2013 9th Workshop on Robot Motion and Control (RoMoCo 2013) : Wasowo, Poland, 3-5 July 2013
| 2013 9th Workshop on Robot Motion and Control (RoMoCo 2013) : Wasowo, Poland, 3-5 July 2013 |
| Pubbl/distr/stampa | IEEE |
| Disciplina | 629.8/9 |
| Soggetto topico |
Robots - Motion
Robots - Control systems |
| ISBN | 1-4673-5511-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti |
2013 9th Workshop on Robot Motion and Control (RoMoCo)
Robot Motion and Control |
| Record Nr. | UNISA-996279727003316 |
| IEEE | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
2013 9th Workshop on Robot Motion and Control (RoMoCo 2013) : Wasowo, Poland, 3-5 July 2013
| 2013 9th Workshop on Robot Motion and Control (RoMoCo 2013) : Wasowo, Poland, 3-5 July 2013 |
| Pubbl/distr/stampa | IEEE |
| Disciplina | 629.8/9 |
| Soggetto topico |
Robots - Motion
Robots - Control systems |
| ISBN |
9781467355117
1467355119 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti |
2013 9th Workshop on Robot Motion and Control (RoMoCo)
Robot Motion and Control |
| Record Nr. | UNINA-9910133184403321 |
| IEEE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
2013 IEEE Conference on Computer Vision and Pattern Recognition : 23-28 June 2013 Portland, Oregon, USA / / Institute of Electrical and Electronics Engineers
| 2013 IEEE Conference on Computer Vision and Pattern Recognition : 23-28 June 2013 Portland, Oregon, USA / / Institute of Electrical and Electronics Engineers |
| Pubbl/distr/stampa | Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2013 |
| Descrizione fisica | 1 online resource (144 pages) |
| Disciplina | 681.2 |
| Soggetto topico |
Detectors
Robots - Motion Pattern recognition systems |
| ISBN |
1-5386-5672-8
0-7695-4989-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910132417003321 |
| Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
2013 IEEE Conference on Computer Vision and Pattern Recognition : 23-28 June 2013 Portland, Oregon, USA / / Institute of Electrical and Electronics Engineers
| 2013 IEEE Conference on Computer Vision and Pattern Recognition : 23-28 June 2013 Portland, Oregon, USA / / Institute of Electrical and Electronics Engineers |
| Pubbl/distr/stampa | Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2013 |
| Descrizione fisica | 1 online resource (144 pages) |
| Disciplina | 681.2 |
| Soggetto topico |
Detectors
Robots - Motion Pattern recognition systems |
| ISBN |
1-5386-5672-8
0-7695-4989-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996280241603316 |
| Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2013 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Bipedal robots : modeling, design and walking synthesis / / edited by Christine Chevallereau (and three others)
| Bipedal robots : modeling, design and walking synthesis / / edited by Christine Chevallereau (and three others) |
| Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2009 |
| Descrizione fisica | 1 online resource (338 p.) |
| Disciplina |
629.8/932
629.892 |
| Collana | Control systems, robotics and manufacturing series. |
| Soggetto topico | Robots - Motion |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-118-62297-9
1-282-16537-2 9786612165375 0-470-61162-6 0-470-39426-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Bipedal Robots: Modeling, Design and Walking Synthesis; Table of Contents; Chapter 1. Bipedal Robots and Walking; 1.1. Introduction; 1.2. Biomechanical approach; 1.2.1. Biomechanical system: a source of inspiration; 1.2.2. Skeletal structure and musculature; 1.3. Human walking; 1.3.1. Architecture; 1.3.2. Walking and running trajectory data; 1.3.3. Study cases; 1.4. Bipedal walking robots: state of the art; 1.4.1. A brief history; 1.4.2. Japanese studies and creations; 1.4.3. The situation in France; 1.4.4. General evolution tendencies; 1.5. Different applications; 1.5.1. Service robotics
1.5.2. Robotics and dangerous terrains1.5.3. Toy robots and computer animation in cinema; 1.5.4. Defense robotics; 1.5.5. Medical prostheses; 1.5.6. Surveillance robots; 1.6. Conclusion; 1.7. Bibliography; Chapter 2. Kinematic and Dynamic Models for Walking; 2.1. Introduction; 2.2. The kinematics of walking; 2.2.1. DoF of the locomotion system; 2.2.2. Walking patterns; 2.2.3. Generalized coordinates for a sagittal step; 2.2.4. Generalized coordinates for three-dimensional walking; 2.2.5. Transition conditions; 2.3. The dynamics of walking; 2.3.1. Lagrangian dynamic model 2.3.2. Newton-Euler's dynamic model2.3.3. Impact model; 2.4. Dynamic constraints; 2.4.1. CoP and equilibrium constraints; 2.4.2. Non-sliding constraints; 2.5. Complementary feasibility constraints; 2.5.1. Respecting the technological limitations; 2.5.2. Non-collision constraints; 2.6. Conclusion; 2.7. Bibliography; Chapter 3. Design Tools for Making Bipedal Robots; 3.1. Introduction; 3.2. Study of influence of robot body masses; 3.2.1. Case 1: the three-link robot; 3.2.2. Case 2: the five-link robot; 3.3. Mechanical design: the architectures carried out; 3.3.1. The structure of planar robots 3.3.2. 3D robot structures3.3.3. Technology of inter-body joints; 3.3.4. Drive technology; 3.4. Actuators; 3.4.1. Actuator types; 3.4.2. Characteristics of electric actuators; 3.4.3. Elements of choice for robotic actuators; 3.4.4. Comparing actuator performances; 3.4.5. Performances of transmission-actuator associations; 3.5. Sensors; 3.5.1. Measuring; 3.5.2. Frequently used sensors; 3.5.3. Characteristics and integration; 3.5.4. Sensors of inertial localization; 3.6. Conclusion; 3.7. Appendix; 3.7.1. Geometric model; 3.7.2. Dynamic model; 3.8. Bibliography Chapter 4. Walking Pattern Generators4.1. Introduction; 4.2. Passive and quasi-passive dynamic walking; 4.2.1. Passive walking; 4.2.2. Quasi-passive dynamic walking; 4.3. Static balance walking; 4.4. Dynamic synthesis of walking; 4.4.1. Performance criteria for walking synthesis; 4.4.2. Formalizing the problem of dynamic optimization; 4.5. Walking synthesis via parametric optimization; 4.5.1. Approximating the control variables; 4.5.2. Parameterizing the configuration variables; 4.5.3. Parameterizing the Lagrange multipliers; 4.5.4. Formulation of the parametric optimization problem 4.5.5. A parametric optimization example |
| Record Nr. | UNINA-9910139511903321 |
| London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bipedal robots : modeling, design and walking synthesis / / edited by Christine Chevallereau (and three others)
| Bipedal robots : modeling, design and walking synthesis / / edited by Christine Chevallereau (and three others) |
| Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2009 |
| Descrizione fisica | 1 online resource (338 p.) |
| Disciplina |
629.8/932
629.892 |
| Collana | Control systems, robotics and manufacturing series. |
| Soggetto topico | Robots - Motion |
| ISBN |
1-118-62297-9
1-282-16537-2 9786612165375 0-470-61162-6 0-470-39426-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Bipedal Robots: Modeling, Design and Walking Synthesis; Table of Contents; Chapter 1. Bipedal Robots and Walking; 1.1. Introduction; 1.2. Biomechanical approach; 1.2.1. Biomechanical system: a source of inspiration; 1.2.2. Skeletal structure and musculature; 1.3. Human walking; 1.3.1. Architecture; 1.3.2. Walking and running trajectory data; 1.3.3. Study cases; 1.4. Bipedal walking robots: state of the art; 1.4.1. A brief history; 1.4.2. Japanese studies and creations; 1.4.3. The situation in France; 1.4.4. General evolution tendencies; 1.5. Different applications; 1.5.1. Service robotics
1.5.2. Robotics and dangerous terrains1.5.3. Toy robots and computer animation in cinema; 1.5.4. Defense robotics; 1.5.5. Medical prostheses; 1.5.6. Surveillance robots; 1.6. Conclusion; 1.7. Bibliography; Chapter 2. Kinematic and Dynamic Models for Walking; 2.1. Introduction; 2.2. The kinematics of walking; 2.2.1. DoF of the locomotion system; 2.2.2. Walking patterns; 2.2.3. Generalized coordinates for a sagittal step; 2.2.4. Generalized coordinates for three-dimensional walking; 2.2.5. Transition conditions; 2.3. The dynamics of walking; 2.3.1. Lagrangian dynamic model 2.3.2. Newton-Euler's dynamic model2.3.3. Impact model; 2.4. Dynamic constraints; 2.4.1. CoP and equilibrium constraints; 2.4.2. Non-sliding constraints; 2.5. Complementary feasibility constraints; 2.5.1. Respecting the technological limitations; 2.5.2. Non-collision constraints; 2.6. Conclusion; 2.7. Bibliography; Chapter 3. Design Tools for Making Bipedal Robots; 3.1. Introduction; 3.2. Study of influence of robot body masses; 3.2.1. Case 1: the three-link robot; 3.2.2. Case 2: the five-link robot; 3.3. Mechanical design: the architectures carried out; 3.3.1. The structure of planar robots 3.3.2. 3D robot structures3.3.3. Technology of inter-body joints; 3.3.4. Drive technology; 3.4. Actuators; 3.4.1. Actuator types; 3.4.2. Characteristics of electric actuators; 3.4.3. Elements of choice for robotic actuators; 3.4.4. Comparing actuator performances; 3.4.5. Performances of transmission-actuator associations; 3.5. Sensors; 3.5.1. Measuring; 3.5.2. Frequently used sensors; 3.5.3. Characteristics and integration; 3.5.4. Sensors of inertial localization; 3.6. Conclusion; 3.7. Appendix; 3.7.1. Geometric model; 3.7.2. Dynamic model; 3.8. Bibliography Chapter 4. Walking Pattern Generators4.1. Introduction; 4.2. Passive and quasi-passive dynamic walking; 4.2.1. Passive walking; 4.2.2. Quasi-passive dynamic walking; 4.3. Static balance walking; 4.4. Dynamic synthesis of walking; 4.4.1. Performance criteria for walking synthesis; 4.4.2. Formalizing the problem of dynamic optimization; 4.5. Walking synthesis via parametric optimization; 4.5.1. Approximating the control variables; 4.5.2. Parameterizing the configuration variables; 4.5.3. Parameterizing the Lagrange multipliers; 4.5.4. Formulation of the parametric optimization problem 4.5.5. A parametric optimization example |
| Record Nr. | UNINA-9910830011803321 |
| London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Flexible robotics [[electronic resource] ] : applications to multiscale manipulations / / edited by Mathieu Grossard, Nicolas Chaillet, Stéphane Régnier
| Flexible robotics [[electronic resource] ] : applications to multiscale manipulations / / edited by Mathieu Grossard, Nicolas Chaillet, Stéphane Régnier |
| Pubbl/distr/stampa | London, : ISTE, 2013 |
| Descrizione fisica | 1 online resource (405 p.) |
| Disciplina | 610.28 |
| Altri autori (Persone) |
GrossardMathieu
ChailletNicolas RégnierStéphane |
| Collana | Robotics series |
| Soggetto topico |
Robots - Control systems
Robots - Motion Flexible manufacturing systems Manipulators (Mechanism) |
| ISBN |
1-118-57201-7
1-118-57212-2 1-118-57200-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover ; Title Page ; Contents ; Introduction ; Chapter 1. Design of Integrated Flexible Structures for Micromanipulation ; 1.1. Design and control problems for flexible structures in micromanipulation ; 1.1.1. Characteristics of manipulation on the microscale ; 1.1.2. Reliability and positioning precision
1.1.3. Micromanipulation station 1.1.4. Difficulties related to controlling robotic micromanipulators ; 1.2. Integrated design in micromechatronics ; 1.2.1. Modeling integrated flexible structures ; 1.2.2. Active transduction materials ; 1.2.3. Multiphysical models 1.2.4. Optimization strategies for micromechatronic structures 1.3. Example of an optimal synthesis method for flexible piezoelectric transduction structures ; 1.3.1. Block method ; 1.3.2. General design approach ; 1.3.3. Finite element model 1.3.4. Example applications: designing integrated flexible microgrippers 1.4. Conclusion ; 1.5. Bibliography ; Chapter 2. Flexible Structures' Representation and Notable Properties in Control ; 2.1. State-space representation of flexible structures ; 2.1.1. Dynamic representation 2.1.2. Conservative model in the modal basis 2.1.3. Damping characteristics ; 2.1.4. Solving equations ; 2.1.5. State-space representation in the modal basis ; 2.1.6. Modal identification and control ; 2.2. The concepts of modal controllability and observability 2.2.1. Overview of state controllability and observability |
| Record Nr. | UNINA-9910139019203321 |
| London, : ISTE, 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Flexible robotics [[electronic resource] ] : applications to multiscale manipulations / / edited by Mathieu Grossard, Nicolas Chaillet, Stéphane Régnier
| Flexible robotics [[electronic resource] ] : applications to multiscale manipulations / / edited by Mathieu Grossard, Nicolas Chaillet, Stéphane Régnier |
| Pubbl/distr/stampa | London, : ISTE, 2013 |
| Descrizione fisica | 1 online resource (405 p.) |
| Disciplina | 610.28 |
| Altri autori (Persone) |
GrossardMathieu
ChailletNicolas RégnierStéphane |
| Collana | Robotics series |
| Soggetto topico |
Robots - Control systems
Robots - Motion Flexible manufacturing systems Manipulators (Mechanism) |
| ISBN |
1-118-57201-7
1-118-57212-2 1-118-57200-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover ; Title Page ; Contents ; Introduction ; Chapter 1. Design of Integrated Flexible Structures for Micromanipulation ; 1.1. Design and control problems for flexible structures in micromanipulation ; 1.1.1. Characteristics of manipulation on the microscale ; 1.1.2. Reliability and positioning precision
1.1.3. Micromanipulation station 1.1.4. Difficulties related to controlling robotic micromanipulators ; 1.2. Integrated design in micromechatronics ; 1.2.1. Modeling integrated flexible structures ; 1.2.2. Active transduction materials ; 1.2.3. Multiphysical models 1.2.4. Optimization strategies for micromechatronic structures 1.3. Example of an optimal synthesis method for flexible piezoelectric transduction structures ; 1.3.1. Block method ; 1.3.2. General design approach ; 1.3.3. Finite element model 1.3.4. Example applications: designing integrated flexible microgrippers 1.4. Conclusion ; 1.5. Bibliography ; Chapter 2. Flexible Structures' Representation and Notable Properties in Control ; 2.1. State-space representation of flexible structures ; 2.1.1. Dynamic representation 2.1.2. Conservative model in the modal basis 2.1.3. Damping characteristics ; 2.1.4. Solving equations ; 2.1.5. State-space representation in the modal basis ; 2.1.6. Modal identification and control ; 2.2. The concepts of modal controllability and observability 2.2.1. Overview of state controllability and observability |
| Record Nr. | UNISA-996205826603316 |
| London, : ISTE, 2013 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Flexible robotics : applications to multiscale manipulations / / edited by Mathieu Grossard, Nicolas Chaillet, Stéphane Régnier
| Flexible robotics : applications to multiscale manipulations / / edited by Mathieu Grossard, Nicolas Chaillet, Stéphane Régnier |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | London, : ISTE, 2013 |
| Descrizione fisica | 1 online resource (405 p.) |
| Disciplina | 610.28 |
| Altri autori (Persone) |
GrossardMathieu
ChailletNicolas RégnierStéphane |
| Collana | Robotics series |
| Soggetto topico |
Robots - Control systems
Robots - Motion Flexible manufacturing systems Manipulators (Mechanism) |
| ISBN |
9781118572016
1118572017 9781118572122 1118572122 9781118572009 1118572009 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover ; Title Page ; Contents ; Introduction ; Chapter 1. Design of Integrated Flexible Structures for Micromanipulation ; 1.1. Design and control problems for flexible structures in micromanipulation ; 1.1.1. Characteristics of manipulation on the microscale ; 1.1.2. Reliability and positioning precision
1.1.3. Micromanipulation station 1.1.4. Difficulties related to controlling robotic micromanipulators ; 1.2. Integrated design in micromechatronics ; 1.2.1. Modeling integrated flexible structures ; 1.2.2. Active transduction materials ; 1.2.3. Multiphysical models 1.2.4. Optimization strategies for micromechatronic structures 1.3. Example of an optimal synthesis method for flexible piezoelectric transduction structures ; 1.3.1. Block method ; 1.3.2. General design approach ; 1.3.3. Finite element model 1.3.4. Example applications: designing integrated flexible microgrippers 1.4. Conclusion ; 1.5. Bibliography ; Chapter 2. Flexible Structures' Representation and Notable Properties in Control ; 2.1. State-space representation of flexible structures ; 2.1.1. Dynamic representation 2.1.2. Conservative model in the modal basis 2.1.3. Damping characteristics ; 2.1.4. Solving equations ; 2.1.5. State-space representation in the modal basis ; 2.1.6. Modal identification and control ; 2.2. The concepts of modal controllability and observability 2.2.1. Overview of state controllability and observability |
| Record Nr. | UNINA-9910817593003321 |
| London, : ISTE, 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Hybrid control and motion planning of dynamical legged locomotion / / Nasser Sadati ... [et al.]
| Hybrid control and motion planning of dynamical legged locomotion / / Nasser Sadati ... [et al.] |
| Pubbl/distr/stampa | Hoboken, N.J. : , : Wiley, , 2012 |
| Descrizione fisica | 1 online resource (286 p.) |
| Disciplina |
629.8/932
629.8932 |
| Altri autori (Persone) | SadatiNasser |
| Collana | IEEE press series on systems science and engineering |
| Soggetto topico |
Mobile robots
Robots - Motion Walking |
| ISBN |
1-118-39372-4
1-118-39374-0 1-283-59324-6 9786613905697 1-118-39370-8 |
| Classificazione | TEC037000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface ix -- 1. Introduction 1 -- 1.1 Objectives of Legged Locomotion and Challenges in Controlling Dynamic Walking and Running 1 -- 1.2 Literature Overview 4 -- 1.2.1 Tracking of Time Trajectories 4 -- 1.2.2 Poincar'e Return Map and Hybrid Zero Dynamics 5 -- 1.3 The Objective of the Book 7 -- 1.3.1 Hybrid Zero Dynamics in Walking with Double Support Phase 7 -- 1.3.2 Hybrid Zero Dynamics in Running with an Online Motion Planning Algorithm 8 -- 1.3.3 Online Motion Planning Algorithms for Flight Phases of Running 9 -- 1.3.4 Hybrid Zero Dynamics in 3D Running 10 -- 1.3.5 Hybrid Zero Dynamics in Walking with Passive Knees 11 -- 1.3.6 Hybrid Zero Dynamics with Continuous-Time Update Laws 12 -- 2. Preliminaries in Hybrid Systems 13 -- 2.1 Basic Definitions 13 -- 2.2 Poincar'e Return Map for Hybrid Systems 16 -- 2.3 Low-Dimensional Stability Analysis 23 -- 2.4 Stabilization Problem 28 -- 3. Asymptotic Stabilization of Periodic Orbits forWalking with Double Support Phase 35 -- 3.1 Introduction 35 -- 3.2 Mechanical Model of a Biped Walker 37 -- 3.2.1 The Biped Robot 37 -- 3.2.2 Dynamics of the Flight Phase 37 -- 3.2.3 Dynamics of the Single Support Phase 39 -- 3.2.4 Dynamics of the Double Support Phase 40 -- 3.2.5 Impact Model 43 -- 3.2.6 Transition from the Double Support Phase to the Single Support Phase 45 -- 3.2.7 Hybrid Model of Walking 45 -- 3.3 Control Laws for the Single and Double Support Phases 46 -- 3.3.1 Single Support Phase Control Law 46 -- 3.3.2 Double Support Phase Control Law 49 -- 3.4 Hybrid Zero Dynamics (HZD) 54 -- 3.4.1 Analysis of HZD in the Single Support Phase 55 -- 3.4.2 Analysis of HZD in the Double Support Phase 57 -- 3.4.3 Restricted Poincar'e Return Map 58 -- 3.5 Design of an HZD Containing a Prespecified Periodic Solution 60 -- 3.5.1 Design of the Output Functions 60 -- 3.5.2 Design of u1d and u2d 62 -- 3.6 Stabilization of the Periodic Orbit 67 -- 3.7 Motion Planning Algorithm 71 -- 3.7.1 Motion Planning Algorithm for the Single Support Phase 72.
3.7.2 Motion Planning Algorithm for the Double Support Phase 73 -- 3.7.3 Constructing a Period-One Orbit for the Open-Loop Hybrid Model of Walking 76 -- 3.8 Numerical Example for the Motion Planning Algorithm 77 -- 3.9 Simulation Results of the Closed-Loop Hybrid System 82 -- 3.9.1 Effect of Double Support Phase on Angular Momentum Transfer and Stabilization 82 -- 3.9.2 Effect of Event-Based Update Laws on Momentum Transfer and Stabilization 92 -- 4. Asymptotic Stabilization of Periodic Orbits for Planar Monopedal Running 95 -- 4.1 Introduction 95 -- 4.2 Mechanical Model of a Monopedal Runner 97 -- 4.2.1 The Monopedal Runner 97 -- 4.2.2 Dynamics of the Flight Phase 97 -- 4.2.3 Dynamics of the Stance Phase 98 -- 4.2.4 Open-Loop Hybrid Model of Running 99 -- 4.3 Reconfiguration Algorithm for the Flight Phase 99 -- 4.3.1 Determination of the Reachable Set 103 -- 4.4 Control Laws for Stance and Flight Phases 120 -- 4.4.1 Stance Phase Control Law 121 -- 4.4.2 Flight Phase Control Law 122 -- 4.4.3 Event-Based Update Law 124 -- 4.5 Hybrid Zero Dynamics and Stabilization 125 -- 4.6 Numerical Results 127 -- 5. Online Generation of Joint Motions During Flight Phases of Planar Running 137 -- 5.1 Introduction 137 -- 5.2 Mechanical Model of a Planar Open Kinematic Chain 138 -- 5.3 Motion Planning Algorithm to Generate Continuous Joint Motions 140 -- 5.3.1 Determining the Reachable Set from the Origin 143 -- 5.3.2 Motion Planning Algorithm 150 -- 5.4 Motion Planning Algorithm to Generate Continuously Differentiable Joint Motions 152 -- 6. Stabilization of Periodic Orbits for 3D Monopedal Running 159 -- 6.1 Introduction 159 -- 6.2 Open-Loop Hybrid Model of a 3D Running 160 -- 6.2.1 Dynamics of the Flight Phase 162 -- 6.2.2 Dynamics of the Stance Phase 163 -- 6.2.3 Transition Maps 164 -- 6.2.4 Hybrid Model 166 -- 6.3 Design of a Period-One Solution for the Open-Loop Model of Running 167 -- 6.4 Numerical Example 172 -- 6.5 Within-Stride Controllers 175 -- 6.5.1 Stance Phase Control Law 175. 6.5.2 Flight Phase Control Law 178 -- 6.6 Event-Based Update Laws for Hybrid Invariance 181 -- 6.6.1 Takeoff Update Laws 184 -- 6.6.2 Impact Update Laws 185 -- 6.7 Stabilization Problem 186 -- 6.8 Simulation Results 189 -- 7. Stabilization of Periodic Orbits for Walking with Passive Knees 193 -- 7.1 Introduction 193 -- 7.2 Open-Loop Model of Walking 194 -- 7.2.1 Mechanical Model of the Planar Bipedal Robot 194 -- 7.2.2 Dynamics of the Single Support Phase 195 -- 7.2.3 Impact Map 195 -- 7.2.4 Open-Loop Impulsive Model of Walking 196 -- 7.3 Motion Planning Algorithm 197 -- 7.4 Numerical Example 200 -- 7.5 Continuous-Times Controllers 202 -- 7.6 Event-Based Controllers 209 -- 7.6.1 Hybrid Invariance 209 -- 7.6.2 Continuity of the Continuous-Time Controllers During the Within-Stride Transitions 212 -- 7.7 Stabilization Problem 213 -- 7.8 Simulation of the Closed-Loop Hybrid System 217 -- 8. Continuous-Time Update Laws During Continuous Phases of Locomotion 221 -- 8.1 Introduction 221 -- 8.2 Invariance of the Exponential Stability Behavior for a Class of Impulsive Systems 222 -- 8.3 Outline of the Proof of Theorem 8.1 224 -- 8.4 Application to Legged Locomotion 227 -- A. Proofs Associated with Chapter 3 229 -- A.1 Proof of Lemma 3.3 229 -- A.2 Proof of Lemma 3.4 230 -- A.3 Proof of Lemma 3.7 230 -- B. Proofs Associated with Chapter 4 233 -- B.1 Proof of Lemma 4.2 233 -- B.2 Proof of Theorem 4.2 234 -- C. Proofs Associated with Chapter 6 237 -- C.1 Proof of Lemma 6.1 237 -- C.2 Proof of Lemma 6.2 238 -- C.3 Invertibility of the Stance Phase Decoupling Matrix on the Periodic Orbit 240 -- Bibliography 241 -- Index 249. |
| Record Nr. | UNINA-9910139076103321 |
| Hoboken, N.J. : , : Wiley, , 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||