Clean energy integration in natural gas compressor station 0perations / / Emma Elgqvist [and 3 others]
| Clean energy integration in natural gas compressor station 0perations / / Emma Elgqvist [and 3 others] |
| Autore | Elgqvist Emma |
| Pubbl/distr/stampa | [Golden, Colo.] : , : National Renewable Energy Laboratory, , August 2021 |
| Descrizione fisica | 1 online resource (approximately 8 pages) : color illustrations |
| Collana | NREL/TP |
| Soggetto topico |
Renewable resource integration - United States
Natural gas pipelines - United States - Design and construction - Costs Natural gas - Storage - United States Natural gas pipelines - Design and construction - Costs Natural gas - Storage Renewable resource integration |
| Soggetto genere / forma | Technical reports. |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | JISEA research highlight |
| Record Nr. | UNINA-9910716722803321 |
Elgqvist Emma
|
||
| [Golden, Colo.] : , : National Renewable Energy Laboratory, , August 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Cooperative optimal control of hybrid energy systems / / Dong Yue, Huifeng Zhang, Chunxia Dou
| Cooperative optimal control of hybrid energy systems / / Dong Yue, Huifeng Zhang, Chunxia Dou |
| Autore | Yue Dong |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (XVI, 372 p. 161 illus., 105 illus. in color.) |
| Disciplina | 333.794 |
| Soggetto topico |
Renewable energy sources
Hybrid power systems Renewable resource integration |
| ISBN | 981-336-722-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Multiagent System-Based Event-Triggered Hybrid Controls for High-Security Hybrid Energy Generation Systems -- Multi-Agent Based Hierarchical Hybrid Control for Smart Microgrid -- Two-stage optimal operation strategy of isolated power system with TSK fuzzy identification of supply-security -- MOEA/D based probabilistic PBI approach for risk-based optimal operation of hybrid energy systems with intermittent power uncertainty -- Gradient decent based multi-objective cultural differential evolution for short-term hydrothermal optimal scheduling of economic emission with integrating wind power and photovoltaic power -- Event-triggered multi-agent optimization for two-layered model of hybrid energy system with price bidding based demand response -- Consensus-based economic hierarchical control strategy for islanded MG considering communication path reconstruction -- Multi-Agent-System-Based Bi-level Bidding Strategy of Microgrid with Game Theory in the Electricity Market -- Multiagent System-Based Distributed Coordinated Control for Radial DC Microgrid Considering Transmission Time Delays -- MAS-Based Distributed Cooperative Control for DC Microgrid Through Switching Topology Communication Network With Time-Varying Delays -- Multiagent System-Based Integrated Design of Security Control and Economic Dispatch for Interconnected Microgrid Systems -- Distributed event-triggered cooperative control for frequency and voltage stability and power sharing in isolated inverter-based microgrid -- Event-triggered mechanism based distributed optimal frequency regulation of power grid -- A Virtual Complex Impedance based Droop Method for Parallel-connected Inverters in Low-voltageAC Microgrids. |
| Record Nr. | UNINA-9910484854603321 |
Yue Dong
|
||
| Singapore : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Demand response potential from the bulk grid perspective / / Dr. Brady Stoll
| Demand response potential from the bulk grid perspective / / Dr. Brady Stoll |
| Autore | Stoll Brady |
| Pubbl/distr/stampa | Golden, CO : , : National Renewable Energy Laboratory, , 2020 |
| Descrizione fisica | 1 online resource (46 unnumbered pages) : color illustrations |
| Collana | NREL/PR |
| Soggetto topico |
Energy consumption
Renewable resource integration Smart power grids Energy conservation |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910713999603321 |
Stoll Brady
|
||
| Golden, CO : , : National Renewable Energy Laboratory, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The energy internet : an open energy platform to transform legacy power systems into open innovation and global economic engines / / edited by Wencong Su, Alex Q. Huang
| The energy internet : an open energy platform to transform legacy power systems into open innovation and global economic engines / / edited by Wencong Su, Alex Q. Huang |
| Pubbl/distr/stampa | Duxford, United Kingdom : , : Woodhead Publishing, an imprint of Elsevier, , [2019] |
| Descrizione fisica | 1 online resource (400 pages) |
| Disciplina | 621.319 |
| Collana | Woodhead Publishing in energy |
| Soggetto topico |
Electric power distribution - Automation
Renewable resource integration |
| ISBN | 0-08-102215-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover -- The Energy Internet -- Related titles -- The Energy Internet -- Copyright -- Contents -- List of contributors -- Preface -- One - Enabling Technologies and Technical Solutions -- 1 - Centralized, decentralized, and distributed control for Energy Internet -- 1.1 Introduction -- 1.1.1 Smart grid versus Energy Internet -- 1.1.2 The role of microgrids in the structure of the Energy Internet -- 1.1.3 Data acquisition in the legacy power system and Energy Internet network -- 1.2 Energy management approaches in energy networks -- 1.2.1 Centralized control -- 1.2.2 Decentralized control -- 1.2.3 Distributed control -- 1.3 Characteristics of communication networks of Energy Internet network -- 1.4 Conclusion and future research -- References -- 2 - Solid state transformers, the Energy Router and the Energy Internet -- 2.1 The Energy Internet -- 2.2 The Energy Router -- 2.3 Medium voltage power electronics based distribution system -- 2.4 Status of solid state transformer developments -- 2.5 Smart grid functionalities of the solid state transformer -- 2.5.1 Reactive power support -- 2.5.2 Voltage sag mitigation -- 2.5.3 Harmonic mitigation -- 2.5.4 Current limiting and short circuit protection -- 2.5.5 DC connectivity and DC microgrid -- 2.5.6 Solid state transformer as an Energy Router -- 2.6 Conclusions -- References -- 3 - Energy Internet blockchain technology -- 3.1 Overview -- 3.2 The application of blockchain technology in energy scenarios -- 3.2.1 The impact of blockchain technology on the Energy Internet -- 3.2.1.1 The inherent consistency of the Energy Internet and blockchain technology -- 3.2.2 Application of blockchain technology in energy scenarios -- 3.2.2.1 Pain points of the energy industry -- Power generation -- Power transmission and distribution -- Power consumption -- 3.2.3 Application scenarios -- 3.2.3.1 Power generation.
Auxiliary services -- Power generation management -- Distributed power source operation and maintenance management -- 3.2.3.2 Transmission and distribution -- Automatic dispatch -- Unified multienergy metering -- Security of information and the physical system -- 3.2.3.3 Load -- Design of virtual power plant -- Application in the carbon market -- 3.3 Application case analysis of blockchain technology in the energy industry -- 3.3.1 America: TransActive Grid -- 3.3.2 Australia: Power Ledger -- 3.3.3 China: Energy Blockchain Lab -- 3.4 Challenges in the application of blockchain technology in the energy industry -- 3.4.1 Technical challenges -- 3.4.1.1 Low throughput -- 3.4.1.2 Underdeveloped IOT technology -- 3.4.1.3 Validation breaches and privacy leakage risks -- 3.4.2 Policy challenges -- 3.4.2.1 Regulatory and normative policies -- 3.4.2.2 Industrial monopoly limits the application of the energy blockchain -- 3.4.2.3 Obstacle from the game of stakeholders -- 3.4.2.4 Collection of electricity surcharge -- 3.4.2.5 Initial coin offering financing problem -- 3.5 Conclusion -- References -- Further reading -- 4 - Resilient community microgrids: governance and operational challenges -- 4.1 Introduction -- 4.2 Benefits, challenges, and advantages of multistakeholder microgrids -- 4.2.1 Scale -- 4.2.2 Diversification -- 4.2.3 Enhanced or enabled benefits -- 4.2.4 Challenges for multistakeholder microgrids -- 4.2.4.1 Cost -- 4.2.4.2 Governance and operations -- 4.2.4.3 Technical operations -- 4.3 Benefit of improving restoration rate in the initial recovery phase -- 4.3.1 Major events -- 4.3.1.1 Commercial and industrial cost models -- Medium and large commercial and industrial cost model -- Small commercial and industrial cost model -- 4.3.1.2 Residential cost model -- Food spoilage and meals -- Shelter cost -- Inconvenience costs. Health and safety costs -- 4.3.1.3 Restoration model -- Restoration model case study -- 4.3.1.4 Numerical analysis of the effect of increased number of crews in the restoration model -- 4.3.1.5 Cost analysis of the case study -- 4.4 Potsdam case study -- 4.4.1 Reforming the energy vision overview -- 4.4.2 Potsdam microgrid project -- 4.4.2.1 Monetary and societal benefits -- Generation -- Demand response -- Microgrid controller and system management -- 4.4.2.2 Business model option for potsdam microgrid -- 4.5 Community benefits -- 4.5.1 Regional and societal benefits -- 4.5.2 Cost recovery -- 4.6 Critical issues -- 4.7 Summary -- Acknowledgments -- References -- Further reading -- 5 - Electricity market reform -- 5.1 Introduction -- 5.2 Electricity market paradigms within energy internet -- 5.2.1 Internetwork trading with peer-to-peer models -- 5.2.2 Indirect customer-to-customer trading -- 5.2.3 Prosumer community groups -- 5.3 Transactive energy as a platform for energy transactions -- 5.3.1 Motivation and definition of transactive electrical grid -- 5.3.2 The development of transactive energy -- 5.3.3 Energy transactions and business model innovations -- 5.3.4 Challenges and future development of transactive energy -- 5.4 Conclusion -- References -- 6 - Medium-voltage DC power distribution technology -- 6.1 Development background -- 6.2 Application advantages and scenarios -- 6.3 System architecture technology -- 6.3.1 Topology -- 6.3.2 Bus structure -- 6.3.3 Grounding form -- 6.3.3.1 Grounding location -- 6.3.3.2 Grounding type -- 6.3.4 Organization forms of distributed sources -- 6.3.5 Connection forms between different buses -- 6.4 Key equipment technology -- 6.4.1 Voltage source converter -- 6.4.2 DC transformer -- 6.4.3 DC breaker -- 6.5 Control technology -- 6.5.1 Converter control -- 6.5.2 Multisource coordination control. 6.5.2.1 Bus voltage control -- 6.5.2.2 Power quality management -- 6.5.3 Multibus network-level control -- 6.6 Protection technology -- 6.7 Practical medium-voltage DC Energy Internet systems in China -- 6.7.1 Medium-voltage DC Energy Internet system in Shenzhen -- 6.7.1.1 Technical demands from Baolong Industrial Park -- 6.7.1.2 Two-terminal "Hand in Hand" architecture -- 6.7.1.3 Key equipment scheme -- 6.7.1.4 Multifunctional operation ways -- Two-terminal power supply operation -- Single-terminal power supply operation -- Two-terminal isolation operation -- Power support operation -- STATCOM operation -- Back-to-back operation -- Island operation -- 6.7.1.5 Protection scheme -- 6.7.2 Medium-voltage DC Energy Internet system in Zhuhai -- 6.7.2.1 Technical demands from Tangjiawan Science Park -- 6.7.2.2 Three-terminal architecture -- 6.7.2.3 Key equipment scheme -- 6.7.2.4 Control scheme -- 6.8 Summary -- 7 - Transactive energy in future smart homes -- 7.1 Introduction -- 7.2 Demand response -- 7.3 Demand response programs -- 7.4 Transactive energy -- 7.5 Transactive energy definition -- 7.6 What is the Gridwise Architecture Council? -- 7.7 Transactive energy framework and attributes -- 7.8 Transactive energy principles and purpose -- 7.8.1 Transactive energy purpose -- 7.8.2 Transactive energy principles -- 7.9 Transactive energy control and coordination -- 7.10 Transactive energy challenges -- 7.10.1 Consumer behavior -- 7.10.2 System management -- 7.10.3 Scalability -- 7.10.4 Technology -- 7.11 Transactive energy systems -- 7.11.1 Definition of transactive energy systems -- 7.12 Transactive energy in home energy management systems -- 7.12.1 Challenges and opportunities of home energy management system -- 7.12.2 Case study -- 7.12.2.1 Modeling framework for the smart homes -- 7.12.2.2 Problem formulation for the smart homes -- Objective function. Power balance constraints -- PV constraints -- Battery storage constraints -- Local transaction market constraints -- 7.12.2.3 Operation models for smart homes based on transactive energy management -- 7.12.2.4 Numerical results analysis -- 7.13 Future work -- 7.14 Conclusion -- References -- 8 - Emerging data encryption methods applicable to Energy Internet -- 8.1 Introduction -- 8.2 Importance of digital signatures in the Energy Internet -- 8.3 Secret key cryptography (symmetric key cryptography) -- 8.4 Public key cryptography (asymmetric key cryptography) -- 8.5 Quantum key distribution -- 8.6 Application of quantum key distribution to the Energy Internet -- 8.7 Comparison of different cryptography methods-pros and cons -- 8.8 Future trends and opportunities in cyber security -- References -- Two - Real-world Implementation and Pilot Projects -- 9 - Enabling technologies and technical solutions for the Energy Internet: lessons learned and case studies from Pecan Stre ... -- 9.1 Introduction -- 9.2 Characteristic technologies of the energy internet -- 9.3 A smarter grid: information and communication technology solutions -- 9.3.1 Cybersecurity considerations -- 9.3.2 Big data management and software as a service solutions -- 9.3.2.1 Case study: automated demand response coordination for transformer load balancing -- 9.4 Prosumers: enabling proactive energy consumers -- 9.4.1 Power factor correction strategies -- 9.4.1.1 Case study: battery as generation and load shifting -- 9.4.1.2 Case study: islanding as a demand response application for batteries -- 9.5 Recommendations for accelerating the shift toward clean energy -- 9.6 Conclusion -- References -- 10 - How the Brooklyn Microgrid and TransActive Grid are paving the way to next-gen energy markets -- 10.1 Transactive energy -- 10.1.1 Energy marketplace. 10.1.1.1 Growing adoption of renewable energy. |
| Record Nr. | UNINA-9910583048503321 |
| Duxford, United Kingdom : , : Woodhead Publishing, an imprint of Elsevier, , [2019] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Energy storage technologies in grid modernization / / edited by Sandeep Dhundhara, Yajvender Pal Verma, and Ashwani Kumar
| Energy storage technologies in grid modernization / / edited by Sandeep Dhundhara, Yajvender Pal Verma, and Ashwani Kumar |
| Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023] |
| Descrizione fisica | 1 online resource (367 pages) |
| Disciplina | 0621.042 |
| Soggetto topico |
Smart power grids
Renewable resource integration |
| ISBN |
1-119-87214-6
1-119-87213-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910830087203321 |
| Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Energy storage technologies in grid modernization / / edited by Sandeep Dhundhara, Yajvender Pal Verma, and Ashwani Kumar
| Energy storage technologies in grid modernization / / edited by Sandeep Dhundhara, Yajvender Pal Verma, and Ashwani Kumar |
| Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023] |
| Descrizione fisica | 1 online resource (367 pages) |
| Disciplina | 0621.042 |
| Soggetto topico |
Energy storage
Smart power grids Electric power systems Renewable resource integration |
| ISBN |
9781119872146
1119872146 9781119872139 1119872138 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9911019424103321 |
| Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Grid-following inverters and synchronous condensers: a grid-forming pair? : preprint / / Rick Wallace Kenyon, Anderson Hoke, Jin Tan, Benjamin Kroposki, and Bri-Mathias Hodge
| Grid-following inverters and synchronous condensers: a grid-forming pair? : preprint / / Rick Wallace Kenyon, Anderson Hoke, Jin Tan, Benjamin Kroposki, and Bri-Mathias Hodge |
| Autore | Kenyon Rick Wallace |
| Pubbl/distr/stampa | Golden, CO : , : National Renewable Energy Laboratory, , 2020 |
| Descrizione fisica | 1 online resource (7 pages) : color illustrations |
| Collana | NREL/CP |
| Soggetto topico |
Electric power system stability
Capacitors, Synchronous Renewable resource integration |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Grid-following inverters and synchronous condensers |
| Record Nr. | UNINA-9910713950903321 |
Kenyon Rick Wallace
|
||
| Golden, CO : , : National Renewable Energy Laboratory, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Innovation in action : microgrids and hybrid energy systems : field hearing before the Committee on Energy and Natural Resources, United States Senate, One Hundred Fifteenth Congress, first session, June 10, 2017
| Innovation in action : microgrids and hybrid energy systems : field hearing before the Committee on Energy and Natural Resources, United States Senate, One Hundred Fifteenth Congress, first session, June 10, 2017 |
| Pubbl/distr/stampa | Washington : , : U.S. Government Publishing Office, , 2018 |
| Descrizione fisica | 1 online resource (iii, 64 pages) : illustration |
| Collana | S. hrg. |
| Soggetto topico |
Microgrids (Smart power grids) - United States
Hybrid power - Alaska Renewable energy sources - Alaska Renewable resource integration - Alaska Power resources - Technological innovations - United States Hybrid power Microgrids (Smart power grids) Power resources - Technological innovations Renewable energy sources Renewable resource integration |
| Soggetto genere / forma | Legislative hearings. |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Innovation in action |
| Record Nr. | UNINA-9910711578303321 |
| Washington : , : U.S. Government Publishing Office, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Modeling and control of modern electrical energy systems / / Masoud Karimi-Ghartemani
| Modeling and control of modern electrical energy systems / / Masoud Karimi-Ghartemani |
| Autore | Karimi-Ghartemani Masoud |
| Pubbl/distr/stampa | Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2022] |
| Descrizione fisica | 1 online resource (387 pages) |
| Disciplina | 621.317 |
| Collana | IEEE Press series on power engineering |
| Soggetto topico |
Electric power systems - Control
Renewable resource integration Electric power system stability Energy storage |
| ISBN |
1-394-17262-1
1-119-88342-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Author Biography -- Preface -- Acknowledgments -- Acronyms -- Symbols -- Introduction -- Part I Power Electronic Conversion -- Chapter 1 Power Electronics -- 1.1 Power Electronics Based Conversion -- 1.1.1 Advantages of Power Electronics -- 1.2 Power Electronic Switches -- 1.3 Types of Power Electronic Converters -- 1.4 Applications of Power Electronics in Power Engineering -- 1.4.1 Power Quality Applications -- 1.4.2 Power System Applications -- 1.4.3 Rectifiers and Motor Drive Applications -- 1.4.4 Backup Supply and Distributed Generation Applications -- 1.5 Summary and Conclusion -- Exercises -- Problems -- Reference -- Chapter 2 Standard Power Electronic Converters -- 2.1 Standard Buck Converter -- 2.1.1 Analysis of Operation -- 2.1.2 Switching Model -- 2.1.3 Average (or Control) Model -- 2.1.3.1 Current Control Model -- 2.1.3.2 Output Voltage Control Model -- 2.1.3.3 Input Voltage Control Model -- 2.1.4 Steady‐State Analysis -- 2.1.5 Sensitivity Analysis -- 2.1.5.1 Sensitivity to R -- 2.1.5.2 Sensitivity to vB -- 2.1.5.3 Sensitivity to vA -- 2.1.6 Virtual Resistance Feedback -- 2.1.7 Input Feedback Linearization -- 2.2 Standard Boost Converter -- 2.2.1 Analysis of Operation -- 2.2.2 Steady‐State Analysis -- 2.2.3 Switching Model -- 2.2.4 Average (or Control) Model -- 2.2.4.1 Current Control Model -- 2.2.4.2 Input Voltage Control -- 2.2.4.3 Output Voltage Control -- 2.3 Standard Inverting Buck‐Boost Converter* -- 2.3.1 Analysis of Operation -- 2.3.2 Steady‐State Analysis -- 2.3.3 Switching Model -- 2.3.4 Average (or Control) Model -- 2.3.4.1 Current Control Model -- 2.4 Standard Four‐Switch Buck‐Boost Converter* -- 2.4.1 Analysis of Operation -- 2.4.2 Steady‐State Analysis -- 2.4.3 Switching Model -- 2.4.4 Average (or Control) Model -- 2.4.4.1 Current Control Model.
2.5 Standard Bidirectional Converter -- 2.6 Single‐Phase Half‐Bridge VSC -- 2.6.1 Analysis of Operation -- 2.6.2 Switching Model -- 2.6.3 Average (or Control) Model -- 2.6.4 Sensitivity Analysis and Role of Feedback -- 2.6.4.1 Sensitivity to R -- 2.6.5 Synchronized Sampling -- 2.7 Full‐Bridge VSC -- 2.7.1 Bipolar PWM Operation -- 2.7.2 Unipolar PWM Operation -- 2.8 Three‐Phase VSC -- 2.8.1 Modeling in Stationary Domain -- 2.8.2 Modeling in Rotating Synchronous Frame -- 2.8.3 Compact Modeling Using Complex Transfer Functions* -- 2.9 Modeling of Converter Delays -- 2.10 Summary and Conclusion -- Exercises -- Problems -- References -- Part II Feedback Control Systems -- Chapter 3 Frequency‐Domain (Transfer Function) Approach -- 3.1 Key Concepts -- 3.1.1 Transfer Function -- 3.1.1.1 Differential Equation -- 3.1.1.2 Definition of Zeros and Poles of a TF or an LTI System -- 3.1.1.3 Partial Fraction Expansion (PFE) -- 3.1.2 Stability -- 3.1.3 Disturbance -- 3.1.4 Uncertainty -- 3.1.5 Statement of Control Problem -- 3.2 Open‐Loop Control -- 3.3 Closed‐Loop (or Feedback) Control -- 3.3.1 Feedback Philosophy -- 3.3.2 Stability Margins -- 3.3.2.1 Case I: Proportional Control C(s)& -- equals -- Kp -- 3.3.2.2 Case II: Proportional‐Derivative Control C(s)& -- equals -- K(s+z)& -- equals -- Kds+Kp -- 3.3.2.3 Case III: Proportional‐Integrating Control C(s)& -- equals -- Ks+zs& -- equals -- Kp+Kis -- 3.3.2.4 Case IV: PID Control C(s)& -- equals -- K(s+z1)(s+z2)s& -- equals -- Kds+Kp+Kis -- 3.4 Some Feedback Loop Properties -- 3.4.1 Removal of Steady‐State Error -- 3.4.2 Pole Location and Transient Response -- 3.5 Summary and Conclusion -- Problems -- Chapter 4 Time‐Domain (State Space) Approach -- 4.1 State Space Representation and Properties -- 4.1.1 Relationship between SS and TF -- 4.1.2 Facts -- 4.2 State Feedback. 4.2.1 Concept of Controllability -- 4.2.2 Concept of Stabilizability -- 4.2.3 Removing Steady‐State Error -- 4.2.4 Challenges with State Feedback Method -- 4.3 State Estimator -- 4.3.1 How to Choose the Estimator's Poles? -- 4.3.2 Separation Property -- 4.3.3 Conditions for Existence of Estimator Gain H -- 4.3.4 Concept of Observability -- 4.3.5 Concept of Detectability -- 4.4 Optimal Control -- 4.4.1 Linear Quadratic Regulator (LQR) -- 4.4.2 Linear Quadratic Tracker (LQT) -- 4.4.2.1 LQT Without Direct Output Feedback -- 4.4.2.2 Robust LQT with Direct Output Feedback -- 4.4.2.3 Elementary Design Approach (Unstable!) -- 4.4.2.4 LQT Design for Step Commands and Step Disturbances -- 4.4.2.5 LQT Design for Sinusoidal References and Disturbances -- 4.5 Summary and Conclusion -- Problems -- References -- Part III Distributed Energy Resources (DERs) -- Chapter 5 Direct‐Current (dc) DERs -- 5.1 Introduction -- 5.1.1 System Description -- 5.1.2 General Statement of Control Objectives -- 5.2 Overview of a Solar PV Conversion System -- 5.2.1 Photovoltaic Effect and Solar Cell -- 5.2.2 General PV Converter Structures -- 5.3 Power Control via Current Feedback Loop -- 5.3.1 Control Objectives -- 5.3.2 Control Approach -- 5.3.2.1 Robust Tracking and Current Limiting -- 5.3.2.2 Soft Start Control -- 5.3.3 Design of Feedback Gains Using TF Approach -- 5.3.4 LQT Approach and Design -- 5.3.5 Control Design Requirements for Current Limiting -- 5.4 Grid Voltage Support -- 5.4.1 Explanation on Concept of Inertia -- 5.4.2 Conflict of Inertia Response and Current Limiting -- 5.4.3 Inertia Response Using Capacitor Emulation -- 5.4.4 Full State Feedback of Power Loop -- 5.4.5 Static Grid Voltage Support (Droop Function) -- 5.4.6 Inertia Power Using Grid Voltage Differentiation -- 5.4.7 Common Approach: Nested Control Loops -- 5.5 Analysis of Weak Grid Condition. 5.6 Load Voltage Control -- 5.6.1 Control Structure and Optimal Design -- 5.6.2 Current Limiting -- 5.7 Grid‐Forming Converter Controls -- 5.7.1 Grid‐Forming Control Without a dc‐Side Capacitor -- 5.7.2 Grid‐Forming Controller with a dc‐Side Capacitor -- 5.7.2.1 Full State Feedback -- 5.8 Control Scenarios in a PV Converter -- 5.8.1 PV Voltage Control -- 5.8.2 MPPT via PV Voltage Control -- 5.8.3 Mathematical Modeling of MPPT Algorithm -- 5.8.3.1 Calculation of ddvpvppv: Method 1 -- 5.8.3.2 Calculation of ddvpvppv: Method 2 -- 5.8.4 PV Power Control -- 5.9 LCL Filter* -- 5.9.1 Passive Damping of Resonance Mode -- 5.9.2 Full‐State Feedback with Active Damping -- 5.9.3 Delay Compensation Technique Using LQT Approach -- 5.10 Summary and Conclusion -- Problems -- References -- Chapter 6 Single‐Phase Alternating‐Current (ac) DERs -- 6.1 Power Balance in a dc/ac System -- 6.1.1 Power Decoupling -- 6.2 Power Control Method via Current Feedback Loop (CFL) -- 6.2.1 Input Linearization and Feedforward Compensation -- 6.2.2 Control Structure -- 6.2.3 Calculating and Limiting Reference Current -- 6.2.4 Single‐Phase ePLL -- 6.2.4.1 Linear Analysis of ePLL -- 6.2.4.2 Two Modifications to the ePLL -- 6.2.5 Controller Formulation and LQT Design -- 6.2.6 Impact of Grid Voltage Harmonics -- 6.2.7 Harmonics and dc Control Units -- 6.2.8 Weak Grid Condition and PLL Impact* -- 6.2.8.1 Short‐Circuit Ratio (SCR) -- 6.2.8.2 LTI Model of Reference Current Generation -- 6.2.8.3 Controller and Its Design -- 6.3 Grid‐Supportive Controls -- 6.3.1 Static (or Steady‐State) Support -- 6.3.2 Dynamic (or Inertia) Support -- 6.3.3 Power Controller with Grid Support -- 6.3.4 Virtual Synchronous Machine (VSM) -- 6.3.4.1 Stability Analysis and Design of VSM -- 6.3.4.2 Start‐up Synchronization -- 6.3.4.3 Grid‐Connection Synchronization -- 6.4 dc Voltage Control and Support. 6.4.1 System Modeling -- 6.4.2 Control Structure and Design -- 6.4.3 Removing 2‐f Ripples from Control Loop* -- 6.4.3.1 Notch Filtering Method -- 6.4.3.2 Direct Ripple Cancellation Method -- 6.4.4 Obtaining Inertia from Capacitor* -- 6.4.4.1 Non‐VSM Approach -- 6.4.4.2 VSM Approach -- 6.5 Load Voltage Control and Support -- 6.5.1 Direct Voltage Control Approach -- 6.5.2 Voltage Control Loop with Current Limiting -- 6.5.3 Deriving Grid‐Forming Controllers -- 6.5.3.1 Power Droops Strategy -- 6.5.3.2 Swing Equation Strategy (VSM Approach) -- 6.5.3.3 Analogy Between the Two Approaches -- 6.5.3.4 Damping Strategies -- 6.5.4 Discussion -- 6.6 DERs in a Hybrid ac/dc Network -- 6.7 Summary and Conclusion -- Problems -- References -- Chapter 7 Three‐Phase DERs -- 7.1 Introduction -- 7.1.1 Symmetrical Components -- 7.1.2 Powers in a Three‐Phase System -- 7.1.2.1 Balanced Situation -- 7.1.2.2 Unbalanced Situation -- 7.1.3 Space Phasor Concept and Notation -- 7.1.3.1 Space Phasor of a Positive‐Sequence Signal -- 7.1.3.2 Space Phasor of a Negative‐Sequence Waveform -- 7.1.3.3 Power Definitions and Expressions Using Space Phasor -- 7.2 Three‐Phase PLL -- 7.2.1 SRF‐PLL -- 7.2.1.1 Principles of Operation -- 7.2.1.2 Approximate Linear Analysis and Design -- 7.2.1.3 Alternative Presentations -- 7.2.2 Three‐Phase Enhanced PLL (ePLL) -- 7.2.2.1 Basic ePLL Structure -- 7.2.2.2 Analysis of Basic ePLL -- 7.2.3 ePLL with Negative‐Sequence Estimation -- 7.2.4 ePLL with Negative‐seq and dc Estimation -- 7.3 Vector Current Control in Stationary Domain -- 7.3.1 Controller Structure -- 7.3.2 Current Reference Generation and Limiting -- 7.3.2.1 Balanced Current -- 7.3.2.2 Unbalanced Current -- 7.3.3 Harmonics, Higher‐Order Filters, System Delays -- 7.3.4 Weak Grid Conditions and Including PLL in Controller* -- 7.4 Vector Current Control in Synchronous Reference Frame. 7.4.1 Control Structure. |
| Record Nr. | UNINA-9910830232503321 |
Karimi-Ghartemani Masoud
|
||
| Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Renewable energy integration : practical management of variability, uncertainty and flexibility in power grids / / Lawrence E. Jones
| Renewable energy integration : practical management of variability, uncertainty and flexibility in power grids / / Lawrence E. Jones |
| Autore | Jones Lawrence E. |
| Pubbl/distr/stampa | London, England : , : Academic Press, , 2014 |
| Descrizione fisica | 1 online resource (529 p.) |
| Disciplina | 621.042 |
| Soggetto topico |
Renewable resource integration
Renewable energy sources Smart power grids Electric power distribution |
| ISBN | 0-12-408122-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Renewable Energy Integration: Practical Management ofVariability, Uncertainty, andFlexibility in Power Grids; Copyright; Praise for Renewable Energy Integration; Dedication; Contents; About the Contributors; About the Editor; Acknowledgments; Foreword from Europe; Foreword from the USA; Introduction; OVERVIEW OF CHAPTERS; WHO SHOULD READ THIS BOOK; HOW TO READ THIS BOOK; Part 1 Policy and Regulation; Chapter 1 - The Journey of Reinventing the European Electricity Landscape-Challenges and Pioneers; 1 Background; 2 The post-2020 Europe
3 Renewable integration in Europe: Challenges and policy responses4 The story of three pioneers: History and future; 5 Trends & future outlook; References; Chapter 2 - Policies for Accommodating Higher Penetration of Variable Energy Resources: US Outlook and Perspectives; 1 Recent renewable deployment trends; 2 Technical challenges posed by wind generation for power system operation & planning; 3 Economic challenges associated with high wind energy: the potential for curtailment; 4 Transmission development for wind integration: challenges and success stories 5 FERC order 764 on variable energy resource integration6 The future of renewable development in the united states; Chapter 3 - Harnessing and Integrating Africa's Renewable Energy Resources; 1 Introduction; 2 Background and context; 3 Sub-Saharan Africa in the global energy transition; 4 The way forward; 5 Conclusion; References; Part 2 Modeling of Variable Energy Resources; Chapter 4 - Multi-Dimensional, Multi-Scale Modeling and Algorithms for Integrating Variable Energy Resources in Power Netwo ...; 1 Power system dimensions and scales; 2 Modeling and analysis; 3 Optimization and control 4 Data handling and visualization5 Integrated multi-dimensional analytics platforms; 6 Conclusions; References; Chapter 5 - Scandinavian Experience of Integrating Wind Generation in Electricity Markets; 1 Introduction; 2 The transmission system operators; 3 The Baltic-Nordic spot market; 4 Price zones; 5 Day-ahead grid congestion management: market splitting; 6 Maintaining the security of supply: regulating energy; 7 Regulating energy and the security of supply: making the wind turbines part of the solution; 8 Other mechanims and policies for integrating wind in electricty markets 9 Efficient and nonefficient multistate markets (EU as a case)10 Conclusion: The moral of the spot case from Northern Europe; Chapter 6 - Case Study-Renewable Integration: Flexibility Requirement, Potential Overgeneration, and Frequency Response Cha ...; 1. ISO real-time market overview; 2. Renewable generation effects in the ISO real-time market; 3. Flexibility requirement; 4. Intrahour flexibility requirement; 5. Potential overgeneration problems; 6. Inertia and frequency response; 7. Sensitivities; References; Part 3 Variable Energy Resources in Power System and Market Operations Chapter 7 - Analyzing the Impact of Variable Energy Resources on Power System Reserves |
| Record Nr. | UNINA-9910808006103321 |
Jones Lawrence E.
|
||
| London, England : , : Academic Press, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||