top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Response surfaces, mixtures, and ridge analyses [[electronic resource] /] / George E.P. Box, Norman R. Draper
Response surfaces, mixtures, and ridge analyses [[electronic resource] /] / George E.P. Box, Norman R. Draper
Autore Box George E. P
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : John Wiley, c2007
Descrizione fisica 1 online resource (873 p.)
Disciplina 519.57
Altri autori (Persone) DraperNorman Richard
Collana Wiley Series in Probability and Statistics
Soggetto topico Experimental design
Response surfaces (Statistics)
Mixture distributions (Probability theory)
Ridge regression (Statistics)
Soggetto genere / forma Electronic books.
ISBN 1-282-24228-8
9786613813404
0-470-07276-8
0-470-07275-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Response Surfaces, Mixtures, and Ridge Analyses; Contents; Preface to the Second Edition; 1. Introduction to Response Surface Methodology; 1.1. Response Surface Methodology (RSM); 1.2. Indeterminancy of Experimentation; 1.3. Iterative Nature of the Experimental Learning Process; 1.4. Some Classes of Problems (Which, How, Why); 1.5. Need for Experimental Design; 1.6. Geometric Representation of Response Relationships; 1.7. Three Kinds of Applications; 2. The Use Of Graduating Functions; 2.1. Approximating Response Functions; 2.2. An Example; Appendix 2A. A Theoretical Response Function
3. Least Squares for Response Surface Work3.1. The Method of Least Squares; 3.2. Linear Models; 3.3. Matrix Formulas for Least Squares; 3.4. Geometry of Least Squares; 3.5. Analysis of Variance for One Regressor; 3.6. Least Squares for Two Regressors; 3.7. Geometry of the Analysis of Variance for Two Regressors; 3.8. Orthogonalizing the Second Regressor, Extra Sum of Squares Principle; 3.9. Generalization to p Regressors; 3.10. Bias in Least-Squares Estimators Arising from an Inadequate Model; 3.11. Pure Error and Lack of Fit; 3.12. Confidence Intervals and Confidence Regions
3.13. Robust Estimation, Maximum Likelihood, and Least SquaresAppendix 3A. Iteratively Reweighted Least Squares; Appendix 3B. Justification of Least Squares by the Gauss-Markov Theorem; Robustness; Appendix 3C. Matrix Theory; Appendix 3D. Nonlinear Estimation; Appendix 3E. Results Involving V(y); Exercises; 4. Factorial Designs at Two Levels; 4.1. The Value of Factorial Designs; 4.2. Two-Level Factorials; 4.3. A 2(6) Design Used in a Study of Dyestuffs Manufacture; 4.4. Diagnostic Checking of the Fitted Models, 2(6) Dyestuffs Example; 4.5. Response Surface Analysis of the 2(6) Design Data
Appendix 4A. Yates' Method for Obtaining the Factorial Effects for a Two-Level DesignAppendix 4B. Normal Plots on Probability Paper; Appendix 4C. Confidence Regions for Contour Planes (see Section 4.5); Exercises; 5. Blocking and Fractionating 2(k) Factorial Designs; 5.1. Blocking the 2(6) Design; 5.2. Fractionating the 2(6) Design; 5.3. Resolution of a 2(k-p) Factorial Design; 5.4. Construction of 2(k-p) Designs of Resolution III and IV; 5.5. Combination of Designs from the Same Family; 5.6. Screening, Using 2(k-p) Designs (Involving Projections to Lower Dimensions)
5.7. Complete Factorials Within Fractional Factorial Designs5.8. Plackett and Burman Designs for n = 12 to 60 (but not 52); 5.9. Screening, Using Plackett and Burman Designs (Involving Projections to Lower Dimensions); 5.10. Efficient Estimation of Main Effects and Two-Factor Interactions Using Relatively Small Two-Level Designs; 5.11. Designs of Resolution V and of Higher Resolution; 5.12. Application of Fractional Factorial Designs to Response Surface Methodology; 5.13. Plotting Effects from Fractional Factorials on Probability Paper; Exercises
6. The Use of Steepest Ascent to Achieve Process Improvement
Record Nr. UNINA-9910143691403321
Box George E. P  
Hoboken, N.J., : John Wiley, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Response surfaces, mixtures, and ridge analyses [[electronic resource] /] / George E.P. Box, Norman R. Draper
Response surfaces, mixtures, and ridge analyses [[electronic resource] /] / George E.P. Box, Norman R. Draper
Autore Box George E. P
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : John Wiley, c2007
Descrizione fisica 1 online resource (873 p.)
Disciplina 519.57
Altri autori (Persone) DraperNorman Richard
Collana Wiley Series in Probability and Statistics
Soggetto topico Experimental design
Response surfaces (Statistics)
Mixture distributions (Probability theory)
Ridge regression (Statistics)
ISBN 1-282-24228-8
9786613813404
0-470-07276-8
0-470-07275-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Response Surfaces, Mixtures, and Ridge Analyses; Contents; Preface to the Second Edition; 1. Introduction to Response Surface Methodology; 1.1. Response Surface Methodology (RSM); 1.2. Indeterminancy of Experimentation; 1.3. Iterative Nature of the Experimental Learning Process; 1.4. Some Classes of Problems (Which, How, Why); 1.5. Need for Experimental Design; 1.6. Geometric Representation of Response Relationships; 1.7. Three Kinds of Applications; 2. The Use Of Graduating Functions; 2.1. Approximating Response Functions; 2.2. An Example; Appendix 2A. A Theoretical Response Function
3. Least Squares for Response Surface Work3.1. The Method of Least Squares; 3.2. Linear Models; 3.3. Matrix Formulas for Least Squares; 3.4. Geometry of Least Squares; 3.5. Analysis of Variance for One Regressor; 3.6. Least Squares for Two Regressors; 3.7. Geometry of the Analysis of Variance for Two Regressors; 3.8. Orthogonalizing the Second Regressor, Extra Sum of Squares Principle; 3.9. Generalization to p Regressors; 3.10. Bias in Least-Squares Estimators Arising from an Inadequate Model; 3.11. Pure Error and Lack of Fit; 3.12. Confidence Intervals and Confidence Regions
3.13. Robust Estimation, Maximum Likelihood, and Least SquaresAppendix 3A. Iteratively Reweighted Least Squares; Appendix 3B. Justification of Least Squares by the Gauss-Markov Theorem; Robustness; Appendix 3C. Matrix Theory; Appendix 3D. Nonlinear Estimation; Appendix 3E. Results Involving V(y); Exercises; 4. Factorial Designs at Two Levels; 4.1. The Value of Factorial Designs; 4.2. Two-Level Factorials; 4.3. A 2(6) Design Used in a Study of Dyestuffs Manufacture; 4.4. Diagnostic Checking of the Fitted Models, 2(6) Dyestuffs Example; 4.5. Response Surface Analysis of the 2(6) Design Data
Appendix 4A. Yates' Method for Obtaining the Factorial Effects for a Two-Level DesignAppendix 4B. Normal Plots on Probability Paper; Appendix 4C. Confidence Regions for Contour Planes (see Section 4.5); Exercises; 5. Blocking and Fractionating 2(k) Factorial Designs; 5.1. Blocking the 2(6) Design; 5.2. Fractionating the 2(6) Design; 5.3. Resolution of a 2(k-p) Factorial Design; 5.4. Construction of 2(k-p) Designs of Resolution III and IV; 5.5. Combination of Designs from the Same Family; 5.6. Screening, Using 2(k-p) Designs (Involving Projections to Lower Dimensions)
5.7. Complete Factorials Within Fractional Factorial Designs5.8. Plackett and Burman Designs for n = 12 to 60 (but not 52); 5.9. Screening, Using Plackett and Burman Designs (Involving Projections to Lower Dimensions); 5.10. Efficient Estimation of Main Effects and Two-Factor Interactions Using Relatively Small Two-Level Designs; 5.11. Designs of Resolution V and of Higher Resolution; 5.12. Application of Fractional Factorial Designs to Response Surface Methodology; 5.13. Plotting Effects from Fractional Factorials on Probability Paper; Exercises
6. The Use of Steepest Ascent to Achieve Process Improvement
Record Nr. UNINA-9910829973703321
Box George E. P  
Hoboken, N.J., : John Wiley, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Response surfaces, mixtures, and ridge analyses / / George E.P. Box, Norman R. Draper
Response surfaces, mixtures, and ridge analyses / / George E.P. Box, Norman R. Draper
Autore Box George E. P
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : John Wiley, c2007
Descrizione fisica 1 online resource (873 p.)
Disciplina 519.5/7
Altri autori (Persone) DraperNorman Richard
Collana Wiley Series in Probability and Statistics
Soggetto topico Experimental design
Response surfaces (Statistics)
Mixture distributions (Probability theory)
Ridge regression (Statistics)
ISBN 1-282-24228-8
9786613813404
0-470-07276-8
0-470-07275-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Response Surfaces, Mixtures, and Ridge Analyses; Contents; Preface to the Second Edition; 1. Introduction to Response Surface Methodology; 1.1. Response Surface Methodology (RSM); 1.2. Indeterminancy of Experimentation; 1.3. Iterative Nature of the Experimental Learning Process; 1.4. Some Classes of Problems (Which, How, Why); 1.5. Need for Experimental Design; 1.6. Geometric Representation of Response Relationships; 1.7. Three Kinds of Applications; 2. The Use Of Graduating Functions; 2.1. Approximating Response Functions; 2.2. An Example; Appendix 2A. A Theoretical Response Function
3. Least Squares for Response Surface Work3.1. The Method of Least Squares; 3.2. Linear Models; 3.3. Matrix Formulas for Least Squares; 3.4. Geometry of Least Squares; 3.5. Analysis of Variance for One Regressor; 3.6. Least Squares for Two Regressors; 3.7. Geometry of the Analysis of Variance for Two Regressors; 3.8. Orthogonalizing the Second Regressor, Extra Sum of Squares Principle; 3.9. Generalization to p Regressors; 3.10. Bias in Least-Squares Estimators Arising from an Inadequate Model; 3.11. Pure Error and Lack of Fit; 3.12. Confidence Intervals and Confidence Regions
3.13. Robust Estimation, Maximum Likelihood, and Least SquaresAppendix 3A. Iteratively Reweighted Least Squares; Appendix 3B. Justification of Least Squares by the Gauss-Markov Theorem; Robustness; Appendix 3C. Matrix Theory; Appendix 3D. Nonlinear Estimation; Appendix 3E. Results Involving V(y); Exercises; 4. Factorial Designs at Two Levels; 4.1. The Value of Factorial Designs; 4.2. Two-Level Factorials; 4.3. A 2(6) Design Used in a Study of Dyestuffs Manufacture; 4.4. Diagnostic Checking of the Fitted Models, 2(6) Dyestuffs Example; 4.5. Response Surface Analysis of the 2(6) Design Data
Appendix 4A. Yates' Method for Obtaining the Factorial Effects for a Two-Level DesignAppendix 4B. Normal Plots on Probability Paper; Appendix 4C. Confidence Regions for Contour Planes (see Section 4.5); Exercises; 5. Blocking and Fractionating 2(k) Factorial Designs; 5.1. Blocking the 2(6) Design; 5.2. Fractionating the 2(6) Design; 5.3. Resolution of a 2(k-p) Factorial Design; 5.4. Construction of 2(k-p) Designs of Resolution III and IV; 5.5. Combination of Designs from the Same Family; 5.6. Screening, Using 2(k-p) Designs (Involving Projections to Lower Dimensions)
5.7. Complete Factorials Within Fractional Factorial Designs5.8. Plackett and Burman Designs for n = 12 to 60 (but not 52); 5.9. Screening, Using Plackett and Burman Designs (Involving Projections to Lower Dimensions); 5.10. Efficient Estimation of Main Effects and Two-Factor Interactions Using Relatively Small Two-Level Designs; 5.11. Designs of Resolution V and of Higher Resolution; 5.12. Application of Fractional Factorial Designs to Response Surface Methodology; 5.13. Plotting Effects from Fractional Factorials on Probability Paper; Exercises
6. The Use of Steepest Ascent to Achieve Process Improvement
Record Nr. UNINA-9910876988903321
Box George E. P  
Hoboken, N.J., : John Wiley, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Theory of ridge regression estimators with applications / / A. K. Md. Ehsanes Saleh, M. Arashi, B. M. Golam Kibria
Theory of ridge regression estimators with applications / / A. K. Md. Ehsanes Saleh, M. Arashi, B. M. Golam Kibria
Autore Saleh A. K. Md. Ehsanes
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2019
Descrizione fisica 1 online resource (299 pages)
Disciplina 519.536
Collana Wiley series in probability and statistics
Soggetto topico Ridge regression (Statistics)
Soggetto genere / forma Electronic books.
ISBN 1-118-64452-2
1-118-64450-6
1-118-64447-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to ridge regression -- Location and simple linear models -- ANOVA model -- Seemingly unrelated simple linear models -- Multiple linear regression models -- Ridge regression in theory and applications -- Partially linear regression models -- Logistic regression model -- Regression models with autoregressive errors -- Rank-based shrinkage estimation -- High dimensional ridge regression -- Applications : neural networks and big data.
Record Nr. UNINA-9910555053003321
Saleh A. K. Md. Ehsanes  
Hoboken, New Jersey : , : Wiley, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Theory of ridge regression estimators with applications / / A. K. Md. Ehsanes Saleh, M. Arashi, B. M. Golam Kibria
Theory of ridge regression estimators with applications / / A. K. Md. Ehsanes Saleh, M. Arashi, B. M. Golam Kibria
Autore Saleh A. K. Md. Ehsanes
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2019
Descrizione fisica 1 online resource (299 pages)
Disciplina 519.536
Collana Wiley series in probability and statistics
Soggetto topico Ridge regression (Statistics)
ISBN 1-118-64452-2
1-118-64450-6
1-118-64447-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to ridge regression -- Location and simple linear models -- ANOVA model -- Seemingly unrelated simple linear models -- Multiple linear regression models -- Ridge regression in theory and applications -- Partially linear regression models -- Logistic regression model -- Regression models with autoregressive errors -- Rank-based shrinkage estimation -- High dimensional ridge regression -- Applications : neural networks and big data.
Record Nr. UNINA-9910830180503321
Saleh A. K. Md. Ehsanes  
Hoboken, New Jersey : , : Wiley, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui