Altri autori (Persone) YablonDalia G. <1975->
Soggetto topico Materials - Microscopy
Scanning probe microscopy - Industrial applications
ISBN 1-118-72304-X
1-118-72311-2
1-118-72314-7
Classificazione TEC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Scanning Probe Microscopy in Industrial Applications: Nanomechanical Characterization; Copyright; Contents; Contributors List; Preface; Acknowledgments; Chapter 1 Overview of Atomic Force Microscopy; 1.1 A Word on Nomenclature; 1.2 Atomic Force Microscopy-The Appeal to Industrial R&D; 1.3 Mechanical Properties; 1.4 Overview of AFM Operation; 1.4.1 AFM Hardware; 1.4.2 Cantilevers and Probes; 1.4.3 Optical Detection System; 1.4.4 x-y-z Scanner; 1.4.5 AFM Software; 1.4.6 Calibrations; 1.4.7 Cantilever Spring Constant; 1.4.8 Tip Shape Calibration; 1.5 Nanomechanical Methods Surveyed in Book
1.6 Industries RepresentedAcknowledgments; References; Chapter 2 Understanding the Tip-Sample Contact: An Overview of Contact Mechanics from the Macro- to the Nanoscale; 2.1 Hertz Equations for Elastic Contact; 2.1.1 Introduction; 2.1.2 Hertz Equations; 2.1.3 Assumptions of Hertz model; 2.1.4 Worked Examples: Hertz Mechanics of Diamond Tips on Stiff and Compliant Substrates; 2.2 Adhesive Contacts; 2.2.1 introduction to Adhesion; 2.2.2 Basic Physics and Mathematics of Surface Interactions; 2.2.3 Derjaguin-Müller-Toporov and Johnson-Kendall-Roberts Models of Adhesion
2.2.4 More Realistic Picture of Adhesion2.2.5 Continuing the Worked Examples: Adding Adhesion to Diamond Tips on Stiff and Compliant Substrates; 2.3 Further Extensions of Continuum Contact Mechanics Models; 2.3.1 Tip Shape Differs from a Paraboloid; 2.3.2 Flattened Tip Shapes; 2.3.3 Axisymmetric Power Law Tip Shapes; 2.3.4 Anisotropic Elasticity, Viscoelastic, and Plastic Effects; 2.4 Thin Films; 2.5 Tangential Forces; 2.5.1 Three Possible Cases for a Tangentially Loaded Contact; 2.5.2 Active Debate over the Behavior of the Shear Stress; 2.5.3 Lateral Stiffness
2.6 Application of Continuum Mechanics to Nanoscale Contacts2.6.1 Unique Considerations of Nanoscale Contacts; 2.6.2 Evidence of Applicability of Continuum Contact Mechanics at the Nanoscale; Acknowledgments; APPENDIX 2A Surface Energy and Work of Adhesion; References; Chapter 3 Understanding Surface Forces Using Static and Dynamic Approach-Retraction Curves; 3.1 Tip-Sample Interaction Forces; 3.1.1 Piecewise Linear Contact; 3.1.2 Piecewise Linear Attractive-Repulsive Contact; 3.1.3 Lennard-Jones Potential; 3.1.4 Derjaguin-Müller-Toporov + van der Waals Model; 3.1.5 Viscoelastic Forces
3.1.6 Capillary Forces3.2 Static F-Z Curves; 3.2.1 Conversion of F-Z Curves into F-d Curves; 3.2.2 Examples from Literature; 3.2.3 Uncertainties and Sources of Error; 3.3 Dynamic Amplitude/Phase-Distance Curves; 3.3.1 Theory; 3.3.2 Interpreting the Virial; 3.3.3 Physics of Amplitude Reduction; 3.3.4 Attractive and Repulsive Regimes of Interaction; 3.3.5 Reconstruction of Forces; 3.4 Brief Guide to VEDA Simulations; 3.4.1 F-Z Curve Tutorial; 3.4.2 Amplitude/Phase-Distance Curves Tutorial; 3.4.3 Advanced Amplitude/Phase-Distance Curves Tutorial; 3.5 Conclusions; Glossary; References
Chapter 4 Phase Imaging
Record Nr. UNINA-9910138857103321
Hoboken, New Jersey : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Scanning probe microscopy for industrial applications : nanomechanical characterization / / edited by Dalia G. Yablon
Scanning probe microscopy for industrial applications : nanomechanical characterization / / edited by Dalia G. Yablon
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2014
Descrizione fisica 1 online resource (385 p.)
Disciplina 620.1/127
Altri autori (Persone) YablonDalia G. <1975->
Soggetto topico Materials - Microscopy
Scanning probe microscopy - Industrial applications
ISBN 1-118-72304-X
1-118-72311-2
1-118-72314-7
Classificazione TEC027000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Scanning Probe Microscopy in Industrial Applications: Nanomechanical Characterization; Copyright; Contents; Contributors List; Preface; Acknowledgments; Chapter 1 Overview of Atomic Force Microscopy; 1.1 A Word on Nomenclature; 1.2 Atomic Force Microscopy-The Appeal to Industrial R&D; 1.3 Mechanical Properties; 1.4 Overview of AFM Operation; 1.4.1 AFM Hardware; 1.4.2 Cantilevers and Probes; 1.4.3 Optical Detection System; 1.4.4 x-y-z Scanner; 1.4.5 AFM Software; 1.4.6 Calibrations; 1.4.7 Cantilever Spring Constant; 1.4.8 Tip Shape Calibration; 1.5 Nanomechanical Methods Surveyed in Book
1.6 Industries RepresentedAcknowledgments; References; Chapter 2 Understanding the Tip-Sample Contact: An Overview of Contact Mechanics from the Macro- to the Nanoscale; 2.1 Hertz Equations for Elastic Contact; 2.1.1 Introduction; 2.1.2 Hertz Equations; 2.1.3 Assumptions of Hertz model; 2.1.4 Worked Examples: Hertz Mechanics of Diamond Tips on Stiff and Compliant Substrates; 2.2 Adhesive Contacts; 2.2.1 introduction to Adhesion; 2.2.2 Basic Physics and Mathematics of Surface Interactions; 2.2.3 Derjaguin-Müller-Toporov and Johnson-Kendall-Roberts Models of Adhesion
2.2.4 More Realistic Picture of Adhesion2.2.5 Continuing the Worked Examples: Adding Adhesion to Diamond Tips on Stiff and Compliant Substrates; 2.3 Further Extensions of Continuum Contact Mechanics Models; 2.3.1 Tip Shape Differs from a Paraboloid; 2.3.2 Flattened Tip Shapes; 2.3.3 Axisymmetric Power Law Tip Shapes; 2.3.4 Anisotropic Elasticity, Viscoelastic, and Plastic Effects; 2.4 Thin Films; 2.5 Tangential Forces; 2.5.1 Three Possible Cases for a Tangentially Loaded Contact; 2.5.2 Active Debate over the Behavior of the Shear Stress; 2.5.3 Lateral Stiffness
2.6 Application of Continuum Mechanics to Nanoscale Contacts2.6.1 Unique Considerations of Nanoscale Contacts; 2.6.2 Evidence of Applicability of Continuum Contact Mechanics at the Nanoscale; Acknowledgments; APPENDIX 2A Surface Energy and Work of Adhesion; References; Chapter 3 Understanding Surface Forces Using Static and Dynamic Approach-Retraction Curves; 3.1 Tip-Sample Interaction Forces; 3.1.1 Piecewise Linear Contact; 3.1.2 Piecewise Linear Attractive-Repulsive Contact; 3.1.3 Lennard-Jones Potential; 3.1.4 Derjaguin-Müller-Toporov + van der Waals Model; 3.1.5 Viscoelastic Forces
3.1.6 Capillary Forces3.2 Static F-Z Curves; 3.2.1 Conversion of F-Z Curves into F-d Curves; 3.2.2 Examples from Literature; 3.2.3 Uncertainties and Sources of Error; 3.3 Dynamic Amplitude/Phase-Distance Curves; 3.3.1 Theory; 3.3.2 Interpreting the Virial; 3.3.3 Physics of Amplitude Reduction; 3.3.4 Attractive and Repulsive Regimes of Interaction; 3.3.5 Reconstruction of Forces; 3.4 Brief Guide to VEDA Simulations; 3.4.1 F-Z Curve Tutorial; 3.4.2 Amplitude/Phase-Distance Curves Tutorial; 3.4.3 Advanced Amplitude/Phase-Distance Curves Tutorial; 3.5 Conclusions; Glossary; References
Chapter 4 Phase Imaging
Record Nr. UNINA-9910809874303321
Hoboken, New Jersey : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui