top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Linear programming and resource allocation modeling / / Michael J. Panik
Linear programming and resource allocation modeling / / Michael J. Panik
Autore Panik Michael J.
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2019
Descrizione fisica 1 online resource (451 pages)
Disciplina 519.72
Soggetto topico Linear programming
Resource allocation - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-119-50947-5
1-119-50945-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Mathematical Foundations -- Introduction to Linear Programming -- Computational Aspects of Linear Programming -- Variations of the Standard Simplex Routine -- Duality Theory -- Linear Programming and the Theory of the Firm -- Sensitivity Analysis -- Analyzing Structural Changes -- Parametric Programming -- Parametric Programming and the Theory of the Firm -- Duality Revisited -- Simplex-Based Methods of Optimization -- Data Envelopment Analysis (DEA).
Record Nr. UNINA-9910468021203321
Panik Michael J.  
Hoboken, New Jersey : , : Wiley, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Linear programming and resource allocation modeling / / Michael J. Panik
Linear programming and resource allocation modeling / / Michael J. Panik
Autore Panik Michael J.
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2019
Descrizione fisica 1 online resource (451 pages)
Disciplina 519.72
Collana THEi Wiley ebooks
Soggetto topico Linear programming
Resource allocation - Mathematical models
ISBN 1-119-50946-7
1-119-50947-5
1-119-50945-9
Classificazione 417
519.7/2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Mathematical Foundations -- Introduction to Linear Programming -- Computational Aspects of Linear Programming -- Variations of the Standard Simplex Routine -- Duality Theory -- Linear Programming and the Theory of the Firm -- Sensitivity Analysis -- Analyzing Structural Changes -- Parametric Programming -- Parametric Programming and the Theory of the Firm -- Duality Revisited -- Simplex-Based Methods of Optimization -- Data Envelopment Analysis (DEA).
Record Nr. UNINA-9910539336403321
Panik Michael J.  
Hoboken, New Jersey : , : Wiley, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multi-armed bandit allocation indices [[electronic resource] /] / John Gittins, Kevin Glazebrook, Richard Weber
Multi-armed bandit allocation indices [[electronic resource] /] / John Gittins, Kevin Glazebrook, Richard Weber
Autore Gittins John C. <1938->
Edizione [2nd ed.]
Pubbl/distr/stampa Chichester, : Wiley, 2011
Descrizione fisica 1 online resource (311 p.)
Disciplina 519.5
519.8
Altri autori (Persone) GlazebrookKevin D. <1950->
WeberRichard <1953->
Soggetto topico Resource allocation - Mathematical models
Mathematical optimization
Programming (Mathematics)
Soggetto genere / forma Electronic books.
ISBN 1-283-37409-9
9786613374097
0-470-98004-4
0-470-98003-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Multi-armed Bandit Allocation Indices; Contents; Foreword; Foreword to the first edition; Preface; Preface to the first edition; 1 Introduction or exploration; Exercises; 2 Main ideas: Gittins index; 2.1 Introduction; 2.2 Decision processes; 2.3 Simple families of alternative bandit processes; 2.4 Dynamic programming; 2.5 Gittins index theorem; 2.6 Gittins index; 2.6.1 Gittins index and the multi-armed bandit; 2.6.2 Coins problem; 2.6.3 Characterization of the optimal stopping time; 2.6.4 The restart-in-state formulation; 2.6.5 Dependence on discount factor
2.6.6 Myopic and forwards induction policies2.7 Proof of the index theorem by interchanging bandit portions; 2.8 Continuous-time bandit processes; 2.9 Proof of the index theorem by induction and interchange argument; 2.10 Calculation of Gittins indices; 2.11 Monotonicity conditions; 2.11.1 Monotone indices; 2.11.2 Monotone jobs; 2.12 History of the index theorem; 2.13 Some decision process theory; Exercises; 3 Necessary assumptions for indices; 3.1 Introduction; 3.2 Jobs; 3.3 Continuous-time jobs; 3.3.1 Definition; 3.3.2 Policies for continuous-time jobs
3.3.3 The continuous-time index theorem for a SFABP of jobs3.4 Necessary assumptions; 3.4.1 Necessity of an infinite time horizon; 3.4.2 Necessity of constant exponential discounting; 3.4.3 Necessity of a single processor; 3.5 Beyond the necessary assumptions; 3.5.1 Bandit-dependent discount factors; 3.5.2 Stochastic discounting; 3.5.3 Undiscounted rewards; 3.5.4 A discrete search problem; 3.5.5 Multiple processors; Exercises; 4 Superprocesses, precedence constraints and arrivals; 4.1 Introduction; 4.2 Bandit superprocesses; 4.3 The index theorem for superprocesses
4.4 Stoppable bandit processes4.5 Proof of the index theorem by freezing and promotion rules; 4.5.1 Freezing rules; 4.5.2 Promotion rules; 4.6 The index theorem for jobs with precedence constraints; 4.7 Precedence constraints forming an out-forest; 4.8 Bandit processes with arrivals; 4.9 Tax problems; 4.9.1 Ongoing bandits and tax problems; 4.9.2 Klimov's model; 4.9.3 Minimum EWFT for the M/G/1 queue; 4.10 Near optimality of nearly index policies; Exercises; 5 The achievable region methodology; 5.1 Introduction; 5.2 A simple example; 5.3 Proof of the index theorem by greedy algorithm
5.4 Generalized conservation laws and indexable systems5.5 Performance bounds for policies for branching bandits; 5.6 Job selection and scheduling problems; 5.7 Multi-armed bandits on parallel machines; Exercises; 6 Restless bandits and Lagrangian relaxation; 6.1 Introduction; 6.2 Restless bandits; 6.3 Whittle indices for restless bandits; 6.4 Asymptotic optimality; 6.5 Monotone policies and simple proofs of indexability; 6.6 Applications to multi-class queueing systems; 6.7 Performance bounds for the Whittle index policy; 6.8 Indices for more general resource configurations; Exercises
7 Multi-population random sampling (theory)
Record Nr. UNINA-9910133454203321
Gittins John C. <1938->  
Chichester, : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multi-armed bandit allocation indices [[electronic resource] /] / John Gittins, Kevin Glazebrook, Richard Weber
Multi-armed bandit allocation indices [[electronic resource] /] / John Gittins, Kevin Glazebrook, Richard Weber
Autore Gittins John C. <1938->
Edizione [2nd ed.]
Pubbl/distr/stampa Chichester, : Wiley, 2011
Descrizione fisica 1 online resource (311 p.)
Disciplina 519.5
519.8
Altri autori (Persone) GlazebrookKevin D. <1950->
WeberRichard <1953->
Soggetto topico Resource allocation - Mathematical models
Mathematical optimization
Programming (Mathematics)
ISBN 1-283-37409-9
9786613374097
0-470-98004-4
0-470-98003-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Multi-armed Bandit Allocation Indices; Contents; Foreword; Foreword to the first edition; Preface; Preface to the first edition; 1 Introduction or exploration; Exercises; 2 Main ideas: Gittins index; 2.1 Introduction; 2.2 Decision processes; 2.3 Simple families of alternative bandit processes; 2.4 Dynamic programming; 2.5 Gittins index theorem; 2.6 Gittins index; 2.6.1 Gittins index and the multi-armed bandit; 2.6.2 Coins problem; 2.6.3 Characterization of the optimal stopping time; 2.6.4 The restart-in-state formulation; 2.6.5 Dependence on discount factor
2.6.6 Myopic and forwards induction policies2.7 Proof of the index theorem by interchanging bandit portions; 2.8 Continuous-time bandit processes; 2.9 Proof of the index theorem by induction and interchange argument; 2.10 Calculation of Gittins indices; 2.11 Monotonicity conditions; 2.11.1 Monotone indices; 2.11.2 Monotone jobs; 2.12 History of the index theorem; 2.13 Some decision process theory; Exercises; 3 Necessary assumptions for indices; 3.1 Introduction; 3.2 Jobs; 3.3 Continuous-time jobs; 3.3.1 Definition; 3.3.2 Policies for continuous-time jobs
3.3.3 The continuous-time index theorem for a SFABP of jobs3.4 Necessary assumptions; 3.4.1 Necessity of an infinite time horizon; 3.4.2 Necessity of constant exponential discounting; 3.4.3 Necessity of a single processor; 3.5 Beyond the necessary assumptions; 3.5.1 Bandit-dependent discount factors; 3.5.2 Stochastic discounting; 3.5.3 Undiscounted rewards; 3.5.4 A discrete search problem; 3.5.5 Multiple processors; Exercises; 4 Superprocesses, precedence constraints and arrivals; 4.1 Introduction; 4.2 Bandit superprocesses; 4.3 The index theorem for superprocesses
4.4 Stoppable bandit processes4.5 Proof of the index theorem by freezing and promotion rules; 4.5.1 Freezing rules; 4.5.2 Promotion rules; 4.6 The index theorem for jobs with precedence constraints; 4.7 Precedence constraints forming an out-forest; 4.8 Bandit processes with arrivals; 4.9 Tax problems; 4.9.1 Ongoing bandits and tax problems; 4.9.2 Klimov's model; 4.9.3 Minimum EWFT for the M/G/1 queue; 4.10 Near optimality of nearly index policies; Exercises; 5 The achievable region methodology; 5.1 Introduction; 5.2 A simple example; 5.3 Proof of the index theorem by greedy algorithm
5.4 Generalized conservation laws and indexable systems5.5 Performance bounds for policies for branching bandits; 5.6 Job selection and scheduling problems; 5.7 Multi-armed bandits on parallel machines; Exercises; 6 Restless bandits and Lagrangian relaxation; 6.1 Introduction; 6.2 Restless bandits; 6.3 Whittle indices for restless bandits; 6.4 Asymptotic optimality; 6.5 Monotone policies and simple proofs of indexability; 6.6 Applications to multi-class queueing systems; 6.7 Performance bounds for the Whittle index policy; 6.8 Indices for more general resource configurations; Exercises
7 Multi-population random sampling (theory)
Record Nr. UNINA-9910830276503321
Gittins John C. <1938->  
Chichester, : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multi-armed bandit allocation indices / / John Gittins, Kevin Glazebrook, Richard Weber
Multi-armed bandit allocation indices / / John Gittins, Kevin Glazebrook, Richard Weber
Autore Gittins John C. <1938->
Edizione [2nd ed.]
Pubbl/distr/stampa Chichester, : Wiley, 2011
Descrizione fisica 1 online resource (311 p.)
Disciplina 519.5
Altri autori (Persone) GlazebrookKevin D. <1950->
WeberRichard <1953->
Soggetto topico Resource allocation - Mathematical models
Mathematical optimization
Programming (Mathematics)
ISBN 1-283-37409-9
9786613374097
0-470-98004-4
0-470-98003-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Multi-armed Bandit Allocation Indices; Contents; Foreword; Foreword to the first edition; Preface; Preface to the first edition; 1 Introduction or exploration; Exercises; 2 Main ideas: Gittins index; 2.1 Introduction; 2.2 Decision processes; 2.3 Simple families of alternative bandit processes; 2.4 Dynamic programming; 2.5 Gittins index theorem; 2.6 Gittins index; 2.6.1 Gittins index and the multi-armed bandit; 2.6.2 Coins problem; 2.6.3 Characterization of the optimal stopping time; 2.6.4 The restart-in-state formulation; 2.6.5 Dependence on discount factor
2.6.6 Myopic and forwards induction policies2.7 Proof of the index theorem by interchanging bandit portions; 2.8 Continuous-time bandit processes; 2.9 Proof of the index theorem by induction and interchange argument; 2.10 Calculation of Gittins indices; 2.11 Monotonicity conditions; 2.11.1 Monotone indices; 2.11.2 Monotone jobs; 2.12 History of the index theorem; 2.13 Some decision process theory; Exercises; 3 Necessary assumptions for indices; 3.1 Introduction; 3.2 Jobs; 3.3 Continuous-time jobs; 3.3.1 Definition; 3.3.2 Policies for continuous-time jobs
3.3.3 The continuous-time index theorem for a SFABP of jobs3.4 Necessary assumptions; 3.4.1 Necessity of an infinite time horizon; 3.4.2 Necessity of constant exponential discounting; 3.4.3 Necessity of a single processor; 3.5 Beyond the necessary assumptions; 3.5.1 Bandit-dependent discount factors; 3.5.2 Stochastic discounting; 3.5.3 Undiscounted rewards; 3.5.4 A discrete search problem; 3.5.5 Multiple processors; Exercises; 4 Superprocesses, precedence constraints and arrivals; 4.1 Introduction; 4.2 Bandit superprocesses; 4.3 The index theorem for superprocesses
4.4 Stoppable bandit processes4.5 Proof of the index theorem by freezing and promotion rules; 4.5.1 Freezing rules; 4.5.2 Promotion rules; 4.6 The index theorem for jobs with precedence constraints; 4.7 Precedence constraints forming an out-forest; 4.8 Bandit processes with arrivals; 4.9 Tax problems; 4.9.1 Ongoing bandits and tax problems; 4.9.2 Klimov's model; 4.9.3 Minimum EWFT for the M/G/1 queue; 4.10 Near optimality of nearly index policies; Exercises; 5 The achievable region methodology; 5.1 Introduction; 5.2 A simple example; 5.3 Proof of the index theorem by greedy algorithm
5.4 Generalized conservation laws and indexable systems5.5 Performance bounds for policies for branching bandits; 5.6 Job selection and scheduling problems; 5.7 Multi-armed bandits on parallel machines; Exercises; 6 Restless bandits and Lagrangian relaxation; 6.1 Introduction; 6.2 Restless bandits; 6.3 Whittle indices for restless bandits; 6.4 Asymptotic optimality; 6.5 Monotone policies and simple proofs of indexability; 6.6 Applications to multi-class queueing systems; 6.7 Performance bounds for the Whittle index policy; 6.8 Indices for more general resource configurations; Exercises
7 Multi-population random sampling (theory)
Record Nr. UNINA-9910876618603321
Gittins John C. <1938->  
Chichester, : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Resource allocation problems in supply chains / / by K. Ganesh, McKinsey & Company, Inc., Chennai, India [and three others]
Resource allocation problems in supply chains / / by K. Ganesh, McKinsey & Company, Inc., Chennai, India [and three others]
Autore Ganesh K.
Edizione [First edition.]
Pubbl/distr/stampa Bingley : , : Emerald Insight, , 2015
Descrizione fisica 1 online resource (197 p.)
Disciplina 658.7
Soggetto topico Resource allocation - Mathematical models
Mathematical optimization
Programming (Mathematics)
Soggetto genere / forma Electronic books.
ISBN 1-78560-398-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Resource Allocation Problems in Supply Chains; Copyright page; Abstract; Contents; List of Tables; List of Figures; List of Symbols and Abbreviations; About the Authors; Section 1 Introduction; 1.1. Supply Chain Management; 1.2. Resource Allocation Problems in Supply Chain; 1.3. Motivation of Resource Allocation Problems; 1.3.1. Resource Allocation Variant in Bi-Objective Capacitated Supply Chain Network; 1.3.2. Resource Allocation Variant in Bi-Objective Bound Driven Capacitated Supply Chain Network
1.3.3. Resource Allocation Variant in Multiple Measures Driven Capacitated Multi-Echelon Supply Chain Network1.3.4. Resource Allocation Variant in Integrated Decision and Upper Bound Driven Capacitated Multi-Echelon Supply Chain Network; 1.3.5. Resource Allocation Variant in Integrated Decision and Time Driven Capacitated Multi-Echelon Supply Chain Network; 1.3.6. Resource Allocation Variant in Integrated Decision, Bound and Time Driven Capacitated Multi-Echelon Supply Chain Network; 1.4. Scope of the Present Study; Section 2 Literature Review; 2.1. Resource Allocation Problem
2.2. Review of the RA Variants Addressed in Current Research2.2.1. Bi-Objective Generalized Assignment Problem; 2.2.2. Multi-Commodity Network Flow Problem; 2.2.3. Multiple Measures Resource Allocation Problem; 2.2.4. Mixed Capacitated Arc Routing Problem; 2.2.5. Employee Routing Problem; 2.2.6. Vehicle Routing Problem with Backhauls with Time Windows; 2.3. Observations and Research Gap; 2.4. Summary; Section 3 Bi-Objective Capacitated Supply Chain Network; 3.1. Bi-Objective Resource Allocation Problem with Varying Capacity; 3.2. Solution Methodology to Solve BORAPVC
3.2.1. Mathematical Programming Model for BORAPVC3.2.2. Simulated Annealing with Population Size Initialization through Neighborhood Generation for GAP and BORAPVC; 3.2.2.1. Parameter settings for SAPING; 3.3. Computational Experiments and Results; 3.4. Conclusion; Section 4 Bi-Objective Bound Driven Capacitated Supply Chain Network; 4.1. Bi-Objective Resource Allocation Problem with Bound and Varying Capacity; 4.2. Solution Methodology to Solve IRARPUB; 4.2.1. Recursive Function Inherent Genetic Algorithm (REFING) for MCNF and BORAPBVC; 4.3. Computational Experiments and Results
4.3.1. Performance of Solution Methodology4.4. Case Study Demonstration; 4.4.1. Problem Identification and Discussion; 4.4.1.1. Patient Distribution System (PDS); 4.4.1.2. Input to the Central Body; 4.4.1.3. Flow chart for the allocation of patients; 4.4.1.4. Problem identification; 4.4.1.5. Assumptions; 4.4.2. Formulation of the Problem; 4.4.3. Model Testing; 4.4.4. Analysis of Results and Discussion; 4.4.5. Managerial Implications; 4.4.6. Summary for Case Study; 4.5. Conclusion; Section 5 Multiple Measures Driven Capacitated Multi-Echelon Supply Chain Network
5.1. Multiple Measures Resource Allocation Problem for Multi-Echelon Supply
Record Nr. UNINA-9910461392603321
Ganesh K.  
Bingley : , : Emerald Insight, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Resource allocation problems in supply chains / / by K. Ganesh, McKinsey & Company, Inc., Chennai, India [and three others]
Resource allocation problems in supply chains / / by K. Ganesh, McKinsey & Company, Inc., Chennai, India [and three others]
Autore Ganesh K.
Edizione [First edition.]
Pubbl/distr/stampa Bingley : , : Emerald Insight, , 2015
Descrizione fisica 1 online resource (197 p.)
Disciplina 658.7
Soggetto topico Resource allocation - Mathematical models
Mathematical optimization
Programming (Mathematics)
ISBN 1-78560-398-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Resource Allocation Problems in Supply Chains; Copyright page; Abstract; Contents; List of Tables; List of Figures; List of Symbols and Abbreviations; About the Authors; Section 1 Introduction; 1.1. Supply Chain Management; 1.2. Resource Allocation Problems in Supply Chain; 1.3. Motivation of Resource Allocation Problems; 1.3.1. Resource Allocation Variant in Bi-Objective Capacitated Supply Chain Network; 1.3.2. Resource Allocation Variant in Bi-Objective Bound Driven Capacitated Supply Chain Network
1.3.3. Resource Allocation Variant in Multiple Measures Driven Capacitated Multi-Echelon Supply Chain Network1.3.4. Resource Allocation Variant in Integrated Decision and Upper Bound Driven Capacitated Multi-Echelon Supply Chain Network; 1.3.5. Resource Allocation Variant in Integrated Decision and Time Driven Capacitated Multi-Echelon Supply Chain Network; 1.3.6. Resource Allocation Variant in Integrated Decision, Bound and Time Driven Capacitated Multi-Echelon Supply Chain Network; 1.4. Scope of the Present Study; Section 2 Literature Review; 2.1. Resource Allocation Problem
2.2. Review of the RA Variants Addressed in Current Research2.2.1. Bi-Objective Generalized Assignment Problem; 2.2.2. Multi-Commodity Network Flow Problem; 2.2.3. Multiple Measures Resource Allocation Problem; 2.2.4. Mixed Capacitated Arc Routing Problem; 2.2.5. Employee Routing Problem; 2.2.6. Vehicle Routing Problem with Backhauls with Time Windows; 2.3. Observations and Research Gap; 2.4. Summary; Section 3 Bi-Objective Capacitated Supply Chain Network; 3.1. Bi-Objective Resource Allocation Problem with Varying Capacity; 3.2. Solution Methodology to Solve BORAPVC
3.2.1. Mathematical Programming Model for BORAPVC3.2.2. Simulated Annealing with Population Size Initialization through Neighborhood Generation for GAP and BORAPVC; 3.2.2.1. Parameter settings for SAPING; 3.3. Computational Experiments and Results; 3.4. Conclusion; Section 4 Bi-Objective Bound Driven Capacitated Supply Chain Network; 4.1. Bi-Objective Resource Allocation Problem with Bound and Varying Capacity; 4.2. Solution Methodology to Solve IRARPUB; 4.2.1. Recursive Function Inherent Genetic Algorithm (REFING) for MCNF and BORAPBVC; 4.3. Computational Experiments and Results
4.3.1. Performance of Solution Methodology4.4. Case Study Demonstration; 4.4.1. Problem Identification and Discussion; 4.4.1.1. Patient Distribution System (PDS); 4.4.1.2. Input to the Central Body; 4.4.1.3. Flow chart for the allocation of patients; 4.4.1.4. Problem identification; 4.4.1.5. Assumptions; 4.4.2. Formulation of the Problem; 4.4.3. Model Testing; 4.4.4. Analysis of Results and Discussion; 4.4.5. Managerial Implications; 4.4.6. Summary for Case Study; 4.5. Conclusion; Section 5 Multiple Measures Driven Capacitated Multi-Echelon Supply Chain Network
5.1. Multiple Measures Resource Allocation Problem for Multi-Echelon Supply
Record Nr. UNINA-9910797572503321
Ganesh K.  
Bingley : , : Emerald Insight, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Resource allocation problems in supply chains / / by K. Ganesh, McKinsey & Company, Inc., Chennai, India [and three others]
Resource allocation problems in supply chains / / by K. Ganesh, McKinsey & Company, Inc., Chennai, India [and three others]
Autore Ganesh K.
Edizione [First edition.]
Pubbl/distr/stampa Bingley : , : Emerald Insight, , 2015
Descrizione fisica 1 online resource (197 p.)
Disciplina 658.7
Soggetto topico Resource allocation - Mathematical models
Mathematical optimization
Programming (Mathematics)
ISBN 1-78560-398-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Resource Allocation Problems in Supply Chains; Copyright page; Abstract; Contents; List of Tables; List of Figures; List of Symbols and Abbreviations; About the Authors; Section 1 Introduction; 1.1. Supply Chain Management; 1.2. Resource Allocation Problems in Supply Chain; 1.3. Motivation of Resource Allocation Problems; 1.3.1. Resource Allocation Variant in Bi-Objective Capacitated Supply Chain Network; 1.3.2. Resource Allocation Variant in Bi-Objective Bound Driven Capacitated Supply Chain Network
1.3.3. Resource Allocation Variant in Multiple Measures Driven Capacitated Multi-Echelon Supply Chain Network1.3.4. Resource Allocation Variant in Integrated Decision and Upper Bound Driven Capacitated Multi-Echelon Supply Chain Network; 1.3.5. Resource Allocation Variant in Integrated Decision and Time Driven Capacitated Multi-Echelon Supply Chain Network; 1.3.6. Resource Allocation Variant in Integrated Decision, Bound and Time Driven Capacitated Multi-Echelon Supply Chain Network; 1.4. Scope of the Present Study; Section 2 Literature Review; 2.1. Resource Allocation Problem
2.2. Review of the RA Variants Addressed in Current Research2.2.1. Bi-Objective Generalized Assignment Problem; 2.2.2. Multi-Commodity Network Flow Problem; 2.2.3. Multiple Measures Resource Allocation Problem; 2.2.4. Mixed Capacitated Arc Routing Problem; 2.2.5. Employee Routing Problem; 2.2.6. Vehicle Routing Problem with Backhauls with Time Windows; 2.3. Observations and Research Gap; 2.4. Summary; Section 3 Bi-Objective Capacitated Supply Chain Network; 3.1. Bi-Objective Resource Allocation Problem with Varying Capacity; 3.2. Solution Methodology to Solve BORAPVC
3.2.1. Mathematical Programming Model for BORAPVC3.2.2. Simulated Annealing with Population Size Initialization through Neighborhood Generation for GAP and BORAPVC; 3.2.2.1. Parameter settings for SAPING; 3.3. Computational Experiments and Results; 3.4. Conclusion; Section 4 Bi-Objective Bound Driven Capacitated Supply Chain Network; 4.1. Bi-Objective Resource Allocation Problem with Bound and Varying Capacity; 4.2. Solution Methodology to Solve IRARPUB; 4.2.1. Recursive Function Inherent Genetic Algorithm (REFING) for MCNF and BORAPBVC; 4.3. Computational Experiments and Results
4.3.1. Performance of Solution Methodology4.4. Case Study Demonstration; 4.4.1. Problem Identification and Discussion; 4.4.1.1. Patient Distribution System (PDS); 4.4.1.2. Input to the Central Body; 4.4.1.3. Flow chart for the allocation of patients; 4.4.1.4. Problem identification; 4.4.1.5. Assumptions; 4.4.2. Formulation of the Problem; 4.4.3. Model Testing; 4.4.4. Analysis of Results and Discussion; 4.4.5. Managerial Implications; 4.4.6. Summary for Case Study; 4.5. Conclusion; Section 5 Multiple Measures Driven Capacitated Multi-Echelon Supply Chain Network
5.1. Multiple Measures Resource Allocation Problem for Multi-Echelon Supply
Record Nr. UNINA-9910823776003321
Ganesh K.  
Bingley : , : Emerald Insight, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Resource economics / Jon M. Conrad
Resource economics / Jon M. Conrad
Autore Conrad, Jon M.
Pubbl/distr/stampa Cambrdige : Cambridge University Press, 1999
Descrizione fisica x, 213 p. : ill. ; 24 cm.
Disciplina 333
Soggetto topico Microsoft Excel (Computer file)
Natural resources - Management - Mathematical models
Resource allocation - Mathematical models
ISBN 0521640121
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione en
Record Nr. UNISALENTO-991001478719707536
Conrad, Jon M.  
Cambrdige : Cambridge University Press, 1999
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Specificity and the macroeconomics of restructuring [[electronic resource] /] / Ricardo J. Caballero
Specificity and the macroeconomics of restructuring [[electronic resource] /] / Ricardo J. Caballero
Autore Caballero Ricardo J
Pubbl/distr/stampa Cambridge, MA, : MIT Press, c2007
Descrizione fisica xii, 331 p. : ill
Disciplina 339
Collana Yrjö Jahnsson series
Soggetto topico Asset specificity - Mathematical models
Creative destruction - Mathematical models
Resource allocation - Mathematical models
Technological innovations - Economic aspects - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 0-262-29224-6
1-282-09856-X
9786612098567
0-262-26964-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910455711503321
Caballero Ricardo J  
Cambridge, MA, : MIT Press, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui