top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Instabilities modeling in geomechanics / / coordinated by Ioannis Stefanou, Jean Sulem
Instabilities modeling in geomechanics / / coordinated by Ioannis Stefanou, Jean Sulem
Pubbl/distr/stampa London : , : ISTE Ltd
Descrizione fisica 1 online resource (xiii, 341 pages) : illustrations
Disciplina 624.15132
Collana Sciences. Mechanics, Geomechanics
Soggetto topico Rock mechanics - Mathematics
Stability - Mathematical models
Rock mechanics - Mathematical models
Bifurcation theory
Soggetto genere / forma Electronic books.
ISBN 1-119-75520-4
1-119-75518-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction -- 1. Multiphysics Role in Instabilities in Geomaterials: a Review -- 1.1. Introduction -- 1.2. General remarks -- 1.3. Solid phase material criteria -- 1.4. Material sample stability: experimental -- 1.5. Boundary value problems: uniqueness and stability at the field scale -- 1.5.1. Landslides -- 1.5.2. Thermal pressurization problem -- 1.5.3. Localization during drying of geomaterials -- 1.6. Conclusion -- 1.7. References -- 2. Fundamentals of Bifurcation Theory and Stability Analysis -- 2.1. Introduction -- 2.2. Bifurcation and stability of dynamical systems -- 2.2.1. Definition of stability -- 2.2.2. Linear systems of ODEs -- 2.2.3. Nonlinear systems of ODEs -- 2.2.4. An example of LSA -- 2.3. Stability of two-dimensional linear dynamical systems -- 2.3.1. Classification of fixed points -- 2.3.2. Love mechanics: Romeo and Juliet -- 2.4. Commmon types of bifurcations -- 2.4.1. Saddle-node bifurcation -- 2.4.2. Transcritical bifurcation -- 2.4.3. Supercritical and subcritical pitchfork bifurcation -- 2.4.4. From one to two dimensions - limit cycles -- 2.4.5. Bifurcations in two dimensions - supercritical and subcritical Hopf bifurcation -- 2.4.6. Mathematical bifurcations in PDEs -- 2.5. From ODEs to PDEs -- 2.5.1. Deformation bands and the acoustic tensor -- 2.5.2. Deformation bands as an instability problem -- 2.6. Summary -- 2.7. Appendix -- 2.8. References -- 3. Material Instability and Strain Localization Analysis -- 3.1. Introduction -- 3.2. Shear band model -- 3.2.1. Strain localization criterion -- 3.2.2. Strain localization, loss of ellipticity and vanishing speed of acceleration waves -- 3.3. Shear band formation in element tests on rocks -- 3.3.1. Drucker-Prager model -- 3.3.2. Non-coaxial plasticity -- 3.3.3. Cataclastic shear banding.
3.3.4. Postlocalization behavior -- 3.4. Strain localization in fluid-saturated porous media -- 3.4.1. Strain localization criterion in fluid-saturated porous media -- 3.4.2. Stability analysis of undrained shear on a saturated layer -- 3.5. Conclusion -- 3.6. References -- 4. Experimental Investigation of the Emergence of Strain Localization in Geomaterials -- 4.1. Introduction -- 4.2. Methods -- 4.2.1. Digital image correlation -- 4.2.2. X-ray computed tomography -- 4.2.3. Experimental devices for in situ full-field measurements -- 4.3. Selected materials -- 4.3.1. Hostun sand -- 4.3.2. Caicos ooids sand -- 4.3.3. Vosges sandstone -- 4.3.4. Callovo-Oxfordian clayey rock -- 4.4. Strain localization in sands -- 4.4.1. Plane strain compression by FRS -- 4.4.2. Triaxial compression by X-ray CT and DIC -- 4.4.3. Triaxial compression by X-ray CT, the critical void ratio -- 4.5. Strain localization in porous rocks -- 4.5.1. Strain localization in Vosges sandstone -- 4.5.2. Strain localization in a clayey rock -- 4.6. Conclusion -- 4.7. References -- 5. Numerical Modeling of Strain Localization -- 5.1. Introduction -- 5.2. Cosserat continuum -- 5.2.1. Governing equations -- 5.2.2. Finite element formulation of Cosserat model -- 5.2.3. Material parameters -- 5.2.4. Failure in thick-walled cylinder test -- 5.2.5. Stability analysis of elliptical shape perforations -- 5.3. Gradient elastoplasticity -- 5.3.1. Governing equations -- 5.3.2. Finite element formulation -- 5.3.3. Material model -- 5.3.4. Modeling of the biaxial test -- 5.3.5. Modeling cavity expansion -- 5.4. Conclusion -- 5.5. Acknowledgments -- 5.6. References -- 6. Numerical Modeling of Bifurcation: Applications to Borehole Stability, Multilayer Buckling and Rock Bursting -- 6.1. Introduction -- 6.2. Borehole stability -- 6.2.1. Primary loading path -- 6.2.2. Hole failure.
6.2.3. Simulation of hollow cylinder experiments -- 6.3. Folding of elastic media as a bifurcation problem -- 6.3.1. Buckling of a layer under initial stress -- 6.3.2. Eigen-displacements and tractions at layer boundaries -- 6.3.3. Buckling of a layer system - the transfer matrix technique -- 6.3.4. Buckling of layered half-space -- 6.4. Axial splitting and spalling -- 6.4.1. Buckling of a half-space with surface parallel cracks -- 6.5. Conclusion -- 6.6. Acknowledgments -- 6.7. References -- 7. Numerical Modeling of Multiphysics Couplings and Strain Localization -- 7.1. Introduction -- 7.2. Experimental evidences of strain localization -- 7.3. Regularization methods -- 7.3.1. Enrichment of the constitutive law -- 7.3.2. Enrichment of the kinematics -- 7.4. Coupled local second gradient model for microstructure saturated media -- 7.4.1. Balance equations for microstructure poromechanics -- 7.4.2. Coupled finite element formulation -- 7.4.3. Two-dimensional specimen under compression -- 7.5. Coupled local second gradient model for an unsaturated medium -- 7.5.1. Partial saturation conditions -- 7.5.2. Anisotropy of the intrinsic permeability -- 7.5.3. Compressibility of the solid grains -- 7.6. Modeling of a gallery excavation -- 7.6.1. Numerical model -- 7.6.2. Influence of stress and permeability anisotropies -- 7.6.3. Influence of second gradient boundary condition -- 7.6.4. Influence of Biot's coefficient -- 7.6.5. Influence of gallery ventilation -- 7.7. Conclusion -- 7.8. References -- 8. Multiphysics Couplings and Strain Localization in Geomaterials -- 8.1. Introduction -- 8.2. Thermo-chemo-chemical couplings and stability of shear zones -- 8.2.1. Problem statement -- 8.2.2. Stability of adiabatic undrained shear -- 8.2.3. Chemical weakening and earthquake nucleation -- 8.3. Dissolution weakening and compaction banding.
8.3.1. Multiscale modeling of strong chemo-poro-mechanical coupling -- 8.3.2. Compaction banding in oedometric compression -- 8.4. Conclusion -- 8.5. References -- 9. On the Thermo-poro-mechanics of Chemically Active Faults -- 9.1. Introduction -- 9.2. Time-independent formation of shear zones from solid mechanics -- 9.2.1. Shear zone thickness at boundary temperature conditions -- 9.2.2. Shear zone thickness at elevated temperature -- 9.3. Time-dependent evolution of shear zones -- 9.3.1. Energy considerations -- 9.3.2. The Taylor-Quinney coefficient -- 9.3.3. Chemical reactions -- 9.4. Postfailure evolution of a shear zone -- 9.4.1. Analysis of the system's response -- 9.4.2. Time scales of the system -- 9.5. Comparison to field observations -- 9.6. Application to ETS sequences -- 9.6.1. Regular sequences - Cascadia ETS sequence -- 9.7. Discussion -- 9.8. Appendix: poro-chemical model -- 9.9. References -- 10. Analysis of Instabilities in Faults -- 10.1. Introduction -- 10.2. Description of the model -- 10.2.1. Cosserat continuum theory -- 10.2.2. Constitutive equations for a Cosserat continuum -- 10.2.3. Mass balance equation -- 10.2.4. Energy balance equation -- 10.3. Bifurcation analysis -- 10.3.1. LSA for a Cosserat continuum with THM couplings -- 10.3.2. Localization conditions for a fault zone -- 10.3.3. Shear band thickness evolution in a fault zone -- 10.4. Numerical analysis -- 10.4.1. Regularization of the mesh dependency -- 10.4.2. Response and shear band thickness of a fault gouge -- 10.5. Conclusion -- 10.6. Bibliography -- List of Authors -- Index -- EULA.
Record Nr. UNINA-9910555254003321
London : , : ISTE Ltd
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Instabilities modeling in geomechanics / / coordinated by Ioannis Stefanou, Jean Sulem
Instabilities modeling in geomechanics / / coordinated by Ioannis Stefanou, Jean Sulem
Pubbl/distr/stampa London : , : ISTE Ltd
Descrizione fisica 1 online resource (xiii, 341 pages) : illustrations
Disciplina 624.15132
Collana Sciences. Mechanics, Geomechanics
Soggetto topico Rock mechanics - Mathematics
Stability - Mathematical models
Rock mechanics - Mathematical models
Bifurcation theory
ISBN 1-119-75520-4
1-119-75518-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction -- 1. Multiphysics Role in Instabilities in Geomaterials: a Review -- 1.1. Introduction -- 1.2. General remarks -- 1.3. Solid phase material criteria -- 1.4. Material sample stability: experimental -- 1.5. Boundary value problems: uniqueness and stability at the field scale -- 1.5.1. Landslides -- 1.5.2. Thermal pressurization problem -- 1.5.3. Localization during drying of geomaterials -- 1.6. Conclusion -- 1.7. References -- 2. Fundamentals of Bifurcation Theory and Stability Analysis -- 2.1. Introduction -- 2.2. Bifurcation and stability of dynamical systems -- 2.2.1. Definition of stability -- 2.2.2. Linear systems of ODEs -- 2.2.3. Nonlinear systems of ODEs -- 2.2.4. An example of LSA -- 2.3. Stability of two-dimensional linear dynamical systems -- 2.3.1. Classification of fixed points -- 2.3.2. Love mechanics: Romeo and Juliet -- 2.4. Commmon types of bifurcations -- 2.4.1. Saddle-node bifurcation -- 2.4.2. Transcritical bifurcation -- 2.4.3. Supercritical and subcritical pitchfork bifurcation -- 2.4.4. From one to two dimensions - limit cycles -- 2.4.5. Bifurcations in two dimensions - supercritical and subcritical Hopf bifurcation -- 2.4.6. Mathematical bifurcations in PDEs -- 2.5. From ODEs to PDEs -- 2.5.1. Deformation bands and the acoustic tensor -- 2.5.2. Deformation bands as an instability problem -- 2.6. Summary -- 2.7. Appendix -- 2.8. References -- 3. Material Instability and Strain Localization Analysis -- 3.1. Introduction -- 3.2. Shear band model -- 3.2.1. Strain localization criterion -- 3.2.2. Strain localization, loss of ellipticity and vanishing speed of acceleration waves -- 3.3. Shear band formation in element tests on rocks -- 3.3.1. Drucker-Prager model -- 3.3.2. Non-coaxial plasticity -- 3.3.3. Cataclastic shear banding.
3.3.4. Postlocalization behavior -- 3.4. Strain localization in fluid-saturated porous media -- 3.4.1. Strain localization criterion in fluid-saturated porous media -- 3.4.2. Stability analysis of undrained shear on a saturated layer -- 3.5. Conclusion -- 3.6. References -- 4. Experimental Investigation of the Emergence of Strain Localization in Geomaterials -- 4.1. Introduction -- 4.2. Methods -- 4.2.1. Digital image correlation -- 4.2.2. X-ray computed tomography -- 4.2.3. Experimental devices for in situ full-field measurements -- 4.3. Selected materials -- 4.3.1. Hostun sand -- 4.3.2. Caicos ooids sand -- 4.3.3. Vosges sandstone -- 4.3.4. Callovo-Oxfordian clayey rock -- 4.4. Strain localization in sands -- 4.4.1. Plane strain compression by FRS -- 4.4.2. Triaxial compression by X-ray CT and DIC -- 4.4.3. Triaxial compression by X-ray CT, the critical void ratio -- 4.5. Strain localization in porous rocks -- 4.5.1. Strain localization in Vosges sandstone -- 4.5.2. Strain localization in a clayey rock -- 4.6. Conclusion -- 4.7. References -- 5. Numerical Modeling of Strain Localization -- 5.1. Introduction -- 5.2. Cosserat continuum -- 5.2.1. Governing equations -- 5.2.2. Finite element formulation of Cosserat model -- 5.2.3. Material parameters -- 5.2.4. Failure in thick-walled cylinder test -- 5.2.5. Stability analysis of elliptical shape perforations -- 5.3. Gradient elastoplasticity -- 5.3.1. Governing equations -- 5.3.2. Finite element formulation -- 5.3.3. Material model -- 5.3.4. Modeling of the biaxial test -- 5.3.5. Modeling cavity expansion -- 5.4. Conclusion -- 5.5. Acknowledgments -- 5.6. References -- 6. Numerical Modeling of Bifurcation: Applications to Borehole Stability, Multilayer Buckling and Rock Bursting -- 6.1. Introduction -- 6.2. Borehole stability -- 6.2.1. Primary loading path -- 6.2.2. Hole failure.
6.2.3. Simulation of hollow cylinder experiments -- 6.3. Folding of elastic media as a bifurcation problem -- 6.3.1. Buckling of a layer under initial stress -- 6.3.2. Eigen-displacements and tractions at layer boundaries -- 6.3.3. Buckling of a layer system - the transfer matrix technique -- 6.3.4. Buckling of layered half-space -- 6.4. Axial splitting and spalling -- 6.4.1. Buckling of a half-space with surface parallel cracks -- 6.5. Conclusion -- 6.6. Acknowledgments -- 6.7. References -- 7. Numerical Modeling of Multiphysics Couplings and Strain Localization -- 7.1. Introduction -- 7.2. Experimental evidences of strain localization -- 7.3. Regularization methods -- 7.3.1. Enrichment of the constitutive law -- 7.3.2. Enrichment of the kinematics -- 7.4. Coupled local second gradient model for microstructure saturated media -- 7.4.1. Balance equations for microstructure poromechanics -- 7.4.2. Coupled finite element formulation -- 7.4.3. Two-dimensional specimen under compression -- 7.5. Coupled local second gradient model for an unsaturated medium -- 7.5.1. Partial saturation conditions -- 7.5.2. Anisotropy of the intrinsic permeability -- 7.5.3. Compressibility of the solid grains -- 7.6. Modeling of a gallery excavation -- 7.6.1. Numerical model -- 7.6.2. Influence of stress and permeability anisotropies -- 7.6.3. Influence of second gradient boundary condition -- 7.6.4. Influence of Biot's coefficient -- 7.6.5. Influence of gallery ventilation -- 7.7. Conclusion -- 7.8. References -- 8. Multiphysics Couplings and Strain Localization in Geomaterials -- 8.1. Introduction -- 8.2. Thermo-chemo-chemical couplings and stability of shear zones -- 8.2.1. Problem statement -- 8.2.2. Stability of adiabatic undrained shear -- 8.2.3. Chemical weakening and earthquake nucleation -- 8.3. Dissolution weakening and compaction banding.
8.3.1. Multiscale modeling of strong chemo-poro-mechanical coupling -- 8.3.2. Compaction banding in oedometric compression -- 8.4. Conclusion -- 8.5. References -- 9. On the Thermo-poro-mechanics of Chemically Active Faults -- 9.1. Introduction -- 9.2. Time-independent formation of shear zones from solid mechanics -- 9.2.1. Shear zone thickness at boundary temperature conditions -- 9.2.2. Shear zone thickness at elevated temperature -- 9.3. Time-dependent evolution of shear zones -- 9.3.1. Energy considerations -- 9.3.2. The Taylor-Quinney coefficient -- 9.3.3. Chemical reactions -- 9.4. Postfailure evolution of a shear zone -- 9.4.1. Analysis of the system's response -- 9.4.2. Time scales of the system -- 9.5. Comparison to field observations -- 9.6. Application to ETS sequences -- 9.6.1. Regular sequences - Cascadia ETS sequence -- 9.7. Discussion -- 9.8. Appendix: poro-chemical model -- 9.9. References -- 10. Analysis of Instabilities in Faults -- 10.1. Introduction -- 10.2. Description of the model -- 10.2.1. Cosserat continuum theory -- 10.2.2. Constitutive equations for a Cosserat continuum -- 10.2.3. Mass balance equation -- 10.2.4. Energy balance equation -- 10.3. Bifurcation analysis -- 10.3.1. LSA for a Cosserat continuum with THM couplings -- 10.3.2. Localization conditions for a fault zone -- 10.3.3. Shear band thickness evolution in a fault zone -- 10.4. Numerical analysis -- 10.4.1. Regularization of the mesh dependency -- 10.4.2. Response and shear band thickness of a fault gouge -- 10.5. Conclusion -- 10.6. Bibliography -- List of Authors -- Index -- EULA.
Record Nr. UNINA-9910830915703321
London : , : ISTE Ltd
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
International journal of geomechanics
International journal of geomechanics
Pubbl/distr/stampa [Boca Raton, FL], : CRC Press, 2001-
Disciplina 624
Soggetto topico Engineering geology - Mathematical models
Rock mechanics - Mathematical models
Soil mechanics - Mathematical models
Soggetto genere / forma Periodicals.
ISSN 1943-5622
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti IJOG
Record Nr. UNISA-996206151403316
[Boca Raton, FL], : CRC Press, 2001-
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
International journal of geomechanics
International journal of geomechanics
Pubbl/distr/stampa [Boca Raton, FL], : CRC Press, 2001-
Disciplina 624
Soggetto topico Engineering geology - Mathematical models
Rock mechanics - Mathematical models
Soil mechanics - Mathematical models
Soggetto genere / forma Periodicals.
ISSN 1943-5622
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti IJOG
Record Nr. UNINA-9910338747903321
[Boca Raton, FL], : CRC Press, 2001-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Numerical modelling and analysis of fluid flow and deformation of fractured rock masses [[electronic resource] /] / Xing Zhang and David J. Sanderson
Numerical modelling and analysis of fluid flow and deformation of fractured rock masses [[electronic resource] /] / Xing Zhang and David J. Sanderson
Autore Zhang X (Xiaopeng)
Edizione [1st ed.]
Pubbl/distr/stampa Amsterdam ; ; Boston, : Pergamon, 2002
Descrizione fisica 1 online resource (301 p.)
Disciplina 624.1/5132
Altri autori (Persone) SandersonD. J
Soggetto topico Rocks - Fracture - Mathematical models
Rock mechanics - Mathematical models
Fluid dynamics - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-281-07224-9
9786611072247
0-08-053786-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Numerical Modelling and Analysis of Fluid Flow and Deformation of Fractured Rock Masses; Copyright Page; Contents; Preface; Chapter 1. Introduction to Modelling Deformation and Fluid Flow of Fractured Rock; 1.1. Introduction; 1.2. Approaches to modelling rock systems; 1.3. Continuum models; 1.4. Flow models; 1.5. Discontinuum models; 1.6. Overview of UDEC; 1.7. Summary of numerical modelling; Chapter 2. Modelling of Simple Rock Blocks; 2.1. Introduction; 2.2. Basic components of natural fracture networks; 2.3. Model geometry and initial conditions
2.4. Basic behaviour of deformation and fluid flow2.5. Effects of fracture geometry; 2.6. Effects of fracture properties; 2.7. Effects of applied boundary stresses; 2.8. Effects of rock deformation models; 2.9. Summary; Chapter 3. Evaluation of 2-Dimensional Permeability Tensors; 3.1. Introduction; 3.2. Calculation of components of flow-rates; 3.3. Permeability in naturally fractured rocks; 3.4. Geometrical effects on permeability; 3.5. Effects of stress on permeability; 3.6. Conclusions; Appendix 3-A 1: Input codes for example one; Appendix 3-A2: Derivation of 2-D permeability tensor
Chapter 4. Scaling of 2-D Permeability Tensors4.1. Introduction; 4.2. Development of the previous approach; 4.3. Testing the concept of a representative element volume by down-scaling; 4.4. Scaling-up of permeability; 4.5. Effects of sample number and sample size; 4.6. Determining the permeability of a region; 4.7. Conclusions; Chapter 5. Percolation Behaviour of Fracture Networks; 5.1. Introduction; 5.2. Modelling of 2-dimensional fracture networks; 5.3. Density, percolation threshold and fractal dimension; 5.4. Critical behaviour of fractured rock masses; 5.5. Conclusions
Chapter 6. Slip and Fluid Flow around An Extensional Fault6.1. Introduction; 6.2. Outline of modelling; 6.3. Stress distribution and fluid flow in model A: At a shallow depth with a hydrostatic fluid pressure; 6.4. Comparison of model A with a supra-hydrostatic fluid pressure at greater depth; 6.5. Effects of irregularities in fault zone; 6.6. Discussion of dynamic response of fluid-dilation interactions; 6.7. Conclusions; Chapter 7. Instability and Associated Localization of Deformation and Fluid Flow in Fractured Rocks; 7.1. Introduction; 7.2. Numerical determination of instability
7.3. Instability and R-ratio7.4. Effects of fracture network geometry; 7.5. Multifractal description of flow localisation; 7.6. Permeability of three natural fracture networks before and at critical stress state; 7.7. Effects of loading direction; 7.8. Is the crust in a critical state?; 7.9. Implications for mineral deposits; 7.10. Conclusions; Chapter 8. Grain Scale Flow of Fluid in Fractured Rocks; 8.1. Introduction; 8.2. Simulation of Deformation and Fracturing in Matrix Models; 8.3. Dual Permeability Model; 8.4. Results; 8.5. Discussion and Conclusions
Chapter 9. Changes of Permeability due to Excavation of Ship-Locks of the Three Gorges Project, China
Record Nr. UNINA-9910458252903321
Zhang X (Xiaopeng)  
Amsterdam ; ; Boston, : Pergamon, 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Numerical modelling and analysis of fluid flow and deformation of fractured rock masses [[electronic resource] /] / Xing Zhang and David J. Sanderson
Numerical modelling and analysis of fluid flow and deformation of fractured rock masses [[electronic resource] /] / Xing Zhang and David J. Sanderson
Autore Zhang X (Xiaopeng)
Edizione [1st ed.]
Pubbl/distr/stampa Amsterdam ; ; Boston, : Pergamon, 2002
Descrizione fisica 1 online resource (301 p.)
Disciplina 624.1/5132
Altri autori (Persone) SandersonD. J
Soggetto topico Rocks - Fracture - Mathematical models
Rock mechanics - Mathematical models
Fluid dynamics - Mathematical models
ISBN 1-281-07224-9
9786611072247
0-08-053786-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Numerical Modelling and Analysis of Fluid Flow and Deformation of Fractured Rock Masses; Copyright Page; Contents; Preface; Chapter 1. Introduction to Modelling Deformation and Fluid Flow of Fractured Rock; 1.1. Introduction; 1.2. Approaches to modelling rock systems; 1.3. Continuum models; 1.4. Flow models; 1.5. Discontinuum models; 1.6. Overview of UDEC; 1.7. Summary of numerical modelling; Chapter 2. Modelling of Simple Rock Blocks; 2.1. Introduction; 2.2. Basic components of natural fracture networks; 2.3. Model geometry and initial conditions
2.4. Basic behaviour of deformation and fluid flow2.5. Effects of fracture geometry; 2.6. Effects of fracture properties; 2.7. Effects of applied boundary stresses; 2.8. Effects of rock deformation models; 2.9. Summary; Chapter 3. Evaluation of 2-Dimensional Permeability Tensors; 3.1. Introduction; 3.2. Calculation of components of flow-rates; 3.3. Permeability in naturally fractured rocks; 3.4. Geometrical effects on permeability; 3.5. Effects of stress on permeability; 3.6. Conclusions; Appendix 3-A 1: Input codes for example one; Appendix 3-A2: Derivation of 2-D permeability tensor
Chapter 4. Scaling of 2-D Permeability Tensors4.1. Introduction; 4.2. Development of the previous approach; 4.3. Testing the concept of a representative element volume by down-scaling; 4.4. Scaling-up of permeability; 4.5. Effects of sample number and sample size; 4.6. Determining the permeability of a region; 4.7. Conclusions; Chapter 5. Percolation Behaviour of Fracture Networks; 5.1. Introduction; 5.2. Modelling of 2-dimensional fracture networks; 5.3. Density, percolation threshold and fractal dimension; 5.4. Critical behaviour of fractured rock masses; 5.5. Conclusions
Chapter 6. Slip and Fluid Flow around An Extensional Fault6.1. Introduction; 6.2. Outline of modelling; 6.3. Stress distribution and fluid flow in model A: At a shallow depth with a hydrostatic fluid pressure; 6.4. Comparison of model A with a supra-hydrostatic fluid pressure at greater depth; 6.5. Effects of irregularities in fault zone; 6.6. Discussion of dynamic response of fluid-dilation interactions; 6.7. Conclusions; Chapter 7. Instability and Associated Localization of Deformation and Fluid Flow in Fractured Rocks; 7.1. Introduction; 7.2. Numerical determination of instability
7.3. Instability and R-ratio7.4. Effects of fracture network geometry; 7.5. Multifractal description of flow localisation; 7.6. Permeability of three natural fracture networks before and at critical stress state; 7.7. Effects of loading direction; 7.8. Is the crust in a critical state?; 7.9. Implications for mineral deposits; 7.10. Conclusions; Chapter 8. Grain Scale Flow of Fluid in Fractured Rocks; 8.1. Introduction; 8.2. Simulation of Deformation and Fracturing in Matrix Models; 8.3. Dual Permeability Model; 8.4. Results; 8.5. Discussion and Conclusions
Chapter 9. Changes of Permeability due to Excavation of Ship-Locks of the Three Gorges Project, China
Record Nr. UNINA-9910784530903321
Zhang X (Xiaopeng)  
Amsterdam ; ; Boston, : Pergamon, 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Numerical modelling and analysis of fluid flow and deformation of fractured rock masses [[electronic resource] /] / Xing Zhang and David J. Sanderson
Numerical modelling and analysis of fluid flow and deformation of fractured rock masses [[electronic resource] /] / Xing Zhang and David J. Sanderson
Autore Zhang X (Xiaopeng)
Edizione [1st ed.]
Pubbl/distr/stampa Amsterdam ; ; Boston, : Pergamon, 2002
Descrizione fisica 1 online resource (301 p.)
Disciplina 624.1/5132
Altri autori (Persone) SandersonD. J
Soggetto topico Rocks - Fracture - Mathematical models
Rock mechanics - Mathematical models
Fluid dynamics - Mathematical models
ISBN 1-281-07224-9
9786611072247
0-08-053786-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Numerical Modelling and Analysis of Fluid Flow and Deformation of Fractured Rock Masses; Copyright Page; Contents; Preface; Chapter 1. Introduction to Modelling Deformation and Fluid Flow of Fractured Rock; 1.1. Introduction; 1.2. Approaches to modelling rock systems; 1.3. Continuum models; 1.4. Flow models; 1.5. Discontinuum models; 1.6. Overview of UDEC; 1.7. Summary of numerical modelling; Chapter 2. Modelling of Simple Rock Blocks; 2.1. Introduction; 2.2. Basic components of natural fracture networks; 2.3. Model geometry and initial conditions
2.4. Basic behaviour of deformation and fluid flow2.5. Effects of fracture geometry; 2.6. Effects of fracture properties; 2.7. Effects of applied boundary stresses; 2.8. Effects of rock deformation models; 2.9. Summary; Chapter 3. Evaluation of 2-Dimensional Permeability Tensors; 3.1. Introduction; 3.2. Calculation of components of flow-rates; 3.3. Permeability in naturally fractured rocks; 3.4. Geometrical effects on permeability; 3.5. Effects of stress on permeability; 3.6. Conclusions; Appendix 3-A 1: Input codes for example one; Appendix 3-A2: Derivation of 2-D permeability tensor
Chapter 4. Scaling of 2-D Permeability Tensors4.1. Introduction; 4.2. Development of the previous approach; 4.3. Testing the concept of a representative element volume by down-scaling; 4.4. Scaling-up of permeability; 4.5. Effects of sample number and sample size; 4.6. Determining the permeability of a region; 4.7. Conclusions; Chapter 5. Percolation Behaviour of Fracture Networks; 5.1. Introduction; 5.2. Modelling of 2-dimensional fracture networks; 5.3. Density, percolation threshold and fractal dimension; 5.4. Critical behaviour of fractured rock masses; 5.5. Conclusions
Chapter 6. Slip and Fluid Flow around An Extensional Fault6.1. Introduction; 6.2. Outline of modelling; 6.3. Stress distribution and fluid flow in model A: At a shallow depth with a hydrostatic fluid pressure; 6.4. Comparison of model A with a supra-hydrostatic fluid pressure at greater depth; 6.5. Effects of irregularities in fault zone; 6.6. Discussion of dynamic response of fluid-dilation interactions; 6.7. Conclusions; Chapter 7. Instability and Associated Localization of Deformation and Fluid Flow in Fractured Rocks; 7.1. Introduction; 7.2. Numerical determination of instability
7.3. Instability and R-ratio7.4. Effects of fracture network geometry; 7.5. Multifractal description of flow localisation; 7.6. Permeability of three natural fracture networks before and at critical stress state; 7.7. Effects of loading direction; 7.8. Is the crust in a critical state?; 7.9. Implications for mineral deposits; 7.10. Conclusions; Chapter 8. Grain Scale Flow of Fluid in Fractured Rocks; 8.1. Introduction; 8.2. Simulation of Deformation and Fracturing in Matrix Models; 8.3. Dual Permeability Model; 8.4. Results; 8.5. Discussion and Conclusions
Chapter 9. Changes of Permeability due to Excavation of Ship-Locks of the Three Gorges Project, China
Record Nr. UNINA-9910810301503321
Zhang X (Xiaopeng)  
Amsterdam ; ; Boston, : Pergamon, 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Proceedings of the International Workshop on Numerical Modeling for Underground Mine Excavation Design [[electronic resource] /] / edited by Gabriel S. Esterhuizen ... [and others]
Proceedings of the International Workshop on Numerical Modeling for Underground Mine Excavation Design [[electronic resource] /] / edited by Gabriel S. Esterhuizen ... [and others]
Pubbl/distr/stampa Pittsburgh, PA : , : Dept. of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory, , [2009]
Descrizione fisica 1 online resource (109 pages) : illustrations
Altri autori (Persone) EsterhuizenGabriel S
Collana DHHS (NIOSH) publication
Information circular
Soggetto topico Excavation
Mining engineering
Rock mechanics - Mathematical models
Soggetto genere / forma Conference papers and proceedings.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto An efficient approach to numerical simulation of coal mine-related -- geotechnical issues / D. P. Adhikary and H. Guo -- A review of recent experience in modeling of caving / M. Board and M. E. Pierce -- Characterization of natural fragmentation using a discrete fracture network approach and implications for current rock mass classification systems / D. Elmo, S. Rogers, and D. Kennard -- Three-dimensional modeling of large arrays of pillars for coal mine design / G.S. Esterhuizen, and C. Mark -- Numerical model evaluation of floor-bearing capacity in coal mines / M. M. Gadde -- It is better to be approximately right than precisely wrong: why simple models work in mining geomechanics / R. E. Hammah and J. H. Curran -- An overview of calibrating and using the LaModel program for coal mine design / K. A. Heasley -- Deep coal longwall panel design for strong strata: the influence of software choice on results / M. K. Larson and J. K. Whyatt -- Practical application of numerical modeling for the study of sudden floor heave failure mechanisms / H. Maleki, C. Stewart, R. Stone, and J. Abshire -- Advanced numerical solutions for strata control in mining / A. Studeny and C. Scior.
Record Nr. UNINA-9910697274003321
Pittsburgh, PA : , : Dept. of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory, , [2009]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Thermo-hydromechanical and chemical coupling in geomaterials and applications : proceedings of the 3rd international symposium GeoProc'2008 / / edited by Jian-Fu Shao, Nicolas Burlion
Thermo-hydromechanical and chemical coupling in geomaterials and applications : proceedings of the 3rd international symposium GeoProc'2008 / / edited by Jian-Fu Shao, Nicolas Burlion
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2008
Descrizione fisica xiv, 717 p. : ill
Disciplina 624.1/51
Soggetto topico Rock mechanics - Mathematical models
Soil mechanics - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-299-31513-5
1-118-62356-8
0-470-39393-9
1-118-62366-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto section 1. Fundamentals of mechanics of porous media -- section 2. Experimental characterization of coupled T-H-M-C processes in porous media -- section 3. Constitutive models for T-H-M-C coupling and multi-scale approaches -- section 4. Numerical modeling of T-H-M-C processes -- section 5. T-H-M-C processes in durability mechanics of concrete and structures -- Section 6. T-H-M-C in engineering applications and in-situ investigations.
Record Nr. UNINA-9910208834503321
London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Thermo-hydromechanical and chemical coupling in geomaterials and applications : proceedings of the 3rd international symposium GeoProc'2008 / / edited by Jian-Fu Shao, Nicolas Burlion
Thermo-hydromechanical and chemical coupling in geomaterials and applications : proceedings of the 3rd international symposium GeoProc'2008 / / edited by Jian-Fu Shao, Nicolas Burlion
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2008
Descrizione fisica xiv, 717 p. : ill
Disciplina 624.1/51
Soggetto topico Rock mechanics - Mathematical models
Soil mechanics - Mathematical models
ISBN 1-299-31513-5
1-118-62356-8
0-470-39393-9
1-118-62366-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto section 1. Fundamentals of mechanics of porous media -- section 2. Experimental characterization of coupled T-H-M-C processes in porous media -- section 3. Constitutive models for T-H-M-C coupling and multi-scale approaches -- section 4. Numerical modeling of T-H-M-C processes -- section 5. T-H-M-C processes in durability mechanics of concrete and structures -- Section 6. T-H-M-C in engineering applications and in-situ investigations.
Record Nr. UNINA-9910830179303321
London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui