Machinery vibration and rotordynamics [[electronic resource] /] / John Vance, Brian Murphy, Fouad Zeidan |
Autore | Vance John M |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2010 |
Descrizione fisica | 1 online resource (419 p.) |
Disciplina |
621.8/11
621.811 |
Altri autori (Persone) |
MurphyBrian <1956->
ZeidanFouad |
Soggetto topico |
Rotors - Dynamics
Rotors - Vibration Machinery - Vibration Turbomachines - Dynamics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-24215-6
9786613813275 0-470-91607-9 0-470-90370-8 0-470-91608-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Machinery Vibration and Rotordynamics; CONTENTS; PREFACE; CHAPTER 1: FUNDAMENTALS OF MACHINE VIBRATION AND CLASSICAL SOLUTIONS; CHAPTER 2: TORSIONAL VIBRATION; CHAPTER 3: INTRODUCTION TO ROTORDYNAMICS ANALYSIS; CHAPTER 4: COMPUTER SIMULATIONS OF ROTORDYNAMICS; CHAPTER 5: BEARINGS AND THEIR EFFECT ON ROTORDYNAMICS; CHAPTER 6: FLUID SEALS AND THEIR EFFECT ON ROTORDYNAMICS; CHAPTER 7: HISTORY OF MACHINERY ROTORDYNAMICS; INDEX |
Record Nr. | UNINA-9910140565803321 |
Vance John M
![]() |
||
Hoboken, N.J., : Wiley, c2010 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Machinery vibration and rotordynamics [[electronic resource] /] / John Vance, Brian Murphy, Fouad Zeidan |
Autore | Vance John M |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2010 |
Descrizione fisica | 1 online resource (419 p.) |
Disciplina |
621.8/11
621.811 |
Altri autori (Persone) |
MurphyBrian <1956->
ZeidanFouad |
Soggetto topico |
Rotors - Dynamics
Rotors - Vibration Machinery - Vibration Turbomachines - Dynamics |
ISBN |
1-282-24215-6
9786613813275 0-470-91607-9 0-470-90370-8 0-470-91608-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Machinery Vibration and Rotordynamics; CONTENTS; PREFACE; CHAPTER 1: FUNDAMENTALS OF MACHINE VIBRATION AND CLASSICAL SOLUTIONS; CHAPTER 2: TORSIONAL VIBRATION; CHAPTER 3: INTRODUCTION TO ROTORDYNAMICS ANALYSIS; CHAPTER 4: COMPUTER SIMULATIONS OF ROTORDYNAMICS; CHAPTER 5: BEARINGS AND THEIR EFFECT ON ROTORDYNAMICS; CHAPTER 6: FLUID SEALS AND THEIR EFFECT ON ROTORDYNAMICS; CHAPTER 7: HISTORY OF MACHINERY ROTORDYNAMICS; INDEX |
Record Nr. | UNINA-9910830710503321 |
Vance John M
![]() |
||
Hoboken, N.J., : Wiley, c2010 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Machinery vibration and rotordynamics / / John Vance, Brian Murphy, Fouad Zeidan |
Autore | Vance John M |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2010 |
Descrizione fisica | 1 online resource (419 p.) |
Disciplina | 621.8/11 |
Altri autori (Persone) |
MurphyBrian <1956->
ZeidanFouad |
Soggetto topico |
Rotors - Dynamics
Rotors - Vibration Machinery - Vibration Turbomachines - Dynamics |
ISBN |
1-282-24215-6
9786613813275 0-470-91607-9 0-470-90370-8 0-470-91608-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Machinery Vibration and Rotordynamics; CONTENTS; PREFACE; CHAPTER 1: FUNDAMENTALS OF MACHINE VIBRATION AND CLASSICAL SOLUTIONS; CHAPTER 2: TORSIONAL VIBRATION; CHAPTER 3: INTRODUCTION TO ROTORDYNAMICS ANALYSIS; CHAPTER 4: COMPUTER SIMULATIONS OF ROTORDYNAMICS; CHAPTER 5: BEARINGS AND THEIR EFFECT ON ROTORDYNAMICS; CHAPTER 6: FLUID SEALS AND THEIR EFFECT ON ROTORDYNAMICS; CHAPTER 7: HISTORY OF MACHINERY ROTORDYNAMICS; INDEX |
Record Nr. | UNINA-9910877553303321 |
Vance John M
![]() |
||
Hoboken, N.J., : Wiley, c2010 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Mechanical vibrations [[electronic resource] ] : active and passive control / / Tomasz Krysinski, François Malburet |
Autore | Krysinski Tomasz |
Pubbl/distr/stampa | London ; ; Newport Beach, CA, : ISTE, c2007 |
Descrizione fisica | 1 online resource (391 p.) |
Disciplina |
620.3
621.8/11 621.811 |
Altri autori (Persone) | MalburetFrançois |
Collana | ISTE |
Soggetto topico |
Rotors - Vibration
Damping (Mechanics) Structural control (Engineering) |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-84767-0
9786610847679 0-470-61247-9 0-470-39460-9 1-84704-579-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Mechanical Vibrations; Table of Contents; Foreword; Preface; Part I. Sources of Vibrations; Chapter 1. Unbalance and Gyroscopic Effects; 1.1. Introduction; 1.1.1. Physico-mathematical model of a rotating system; 1.1.2. Formation of equations and analysis; 1.2. Theory of balancing; 1.2.1. Balancing machine or "balancer"; 1.2.1.1. The soft-bearing machine; 1.2.1.2. The hard-bearing machine; 1.2.2. Balancing in situ; 1.2.2.1. The method of separate planes; 1.2.2.2. The method of simultaneous planes - influence coefficients; 1.2.3. Example of application: the main rotor of a helicopter
1.2.3.1. Bench test phase on the ground1.2.3.2. Test phase on a helicopter in flight; 1.3. Influence of shaft bending; 1.3.1. The notion of critical speed; 1.3.2. Forward precession of the flexible shaft; 1.3.2.1. Subcritical speed (: Ω<ωcr); 1.3.2.2. Resonance (: Ω<ωcr); 1.3.2.3. Supercritical speed (: Ω<ωcr); 1.3.3. Balancing flexible shafts; 1.3.4. Example of application: transmission shaft of the tail rotor of a helicopter; 1.4. Gyroscopic effects; 1.4.1. Forward or backward motion; 1.4.2. Equations of motion; 1.4.2.1. Natural angular frequencies (shaft off motion) 1.4.2.2. Critical speeds during forward precession1.4.2.3. Critical speeds during retrograde precession; Chapter 2. Piston Engines; 2.1. Introduction; 2.2. Excitations generated by a piston engine; 2.2.1. Analytic determination of an engine torque; 2.2.2. Engine excitations on the chassis frame; 2.2.2.1. Knocking load; 2.2.2.2. Pitch torque; 2.2.2.3. Review of actions for a four phase cylinder engine; 2.2.3. The notion of engine balancing; 2.2.3.1. Balancing the knocking loads; 2.2.3.2. Balancing the galloping torque; 2.3. Line shafting tuning; 2.3.1. The notion of tuning 2.3.2. Creation of the equations2.3.3. Line shafting optimization; 2.3.3.1. Results for a non-optimized line shafting; 2.3.3.2. Results for an optimized line shafting; Chapter 3. Dynamics of a Rotor; 3.1. Introduction; 3.2. Description of the blade/hub relationship; 3.2.1. Some historical data; 3.2.2. Hinge link of the blade and the hub; 3.2.2.1. Formation of the equations for blade motion; 3.2.2.2. Homokinetic rotor; 3.3. Rotor technologies; 3.3.1. Articulated rotors; 3.3.1.1. Conventional articulated rotors; 3.3.1.2. Starflex® and Spheriflex® rotors; 3.3.2. Hingeless rotors 3.3.3. Hingeless rotor3.4. Influence of alternate aerodynamic loads; 3.4.1. Load characterization; 3.4.1.1. Loads on a blade; 3.4.1.2. Dynamic response of a blade; 3.4.1.3. Loads transmitted by a mode i; 3.4.2. Analysis of loads transmitted to the rotor hub; 3.4.2.1. Loads transmitted to the rotor; 3.4.2.2. Synthesis of rotor loads on the rotor mast; 3.4.3. Dynamic optimization of a blade; 3.4.3.1. Introduction; 3.4.3.2. Study of the example of an optimized blade; 3.4.3.3. Contribution of the second flapping mode; Chapter 4. Rotor Control; 4.1. Introduction; 4.2. Blade motions 4.2.1. Flapping equation - general case |
Record Nr. | UNINA-9910143315003321 |
Krysinski Tomasz
![]() |
||
London ; ; Newport Beach, CA, : ISTE, c2007 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Mechanical vibrations [[electronic resource] ] : active and passive control / / Tomasz Krysinski, François Malburet |
Autore | Krysinski Tomasz |
Pubbl/distr/stampa | London ; ; Newport Beach, CA, : ISTE, c2007 |
Descrizione fisica | 1 online resource (391 p.) |
Disciplina |
620.3
621.8/11 621.811 |
Altri autori (Persone) | MalburetFrançois |
Collana | ISTE |
Soggetto topico |
Rotors - Vibration
Damping (Mechanics) Structural control (Engineering) |
ISBN |
1-280-84767-0
9786610847679 0-470-61247-9 0-470-39460-9 1-84704-579-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Mechanical Vibrations; Table of Contents; Foreword; Preface; Part I. Sources of Vibrations; Chapter 1. Unbalance and Gyroscopic Effects; 1.1. Introduction; 1.1.1. Physico-mathematical model of a rotating system; 1.1.2. Formation of equations and analysis; 1.2. Theory of balancing; 1.2.1. Balancing machine or "balancer"; 1.2.1.1. The soft-bearing machine; 1.2.1.2. The hard-bearing machine; 1.2.2. Balancing in situ; 1.2.2.1. The method of separate planes; 1.2.2.2. The method of simultaneous planes - influence coefficients; 1.2.3. Example of application: the main rotor of a helicopter
1.2.3.1. Bench test phase on the ground1.2.3.2. Test phase on a helicopter in flight; 1.3. Influence of shaft bending; 1.3.1. The notion of critical speed; 1.3.2. Forward precession of the flexible shaft; 1.3.2.1. Subcritical speed (: Ω<ωcr); 1.3.2.2. Resonance (: Ω<ωcr); 1.3.2.3. Supercritical speed (: Ω<ωcr); 1.3.3. Balancing flexible shafts; 1.3.4. Example of application: transmission shaft of the tail rotor of a helicopter; 1.4. Gyroscopic effects; 1.4.1. Forward or backward motion; 1.4.2. Equations of motion; 1.4.2.1. Natural angular frequencies (shaft off motion) 1.4.2.2. Critical speeds during forward precession1.4.2.3. Critical speeds during retrograde precession; Chapter 2. Piston Engines; 2.1. Introduction; 2.2. Excitations generated by a piston engine; 2.2.1. Analytic determination of an engine torque; 2.2.2. Engine excitations on the chassis frame; 2.2.2.1. Knocking load; 2.2.2.2. Pitch torque; 2.2.2.3. Review of actions for a four phase cylinder engine; 2.2.3. The notion of engine balancing; 2.2.3.1. Balancing the knocking loads; 2.2.3.2. Balancing the galloping torque; 2.3. Line shafting tuning; 2.3.1. The notion of tuning 2.3.2. Creation of the equations2.3.3. Line shafting optimization; 2.3.3.1. Results for a non-optimized line shafting; 2.3.3.2. Results for an optimized line shafting; Chapter 3. Dynamics of a Rotor; 3.1. Introduction; 3.2. Description of the blade/hub relationship; 3.2.1. Some historical data; 3.2.2. Hinge link of the blade and the hub; 3.2.2.1. Formation of the equations for blade motion; 3.2.2.2. Homokinetic rotor; 3.3. Rotor technologies; 3.3.1. Articulated rotors; 3.3.1.1. Conventional articulated rotors; 3.3.1.2. Starflex® and Spheriflex® rotors; 3.3.2. Hingeless rotors 3.3.3. Hingeless rotor3.4. Influence of alternate aerodynamic loads; 3.4.1. Load characterization; 3.4.1.1. Loads on a blade; 3.4.1.2. Dynamic response of a blade; 3.4.1.3. Loads transmitted by a mode i; 3.4.2. Analysis of loads transmitted to the rotor hub; 3.4.2.1. Loads transmitted to the rotor; 3.4.2.2. Synthesis of rotor loads on the rotor mast; 3.4.3. Dynamic optimization of a blade; 3.4.3.1. Introduction; 3.4.3.2. Study of the example of an optimized blade; 3.4.3.3. Contribution of the second flapping mode; Chapter 4. Rotor Control; 4.1. Introduction; 4.2. Blade motions 4.2.1. Flapping equation - general case |
Record Nr. | UNISA-996216941603316 |
Krysinski Tomasz
![]() |
||
London ; ; Newport Beach, CA, : ISTE, c2007 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Mechanical vibrations [[electronic resource] ] : active and passive control / / Tomasz Krysinski, François Malburet |
Autore | Krysinski Tomasz |
Pubbl/distr/stampa | London ; ; Newport Beach, CA, : ISTE, c2007 |
Descrizione fisica | 1 online resource (391 p.) |
Disciplina |
620.3
621.8/11 621.811 |
Altri autori (Persone) | MalburetFrançois |
Collana | ISTE |
Soggetto topico |
Rotors - Vibration
Damping (Mechanics) Structural control (Engineering) |
ISBN |
1-280-84767-0
9786610847679 0-470-61247-9 0-470-39460-9 1-84704-579-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Mechanical Vibrations; Table of Contents; Foreword; Preface; Part I. Sources of Vibrations; Chapter 1. Unbalance and Gyroscopic Effects; 1.1. Introduction; 1.1.1. Physico-mathematical model of a rotating system; 1.1.2. Formation of equations and analysis; 1.2. Theory of balancing; 1.2.1. Balancing machine or "balancer"; 1.2.1.1. The soft-bearing machine; 1.2.1.2. The hard-bearing machine; 1.2.2. Balancing in situ; 1.2.2.1. The method of separate planes; 1.2.2.2. The method of simultaneous planes - influence coefficients; 1.2.3. Example of application: the main rotor of a helicopter
1.2.3.1. Bench test phase on the ground1.2.3.2. Test phase on a helicopter in flight; 1.3. Influence of shaft bending; 1.3.1. The notion of critical speed; 1.3.2. Forward precession of the flexible shaft; 1.3.2.1. Subcritical speed (: Ω<ωcr); 1.3.2.2. Resonance (: Ω<ωcr); 1.3.2.3. Supercritical speed (: Ω<ωcr); 1.3.3. Balancing flexible shafts; 1.3.4. Example of application: transmission shaft of the tail rotor of a helicopter; 1.4. Gyroscopic effects; 1.4.1. Forward or backward motion; 1.4.2. Equations of motion; 1.4.2.1. Natural angular frequencies (shaft off motion) 1.4.2.2. Critical speeds during forward precession1.4.2.3. Critical speeds during retrograde precession; Chapter 2. Piston Engines; 2.1. Introduction; 2.2. Excitations generated by a piston engine; 2.2.1. Analytic determination of an engine torque; 2.2.2. Engine excitations on the chassis frame; 2.2.2.1. Knocking load; 2.2.2.2. Pitch torque; 2.2.2.3. Review of actions for a four phase cylinder engine; 2.2.3. The notion of engine balancing; 2.2.3.1. Balancing the knocking loads; 2.2.3.2. Balancing the galloping torque; 2.3. Line shafting tuning; 2.3.1. The notion of tuning 2.3.2. Creation of the equations2.3.3. Line shafting optimization; 2.3.3.1. Results for a non-optimized line shafting; 2.3.3.2. Results for an optimized line shafting; Chapter 3. Dynamics of a Rotor; 3.1. Introduction; 3.2. Description of the blade/hub relationship; 3.2.1. Some historical data; 3.2.2. Hinge link of the blade and the hub; 3.2.2.1. Formation of the equations for blade motion; 3.2.2.2. Homokinetic rotor; 3.3. Rotor technologies; 3.3.1. Articulated rotors; 3.3.1.1. Conventional articulated rotors; 3.3.1.2. Starflex® and Spheriflex® rotors; 3.3.2. Hingeless rotors 3.3.3. Hingeless rotor3.4. Influence of alternate aerodynamic loads; 3.4.1. Load characterization; 3.4.1.1. Loads on a blade; 3.4.1.2. Dynamic response of a blade; 3.4.1.3. Loads transmitted by a mode i; 3.4.2. Analysis of loads transmitted to the rotor hub; 3.4.2.1. Loads transmitted to the rotor; 3.4.2.2. Synthesis of rotor loads on the rotor mast; 3.4.3. Dynamic optimization of a blade; 3.4.3.1. Introduction; 3.4.3.2. Study of the example of an optimized blade; 3.4.3.3. Contribution of the second flapping mode; Chapter 4. Rotor Control; 4.1. Introduction; 4.2. Blade motions 4.2.1. Flapping equation - general case |
Record Nr. | UNINA-9910830101203321 |
Krysinski Tomasz
![]() |
||
London ; ; Newport Beach, CA, : ISTE, c2007 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Mechanical vibrations : active and passive control / / Tomasz Krysinski, Francois Malburet |
Autore | Krysinski Tomasz |
Pubbl/distr/stampa | London ; ; Newport Beach, CA, : ISTE, c2007 |
Descrizione fisica | 1 online resource (391 p.) |
Disciplina | 621.8/11 |
Altri autori (Persone) | MalburetFrancois |
Collana | ISTE |
Soggetto topico |
Rotors - Vibration
Damping (Mechanics) Structural control (Engineering) |
ISBN |
1-280-84767-0
9786610847679 0-470-61247-9 0-470-39460-9 1-84704-579-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Mechanical Vibrations; Table of Contents; Foreword; Preface; Part I. Sources of Vibrations; Chapter 1. Unbalance and Gyroscopic Effects; 1.1. Introduction; 1.1.1. Physico-mathematical model of a rotating system; 1.1.2. Formation of equations and analysis; 1.2. Theory of balancing; 1.2.1. Balancing machine or "balancer"; 1.2.1.1. The soft-bearing machine; 1.2.1.2. The hard-bearing machine; 1.2.2. Balancing in situ; 1.2.2.1. The method of separate planes; 1.2.2.2. The method of simultaneous planes - influence coefficients; 1.2.3. Example of application: the main rotor of a helicopter
1.2.3.1. Bench test phase on the ground1.2.3.2. Test phase on a helicopter in flight; 1.3. Influence of shaft bending; 1.3.1. The notion of critical speed; 1.3.2. Forward precession of the flexible shaft; 1.3.2.1. Subcritical speed (: Ω<ωcr); 1.3.2.2. Resonance (: Ω<ωcr); 1.3.2.3. Supercritical speed (: Ω<ωcr); 1.3.3. Balancing flexible shafts; 1.3.4. Example of application: transmission shaft of the tail rotor of a helicopter; 1.4. Gyroscopic effects; 1.4.1. Forward or backward motion; 1.4.2. Equations of motion; 1.4.2.1. Natural angular frequencies (shaft off motion) 1.4.2.2. Critical speeds during forward precession1.4.2.3. Critical speeds during retrograde precession; Chapter 2. Piston Engines; 2.1. Introduction; 2.2. Excitations generated by a piston engine; 2.2.1. Analytic determination of an engine torque; 2.2.2. Engine excitations on the chassis frame; 2.2.2.1. Knocking load; 2.2.2.2. Pitch torque; 2.2.2.3. Review of actions for a four phase cylinder engine; 2.2.3. The notion of engine balancing; 2.2.3.1. Balancing the knocking loads; 2.2.3.2. Balancing the galloping torque; 2.3. Line shafting tuning; 2.3.1. The notion of tuning 2.3.2. Creation of the equations2.3.3. Line shafting optimization; 2.3.3.1. Results for a non-optimized line shafting; 2.3.3.2. Results for an optimized line shafting; Chapter 3. Dynamics of a Rotor; 3.1. Introduction; 3.2. Description of the blade/hub relationship; 3.2.1. Some historical data; 3.2.2. Hinge link of the blade and the hub; 3.2.2.1. Formation of the equations for blade motion; 3.2.2.2. Homokinetic rotor; 3.3. Rotor technologies; 3.3.1. Articulated rotors; 3.3.1.1. Conventional articulated rotors; 3.3.1.2. Starflex® and Spheriflex® rotors; 3.3.2. Hingeless rotors 3.3.3. Hingeless rotor3.4. Influence of alternate aerodynamic loads; 3.4.1. Load characterization; 3.4.1.1. Loads on a blade; 3.4.1.2. Dynamic response of a blade; 3.4.1.3. Loads transmitted by a mode i; 3.4.2. Analysis of loads transmitted to the rotor hub; 3.4.2.1. Loads transmitted to the rotor; 3.4.2.2. Synthesis of rotor loads on the rotor mast; 3.4.3. Dynamic optimization of a blade; 3.4.3.1. Introduction; 3.4.3.2. Study of the example of an optimized blade; 3.4.3.3. Contribution of the second flapping mode; Chapter 4. Rotor Control; 4.1. Introduction; 4.2. Blade motions 4.2.1. Flapping equation - general case |
Record Nr. | UNINA-9910876693903321 |
Krysinski Tomasz
![]() |
||
London ; ; Newport Beach, CA, : ISTE, c2007 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
A study of autogiro rotor-blade oscillations in the plane of the rotor disk / / by John B. Wheatley |
Autore | Wheatley John B. |
Pubbl/distr/stampa | Washington, [D.C.] : , : National Advisory Committee for Aeronautics, , 1936 |
Descrizione fisica | 1 online resource (14 pages, 10 unnumbered pages) : illustrations |
Collana | Technical note / National Advisory Committee for Aeronautics |
Soggetto topico |
Autogiros
Rotors (Autogiros) Rotors - Vibration |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910716613903321 |
Wheatley John B.
![]() |
||
Washington, [D.C.] : , : National Advisory Committee for Aeronautics, , 1936 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Vibrations in rotating machinery : proceedings of the International Conference on Vibrations in Rotating Machinery (Online, UK, October 2020) / / editor, Institutiom of Mechanical Engineers |
Autore | Institute of Mechanical Engineers |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Taylor & Francis, 2021 |
Descrizione fisica | 1 online resource (655 pages) |
Disciplina |
621.8
620.3 |
Soggetto topico | Rotors - Vibration |
Soggetto non controllato |
Mechanical engineering
Technology: general issues Civil engineering, surveying and building |
ISBN |
1-00-313263-4
1-003-13263-4 1-000-31849-4 1-000-31853-2 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | IDENTIFICATION OF MISALIGNED ADDITIVE FORCES AND MOMENTS OF COUPLING IN TURBO-GENERATOR SYSTEM INTEGRATED WITH AN ACTIVE MAGNETIC BEARING Siva Srinivas Rangavaihula, Rajiv Tiwari, Indian Institute of Technology Guwahati Ch. Kanna Babu, Aero Engine Research and Design Centre, Hindustan Aeronautics ON THE ANALYSIS OF A ROTOR SYSTEM SUBJECTED TO RUB USING A CONTINUOUS MODEL Arthur Guilherme Mereles, Katia Cavalca, University of Campinas OPTIMIZATION OF ROTATING MACHINERY BY BESO METHOD Evandro Carobino, Renato Pavanello, University of Campinas Jarir Mahfoud, University of Leon INFLUENCE OF THRUST BEARINGS IN LATERAL VIBRATIONS OF TURBOCHARGERS UNDER AXIAL HARMONIC EXCITATION Thales Peixoto, Katia Cavalca, University of Campinas CYLINDRICAL ROLLER BEARING UNDER ELASTOHYDRODYNAMIC LUBRICATION WITH LOCALIZED DEFECTS MODELLING Natalia Tsuha, Katia Cavalca, University of Campinas ANALYTICAL STUDY OF ROTORDYNAMIC BEHAVIOUR AND ROLLING ELEMENT BEARING TRANSIENT RESPONSE IN A HIGH-SPEED RACE TRANSMISSION Brett Friskney, Stephanos Theodossiades, Mahdi Mohammad-Pour, Loughborough University NONLINEAR ANALYSIS OF HYDRODYNAMIC FORCES FOR MULTI-LOBE BEARINGS Carlos Alberto Alves Viana, Diogo Stuani Alves, Tiago Machado, University of Campinas SOME FURTHER REFLECTIONS ON MISALIGNMENT Arthur Lees, Swansea University ATTENUATING INFLUENCE OF TIME-DELAY ON STABILITY OF ROTORS SUPPORTED ON ACTIVE MAGNETIC BEARINGS Tukesh Soni, Panjab University Jayanta Dutt, Indian Institute of Technology Delhi Anindya Das, Jadavpur University CALCULATION PROCEDURE TO DERIVE THE THRESHOLD OF VIBRATION STABILITY OF SOFT MOUNTED INDUCTION MOTORS WITH ELASTIC ROTORS AND SLEEVE BEARINGS FIXED ON ACTIVE MOTOR FOOT MOUNTS FOR ARBITRARY CONTROLLER STRUCTURES Ulrich Werner, Nuremberg Tech, Faculty EFIEXPERIMENTAL INVESTIGATION ON THE STATIC AND DYNAMIC CHARACTERISTICS OF PARTIALLY TEXTURED JOURNAL BEARINGS Hiroo Taura, Nagaoka University of Technology ROTATING MACHINES FEATURING NEW ROTOR TOPOLOGY AND INTERNAL ACTUATION FOR VIBRATION MITIGATION Gauthier Fieux, Nicola Bailey, Patrick Keogh, University of Bath EFFECTS OF UNBALANCE AND AMB MISALIGNMENT IN A RIGID ROTOR WITH AN OFFSET DISC LEVITATED BY ACTIVE MAGNETIC BEARINGS: A NUMERICAL INVESTIGATION Prabhat Kumar, National Institute of Technology Manipur and Indian Institute of Technology Guwahati Rajiv Tiwari, Indian Institute of Technology Guwahati MODAL PARAMETERS EVALUATION OF A ROLLING BEARING ROTOR USING OPERATIONAL MODAL ANALYSIS Gustavo Storti, Natalia Tsuha, Katia Cavalca, Tiago Machado, University of Campinas ROTOR-ANGULAR CONTACT BALL BEARING SYSTEM STUDY USING EHD LUBRICATION AND COMPARISON WITH EXPERIMENTAL TESTS Laís Carrer, Leticia Bizarre, Katia Cavalca, University of Campinas EFFECT OF JOURNAL BEARING PRELOAD CAUSED BY BEARING-HOUSING INTERFERENCE FIT ON NONLINEAR VIBRATION OF A FLEXIBLE ROTOR SUPPORTED BY A JOURNAL BEARING Nuntaphong Koondilogpiboon, Tsuyoshi Inoue, Nagoya University VALIDATION OF THE STOCHASTIC RESPONSE OF A ROTOR WITH UNCERTAINTIES IN THE AMBS Gabriel Garoli, Helio de Castro, University of Campinas Rafael Pilotto, Rainer Nordmann, Fraunhofer Institute for Structural Durability and System Reliability ACTIVE CHATTER SUPPRESSION IN ROBOTIC MILLING USING H_[INFINITY] CONTROL Runan Zhang, Zheng Wang, Patrick Keogh, University of Bath FAST ESTIMATION OF CLASSICAL FLUTTER STABILITY OF TURBINE BLADE BY REDUCED CFD MODELLING Chandra Shekhar Prasad, Luděk Pešek, Institute of Thermomechnanics of the CAS Václav Sláma, Doosan Škoda Power s.r.o SUPPRESSION AND CONTROL OF TORSIONAL VIBRATIONS OF THE TURBO-GENERATOR SHAFT-LINES USING ROTARY MAGNETO-RHEOLOGICAL DAMPERS Tomasz Szolc, Robert Konowrocki, Dominik Pisarski, Institute of Fundamental Technological Research of the Polish Academy of Sciences Andrzej Pochanke, Faculty of Electrical Engineering of the Warsaw University of Technology COUPLING BETWEEN AXIAL, LATERAL AND TORSIONAL VIBRATION MODES OF A FLEXIBLE SHAFT WITH FLEXIBLE STAGGERED BLADES Giuliano Tuzzi, Christoph Schwingshackl, Imperial College London Jeffrey Green, Rolls Royce INTEGRATION OF PARAMETER SENSITIVITY TO STRUCTURAL OPTIMIZATION OF HELICOPTER ROTORS FOR MINIMUM VIBRATION Muhammed Emre Bilen, Turkish Aerospace Ender Cigeroglu, Middle East Technical University H. Nevzat Özgüven, Middle East Technical University A PARAMETRIC STUDY INTO THE EFFECT OF VARIABILITY IN CLEARANCE SHAPE AND BUMP FOIL STIFFNESS DISTRIBUTION IN FOIL-AIR BEARINGS Ibrahim Ghalayini, Philip Bonello, The University of Manchester UNCERTAINTIES IN THE CALIBRATION PROCESS OF BLADE TIP TIMING DATA AGAINST FINITE ELEMENT MODEL PREDICTIONS Mohamed Elsayed Mohamed, The University of Manchester and Cairo University Philip Bonello, The University of Manchester Pete Russhard, EMTD Ltd PARAMETRIC COUPLED INSTABILITIES OF AN ON-BOARD ROTOR SUBJECT TO YAW AND PITCH WITH ARBITRARY FREQUENCIES Yvon Briend, Mzaki Dakel, Eric Chatelet, Marie Ange Andrianoely, Régis Dufour, Univ Lyon, INSA-Lyon Sophie Baudin, AVNIR Engineering ON THE FOUNDATION DYNAMICS AND THE ACTIVE CONTROL OF FLEXIBLE ROTORS VIA ACTIVE MAGNETIC BEARINGS Thomas Paulsen, Ilmar Santos, Technical University of Denmark VIBRATION BEHAVIOUR OF A 11 KW TWOƯPOLE INƯ DUCTION MOTOR MOUNTED ON ELASTIC STEEL FRAME FOUNDATION WITH ACTUATOR SYSTEM Raimund Wachter, Ulrich Werner, Nuremberg Tech Hans-Georg Herzog, Technical University of Munich Christian Bauer, Siemens AG HYBRID CRANKSHAFT CONTROL: REDUCTION OF TORSIONAL VIBRATIONS AND ROTATIONAL IRREGULARITIES UNDER NON-STATIONARY OPERATION Guillaume Paillot, Didier Rémond, Simon Chesné, Univ Lyon, INSA-Lyon IMPROVED REDUCTION METHODOLOGY FOR ROTOR-DYNAMIC SYSTEMS USING MODIFIED SEREP Ankush Kapoor, Jayanta Dutt, Indian Institute of Technology Delhi Anindya Das, Jadavpur University EFFECT OF L/D RATIO AND CLEARANCE OF 3-LOBE TAPER LAND BEARING ON STABILITY OF FLEXIBLE ROTOR SYSTEM Sanjin Braut, Ante Skoblar, Goranka Štimac Rončević, Roberto Žigulić, University of Rijeka DATA COMBINATION FOR A CONSOLIDATED DIAGNOSIS OF ROTOR AND BEARING FAULTS Kenisuomo C. Luwei, Akilu Yunusa-Kaltungo, The University of Manchester ASYNCHRONOUS ROTOR EXCITATION SYSTEM (ARES) -- A NEW ROTOR DYNAMIC TEST FACILITY AT IMPERIAL COLLEGE LONDON Christoph Schwingshackl, Luke Muscutt, Michal Szydlowski, Alex Haslam, Giuliano Tuzzi, Imperial College London Valentina Ruffini, Matthew Price, Andrew Rix, Jeffrey Green, Rolls Royce EXPERIMENTAL INVESTIGATION OF NON-LINEAR STIFFNESS BEHAVIOUR OF A ROLLING-ELEMENT BEARING Alexander Haslam, Christoph Schwingshackl, Luke Muscutt, Imperial College London Andrew Rix, Matthew Price, Rolls Royce AN OPTIMAL FREQUENCY BAND SELECTION FOR BEARING FAULT DIAGNOSIS BASED ON SQUARED ENVELOPE ANALYSIS Lang XU, Steven Chatterton, Paolo Pennacchi, Politecnico di Milano IMPROVING THE THRUST BEARING PERFORMANCE OF TURBOCHARGER ROTORS USING OPTIMIZATION METHODS AND VIRTUAL PROTOTYPES Pavel Novotný, Jozef Hrabovsky, Brno University of Technology Vladimir Hort, Jiří Klíma, PBS Turbo, s.r.o. CHARACTERISTICS OF A HIGH SPEED THIN FILM FLUID LUBRICATED BEARING Nicola Bailey, University of Bath SIMULATION MODEL TO INVESTIGATE EFFECT OF SUPPORT STIFFNESS ON DYNAMIC BEHAVIOUR OF A LARGE ROTOR Emil Kurvinen, Tuhin Choudhury, Jussi Sopanen, Lappeenranta-Lahti University of Technology Risto Viitala, Aalto University IDENTIFICATION OF FRAME DYNAMICS OF VERTICALLY ORIENTED HIGH-SPEED STEAM GENERATOR USING MODEL UPDATE PROCEDURE FOR REDUCED-O |
Record Nr. | UNINA-9910476836803321 |
Institute of Mechanical Engineers
![]() |
||
Taylor & Francis, 2021 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|