Algal Systems for Resource Recovery from Waste and Wastewater |
Autore | Lens Piet |
Edizione | [1st ed.] |
Pubbl/distr/stampa | London : , : IWA Publishing, , 2023 |
Descrizione fisica | 1 online resource (266 pages) |
Disciplina | 628.35 |
Altri autori (Persone) | KhandelwalAmitap |
Collana | Integrated Environmental Technology Series |
Soggetto topico |
Land treatment of wastewater
Resource recovery facilities |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Cover -- Contents -- Preface -- List of Contributors -- Part 1: Process Fundamentals -- Chapter 1 : Algal systems for resource recovery from waste and wastewater -- 1.1 Process Fundamentals -- 1.2 Algal-Based Wastewater Treatment -- 1.3 Valorization of Algal Biomass by Integrating with Different Technologies -- 1.4 Algal Biotechnology -- References -- Chapter 2 : Metabolic modelling of microalgae for wastewater treatment -- 2.1 Introduction -- 2.2 Main Metabolic Pathways -- 2.2.1 Photosynthesis -- 2.2.2 Glycolysis and pentose phosphate pathway -- 2.2.3 Tricarboxylic acid cycle -- 2.2.4 Glyoxylate shunt -- 2.2.5 Lipid biosynthesis -- 2.3 Genome-Scale Metabolic Models -- 2.4 Modelling Metabolic Networks -- 2.5 Tools for Steady-State Conditions -- 2.5.1 Elementary flux modes -- 2.5.1.1 Mathematical construction of EFMs -- 2.5.1.2 Minimal generating sets and EFM reduction -- 2.5.2 Flux balance analysis -- 2.6 Metabolic Networks Reduction -- 2.6.1 The DRUM framework -- 2.7 Case Study: Microalgae Cultivation -- 2.7.1 Introduction: volatile fatty acid -- 2.7.2 Determination of the subnetworks and accumulating metabolites -- 2.7.3 Derivation of MR -- 2.7.4 Choice of kinetic model -- 2.7.5 Model calibration and validation -- 2.7.6 Example of application: optimization of waste treatment time -- 2.8 Conclusion -- References -- Chapter 3 : Wastewater treatment using microalgal-bacterial consortia in the photo-activated sludge process -- 3.1 Microalgal-Bacterial Consortia -- 3.1.1 Use of microalgal-bacterial consortia in environmental technologies -- 3.1.2 Interactions within microalgal-bacterial consortia -- 3.1.3 Nutrient removal by microalgal-bacterial consortia -- 3.1.4 Microalgal-bacterial systems and configurations.
3.1.5 Limiting and operational conditions of microalgal-bacterial photobioreactors -- 3.1.5.1 Light -- 3.1.5.2 pH -- 3.1.5.3 Hydraulic retention time -- 3.1.5.4 Solid retention time -- 3.2 Advantages of Microalgal-Bacterial Consortia for Ammonium Removal -- 3.2.1 Advantages on ammonium removal rates -- 3.2.2 Operational conditions and area requirement -- 3.2.3 Photo-oxygenation and algal harvesting -- 3.3 Microalgal-Bacterial Modelling -- 3.4 Integration of Photoactivated Sludge in Wastewater Treatment Concepts -- 3.5 Conclusions -- References -- Chapter 4 : Macroalgae biorefinery and its role in achieving a circular economy -- 4.1 Introduction -- 4.2 Macroalgae Species -- 4.2.1 Green algae -- 4.2.2 Brown algae -- 4.2.2.1 Laminaria sp. -- 4.2.2.2 Sargassum sp. -- 4.3 Biomaterials and Bioproducts from Macroalgae -- 4.4 Biofuels from Macroalgae -- 4.4.1 Biogas -- 4.4.2 Biohydrogen -- 4.4.3 Biohythane -- 4.4.4 Bioethanol and biobutanol -- 4.4.4.1 Acetone-butanol-ethanol fermentation -- 4.4.4.2 Biobutanol -- 4.4.4.3 Bioethanol -- 4.5 Macroalgal Biorefineries -- 4.5.1 Biorefinery concepts -- 4.5.2 Key processes -- 4.5.2.1 Anaerobic digestion -- 4.5.2.2 Reactor design -- 4.5.3 Key challenges of macroalgal biorefineries -- 4.6 Conclusion -- References -- Part 2: Algae-Based Wastewater Treatment -- Chapter 5 : Wastewater treatment by microalgae-based processes -- 5.1 Introduction -- 5.2 Current Status of Microalgae-Related Wastewater Treatment Processes -- 5.2.1 Biology of microalgae-bacteria consortia -- 5.2.2 Engineering of photobioreactors -- 5.2.3 Harvesting and processing of the biomass -- 5.3 Major Challenges of Microalgae-Related Wastewater Treatment Processes -- 5.3.1 Improvement of biological systems. 5.3.2 Allocation and implementation of large-scale facilities -- 5.3.3 Optimal operation of processes -- 5.3.4 Develop valuable applications of microalgae biomass -- 5.4 Relevance of Developing Microalgae-Related Wastewater Treatment Processes -- 5.4.1 Improvement of sustainability of wastewater treatment -- 5.4.2 Distributed wastewater treatment -- 5.4.3 Reuse of effluents in agriculture -- Acknowledgements -- References -- Chapter 6 : Microalgae-methanotroph cocultures for carbon and nutrient recovery from wastewater -- 6.1 Background -- 6.2 Overview of Microalgae-Methanotroph Cocultures: A Promising W2V Platform for Wastewater Treatment -- 6.3 Experimental and Computational Tools for Real-Time Characterization of the Microalgae-Methanotroph Cocultures -- 6.3.1 Accurate measurement of gas component uptake and production rates in bioconversion -- 6.3.2 Quantitative characterization of microalgae-methanotroph cocultures -- 6.4 Semi-Structured Kinetic Modeling of the Coculture -- 6.5 Integrated Nutrient Recovery and Mitigation of Greenhouse Gas Emissions from Wastewater Using Microalgae-Methanotroph Cocultures -- 6.5.1 Choice of a suitable biocatalyst -- 6.5.2 Coculture tolerance to contaminants in raw biogas -- 6.5.3 Freshwater consumption required by wastewater treatment -- 6.5.4 Pretreatment of AD effluent -- 6.5.5 Advantage of the coculture over sequential single cultures in carbon and nutrient recovery -- 6.6 Next-Generation Photobioreactors -- 6.7 Outlook and Conclusion -- References -- Part 3: Integration with Other Technologies -- Chapter 7 : Microalgae cultivation in bio-electrochemical systems -- 7.1 Introduction -- 7.2 Use of Algae in MFCs -- 7.2.1 Algae as primary producers -- 7.2.2 Algae metabolism -- 7.2.3 Large-scale microalgae cultivation -- 7.3 Role of Algae in PMFCs. 7.3.1 Algal species tested in MFC cathode compartment -- 7.3.2 Mechanism of bioelectricity generation in PMFCs -- 7.4 PMFC Design Parameters -- 7.4.1 Dual chambers vs sediment MFCs -- 7.4.2 Construction materials, electrolytes, electrodes and separators -- 7.4.3 Electrode materials -- 7.4.4 Separators -- 7.4.5 Effect of light intensity, temperature, DO, CO 2 , pH and salts -- 7.5 Economic Importance of PMFCs -- 7.6 Future Perspectives -- References -- Chapter 8 : Integrated anaerobic digestion and algae cultivation -- 8.1 Introduction -- 8.2 Algae Cultivation from AD Residues -- 8.2.1 Liquid effluent -- 8.2.2 Digestate -- 8.3 AD as Energetic Valorization Route of Algae Biomass -- 8.3.1 AD of microalgae -- 8.3.2 Pretreatment of microalgal biomass -- 8.3.3 Anaerobic co-digestion -- 8.4 Algae Cultivation for Biogas Upgrading -- 8.5 Coupling Technologies for Sustainable Biorefineries -- 8.5.1 Biorefinery based on integrated microalgae and AD technologies -- 8.5.2 Environmental impacts of integrated microalgae and AD technologies -- 8.5.3 Insights for improving the sustainability performance of integrated microalgae and AD technologies -- 8.6 Challenges and Future Perspectives -- References -- Chapter 9 : Algae for wastewater treatment and biofuel production -- 9.1 Introduction -- 9.2 Characterization of Microalgae Grown in Wastewater for Biofuel Production -- 9.3 Biodiesel Production from Microalgae Grown in Wastewater -- 9.3.1 Biodiesel production process -- 9.3.2 Types of microalgae grown in wastewater for biodiesel production -- 9.4 Bioethanol Production from Microalgae Grown in Wastewater -- 9.4.1 Bioethanol production process -- 9.4.2 Hydrolysis -- 9.4.3 Fermentation -- 9.5 Conclusions and Perspectives -- References -- Part 4: Algal Biotechnology. Chapter 10 : Advanced value-added bioproducts from microalgae -- 10.1 Introduction -- 10.2 Market Value of Algae-Based High-Value Compounds -- 10.3 High-Value Products Used in Different Sectors -- 10.3.1 Cosmetics -- 10.3.2 Pharmaceuticals -- 10.3.3 Food supplements -- 10.3.3.1 Protein content of algae -- 10.3.3.2 Single-cell protein -- 10.3.3.3 Carbohydrates -- 10.3.3.4 Lipids -- 10.3.3.5 Vitamins -- 10.3.3.6 Minerals -- 10.3.4 Agricultural products -- 10.3.4.1 Biofertilizer/biostimulants -- 10.3.4.2 Plant growth-promoting substances/hormones -- 10.3.4.3 Biopesticides -- 10.3.5 Construction sector -- 10.4 Constraints of Algal Biomass Production and Application -- 10.5 Conclusion -- Acknowledgment -- References -- Chapter 11 : Production of biopolymers from microalgae and cyanobacteria -- 11.1 Introduction -- 11.2 Structure and Properties of Biodegradable Bioplastics -- 11.3 Employing Microalgae and Cyanobacteria for Bioplastic Production -- 11.3.1 Cultivation conditions -- 11.3.1.1 Photoautotrophic, heterotrophic, or mixotrophic operational mode -- 11.3.1.2 Nutrient availability -- 11.3.1.3 Light -- 11.3.1.4 Wastewater as a feedstock for microalgae and cyanobacteria cultivation -- 11.3.2 Advantages of PHA production from microalgae and cyanobacteria compared to bacteria -- 11.3.3 PHA blends -- 11.3.3.1 PHA blends with raw materials -- 11.3.3.2 PHA blends with biodegradable polymers -- 11.4 Downstream Processing of Bioplastic Recovery from Microalgae and Cyanobacteria -- 11.4.1 Harvesting -- 11.4.1.1 Centrifugation -- 11.4.1.2 Filtration -- 11.4.1.3 Flocculation and coagulation -- 11.4.1.4 Gravity sedimentation -- 11.4.1.5 Flotation -- 11.4.2 Drying -- 11.4.3 Extraction -- 11.5 Challenges and Future Perspectives. 11.6 Conclusion. |
Record Nr. | UNINA-9910768495103321 |
Lens Piet | ||
London : , : IWA Publishing, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Management of Electronic Waste : Resource Recovery, Technology and Regulation |
Autore | Priya Anshu |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (497 pages) |
Soggetto topico |
Electronic waste
Resource recovery facilities |
ISBN |
1-119-89436-0
1-119-89434-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Acknowledgment -- Chapter 1 An Introduction to Electronic Waste -- 1.1 Introduction -- 1.2 Generation and Composition of E‐Waste -- 1.3 Present Status of E‐Waste Management and Recycling -- 1.3.1 Pyrometallurgical Process -- 1.3.2 Hydrometallurgical Process -- 1.3.3 Biometallurgy -- 1.4 Comparative Assessment of the Metallurgical Options for Metal Recovery -- 1.5 Future Prospects -- 1.6 Conclusion -- References -- Chapter 2 The Global Challenge of E‐Waste Generation -- 2.1 Introduction -- 2.2 The Fate of Steel and Al Alloys -- 2.3 The Fate of Synthetic Polymers -- 2.4 The Fate of Glass Present in E‐Waste -- 2.5 The Fate of Geochemically Scarce Elements in Electric and Electronic Components of E‐Waste -- 2.6 What Happens to Other Significant Constituents of E‐Waste? -- 2.6.1 Li‐Ion Batteries -- 2.6.2 Refrigerants -- 2.6.3 Phosphors and Hg Used in Fluorescent Lamps -- 2.7 Conclusion: The Global Challenge of E‐Waste -- References |
Record Nr. | UNINA-9910876713903321 |
Priya Anshu | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Municipal solid waste to energy conversion processes [[electronic resource] ] : economic, technical, and renewable comparisons / / Gary C. Young |
Autore | Young Gary C. <1943-> |
Pubbl/distr/stampa | Hoboken, NJ, : Wiley, c2010 |
Descrizione fisica | 1 online resource (398 p.) |
Disciplina | 662/.87 |
Soggetto topico |
Refuse as fuel
Waste products as fuel Refuse and refuse disposal Incineration Resource recovery facilities |
ISBN |
1-118-02927-5
0-470-60860-9 0-470-60861-7 9786612688201 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
MUNICIPAL SOLID WASTE TO ENERGY CONVERSION PROCESSES; CONTENTS; Preface; Professional Biography; 1 Introduction to Gasification / Pyrolysis and Combustion Technology(s); 2 How Can Plasma Arc Gasification Take Garbage to Electricity and a Case Study?; 3 How Can Plasma Arc Gasification Take Garbage to Liquid Fuels and Case Studies?; 4 Plasma Economics: Garbage/Wastes to Electricity, Case Study with Economy of Scale; 5 Plasma Economics: Garbage/Wastes to Power Ethanol Plants and a Case Study; 6 From Curbside to Landfill: Cash Flows as a Revenue Source for Waste Solids-to-Energy Management
7 Plasma Economics: Garbage/Wastes to Power, Case Study with Economics of a 94 ton/day Facility8 Plant Operations: Eco-Valley Plant in Utashinai, Japan: An Independent Case Study; 9 Municipal Solid Waste and Properties; 10 MSW Processes to Energy with High-Value Products and Specialty By-Products; 11 MSW Gasifiers and Process Equipment; 12 Other Renewable Energy Sources; 13 Waste Energy to Recycled Energy; Index |
Record Nr. | UNINA-9910140568803321 |
Young Gary C. <1943-> | ||
Hoboken, NJ, : Wiley, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Municipal solid waste to energy conversion processes : economic, technical, and renewable comparisons / / Gary C. Young |
Autore | Young Gary C. <1943-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, NJ, : Wiley, c2010 |
Descrizione fisica | 1 online resource (398 p.) |
Disciplina | 662/.87 |
Soggetto topico |
Refuse as fuel
Waste products as fuel Refuse and refuse disposal Incineration Resource recovery facilities |
ISBN |
1-118-02927-5
0-470-60860-9 0-470-60861-7 9786612688201 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
MUNICIPAL SOLID WASTE TO ENERGY CONVERSION PROCESSES; CONTENTS; Preface; Professional Biography; 1 Introduction to Gasification / Pyrolysis and Combustion Technology(s); 2 How Can Plasma Arc Gasification Take Garbage to Electricity and a Case Study?; 3 How Can Plasma Arc Gasification Take Garbage to Liquid Fuels and Case Studies?; 4 Plasma Economics: Garbage/Wastes to Electricity, Case Study with Economy of Scale; 5 Plasma Economics: Garbage/Wastes to Power Ethanol Plants and a Case Study; 6 From Curbside to Landfill: Cash Flows as a Revenue Source for Waste Solids-to-Energy Management
7 Plasma Economics: Garbage/Wastes to Power, Case Study with Economics of a 94 ton/day Facility8 Plant Operations: Eco-Valley Plant in Utashinai, Japan: An Independent Case Study; 9 Municipal Solid Waste and Properties; 10 MSW Processes to Energy with High-Value Products and Specialty By-Products; 11 MSW Gasifiers and Process Equipment; 12 Other Renewable Energy Sources; 13 Waste Energy to Recycled Energy; Index |
Record Nr. | UNINA-9910816629803321 |
Young Gary C. <1943-> | ||
Hoboken, NJ, : Wiley, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Waste gas treatment for resource recovery / / edited by Piet N.L. Lens [and three others] |
Pubbl/distr/stampa | London : , : IWA Publishing, , 2006 |
Descrizione fisica | 1 online resource (510 p.) |
Disciplina | 628.53 |
Collana | Integrated environmental technology series |
Soggetto topico |
Waste gases - Environmental aspects
Air quality management Resource recovery facilities Natural gas - Environmental aspects Air - Pollution Air quality - Standards |
Soggetto genere / forma | Electronic books. |
ISBN | 1-78040-531-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Copyright; Contents; Preface; Contributors; Part I: Socio-economic aspects of gas pollution and gas recovery; Section IA: Gas: pollutant or resource?; 1. Introduction on air pollution: the emission-effect relation; 1.1. Introduction: What is air pollution?; 1.2. Overview of the emission effect relations; 1.3. Emissions; 1.4. Formation of aerosols; 1.5. Lifetimes of pollutants; 1.6. Ambient concentration of pollutants; 1.7. Conclusion; References; 2. Transboundary particulate matter pollution in Europe; 2.1. Introduction; 2.2. European aerosol patterns and trends
2.3. Air pollution observation: existing networks2.4. Modelling ambient PM transport; 2.5. Conclusions; References; 3. Abatement strategies for air pollution; 3.1. Introduction; 3.2. Origin and fate of emissions; 3.3. Abatement strategies; 3.4. Outlook; References; Section IB: Pollution control policy; 4. Dealing with waste gas in enhancing sustainable development: the role of the Kyoto mechanisms; 4.1. Introduction; 4.2. Defining sustainable development; 4.3. Waste gas recovery under the CDM; 4.4. Kyoto-based case studies of waste gas capture projects; 4.5. Conclusions; References 5. Implementation of the European Solvent Directive (1999/13/EC)5.1. Introduction; 5.2 Information exchange platform as a part of the implementation of the EU Solvent Directive; 5.3 Decision support through mass and energy flow management in the sector of vehicle refinishing; 5.4. Further use of mass and energy flow models; 5.5. Conclusion; References; 6. Integration of biological techniques for air pollution control into sustainable development; 6.1. Introduction; 6.2. VOC control, the case for avoiding unnecessary CO2 emissions; 6.3. High-rate biotrickling filters for H2S control 6.4. Concluding remarksReferences; Part II: Characterization of waste gases; Section IIA: Waste gases analysis; 7. Characterization of pollutants in gases; 7.1. Introduction; 7.2. Characterizing atmospheric pollutants; 7.3. Monitoring and analysis; 7.4. Effects; 7.5. Conclusions; References; 8. Isotope characterization of gaseous pollutants; 8.1. Introduction; 8.2. Isotope abundance variations; 8.3. Isotope mass balance; 8.4. Conclusion; References; 9. Use of NMR to study in situ bioconversion of gaseous formaldehyde; 9.1. Introduction 9.2. In situ NMR study of bioconversion of gaseous compounds9.3. NMR study of formaldehyde bioconversion; 9.4. Conclusion; References; Section IIB: Waste gases characteristics; 10. Heavy metal release in waste incineration processes; 10.1. Introduction; 10.2. Thermodynamic study; 10.3. Characterisation of ultimate residues; 10.4. Kinetics of HM vaporisation; 10.5. Conclusion; References; 11. Functional interpretation of gas composition; 11.1. Introduction; 11.2. Sources of volatile organic compounds; 11.3. Analysis of NMVOCs; 11.4. NMVOC emission rates 11.5. Differentiating processes using the NMVOC profile |
Record Nr. | UNINA-9910463982503321 |
London : , : IWA Publishing, , 2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Waste gas treatment for resource recovery / / edited by Piet N.L. Lens [and three others] |
Pubbl/distr/stampa | London : , : IWA Publishing, , 2006 |
Descrizione fisica | 1 online resource (510 p.) |
Disciplina | 628.53 |
Collana | Integrated environmental technology series |
Soggetto topico |
Waste gases - Environmental aspects
Air quality management Resource recovery facilities Natural gas - Environmental aspects Air - Pollution Air quality - Standards |
ISBN | 1-78040-531-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Copyright; Contents; Preface; Contributors; Part I: Socio-economic aspects of gas pollution and gas recovery; Section IA: Gas: pollutant or resource?; 1. Introduction on air pollution: the emission-effect relation; 1.1. Introduction: What is air pollution?; 1.2. Overview of the emission effect relations; 1.3. Emissions; 1.4. Formation of aerosols; 1.5. Lifetimes of pollutants; 1.6. Ambient concentration of pollutants; 1.7. Conclusion; References; 2. Transboundary particulate matter pollution in Europe; 2.1. Introduction; 2.2. European aerosol patterns and trends
2.3. Air pollution observation: existing networks2.4. Modelling ambient PM transport; 2.5. Conclusions; References; 3. Abatement strategies for air pollution; 3.1. Introduction; 3.2. Origin and fate of emissions; 3.3. Abatement strategies; 3.4. Outlook; References; Section IB: Pollution control policy; 4. Dealing with waste gas in enhancing sustainable development: the role of the Kyoto mechanisms; 4.1. Introduction; 4.2. Defining sustainable development; 4.3. Waste gas recovery under the CDM; 4.4. Kyoto-based case studies of waste gas capture projects; 4.5. Conclusions; References 5. Implementation of the European Solvent Directive (1999/13/EC)5.1. Introduction; 5.2 Information exchange platform as a part of the implementation of the EU Solvent Directive; 5.3 Decision support through mass and energy flow management in the sector of vehicle refinishing; 5.4. Further use of mass and energy flow models; 5.5. Conclusion; References; 6. Integration of biological techniques for air pollution control into sustainable development; 6.1. Introduction; 6.2. VOC control, the case for avoiding unnecessary CO2 emissions; 6.3. High-rate biotrickling filters for H2S control 6.4. Concluding remarksReferences; Part II: Characterization of waste gases; Section IIA: Waste gases analysis; 7. Characterization of pollutants in gases; 7.1. Introduction; 7.2. Characterizing atmospheric pollutants; 7.3. Monitoring and analysis; 7.4. Effects; 7.5. Conclusions; References; 8. Isotope characterization of gaseous pollutants; 8.1. Introduction; 8.2. Isotope abundance variations; 8.3. Isotope mass balance; 8.4. Conclusion; References; 9. Use of NMR to study in situ bioconversion of gaseous formaldehyde; 9.1. Introduction 9.2. In situ NMR study of bioconversion of gaseous compounds9.3. NMR study of formaldehyde bioconversion; 9.4. Conclusion; References; Section IIB: Waste gases characteristics; 10. Heavy metal release in waste incineration processes; 10.1. Introduction; 10.2. Thermodynamic study; 10.3. Characterisation of ultimate residues; 10.4. Kinetics of HM vaporisation; 10.5. Conclusion; References; 11. Functional interpretation of gas composition; 11.1. Introduction; 11.2. Sources of volatile organic compounds; 11.3. Analysis of NMVOCs; 11.4. NMVOC emission rates 11.5. Differentiating processes using the NMVOC profile |
Record Nr. | UNINA-9910788625003321 |
London : , : IWA Publishing, , 2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Waste gas treatment for resource recovery / / edited by Piet N.L. Lens [and three others] |
Pubbl/distr/stampa | London : , : IWA Publishing, , 2006 |
Descrizione fisica | 1 online resource (510 p.) |
Disciplina | 628.53 |
Collana | Integrated environmental technology series |
Soggetto topico |
Waste gases - Environmental aspects
Air quality management Resource recovery facilities Natural gas - Environmental aspects Air - Pollution Air quality - Standards |
ISBN | 1-78040-531-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Copyright; Contents; Preface; Contributors; Part I: Socio-economic aspects of gas pollution and gas recovery; Section IA: Gas: pollutant or resource?; 1. Introduction on air pollution: the emission-effect relation; 1.1. Introduction: What is air pollution?; 1.2. Overview of the emission effect relations; 1.3. Emissions; 1.4. Formation of aerosols; 1.5. Lifetimes of pollutants; 1.6. Ambient concentration of pollutants; 1.7. Conclusion; References; 2. Transboundary particulate matter pollution in Europe; 2.1. Introduction; 2.2. European aerosol patterns and trends
2.3. Air pollution observation: existing networks2.4. Modelling ambient PM transport; 2.5. Conclusions; References; 3. Abatement strategies for air pollution; 3.1. Introduction; 3.2. Origin and fate of emissions; 3.3. Abatement strategies; 3.4. Outlook; References; Section IB: Pollution control policy; 4. Dealing with waste gas in enhancing sustainable development: the role of the Kyoto mechanisms; 4.1. Introduction; 4.2. Defining sustainable development; 4.3. Waste gas recovery under the CDM; 4.4. Kyoto-based case studies of waste gas capture projects; 4.5. Conclusions; References 5. Implementation of the European Solvent Directive (1999/13/EC)5.1. Introduction; 5.2 Information exchange platform as a part of the implementation of the EU Solvent Directive; 5.3 Decision support through mass and energy flow management in the sector of vehicle refinishing; 5.4. Further use of mass and energy flow models; 5.5. Conclusion; References; 6. Integration of biological techniques for air pollution control into sustainable development; 6.1. Introduction; 6.2. VOC control, the case for avoiding unnecessary CO2 emissions; 6.3. High-rate biotrickling filters for H2S control 6.4. Concluding remarksReferences; Part II: Characterization of waste gases; Section IIA: Waste gases analysis; 7. Characterization of pollutants in gases; 7.1. Introduction; 7.2. Characterizing atmospheric pollutants; 7.3. Monitoring and analysis; 7.4. Effects; 7.5. Conclusions; References; 8. Isotope characterization of gaseous pollutants; 8.1. Introduction; 8.2. Isotope abundance variations; 8.3. Isotope mass balance; 8.4. Conclusion; References; 9. Use of NMR to study in situ bioconversion of gaseous formaldehyde; 9.1. Introduction 9.2. In situ NMR study of bioconversion of gaseous compounds9.3. NMR study of formaldehyde bioconversion; 9.4. Conclusion; References; Section IIB: Waste gases characteristics; 10. Heavy metal release in waste incineration processes; 10.1. Introduction; 10.2. Thermodynamic study; 10.3. Characterisation of ultimate residues; 10.4. Kinetics of HM vaporisation; 10.5. Conclusion; References; 11. Functional interpretation of gas composition; 11.1. Introduction; 11.2. Sources of volatile organic compounds; 11.3. Analysis of NMVOCs; 11.4. NMVOC emission rates 11.5. Differentiating processes using the NMVOC profile |
Record Nr. | UNINA-9910828539503321 |
London : , : IWA Publishing, , 2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|