Developments in Lorentzian geometry : GeLoCor 2021, Cordoba, Spain, February 1-5 / / edited by Alma L. Albujer [and four others] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (323 pages) |
Disciplina | 516 |
Collana | Springer Proceedings in Mathematics and Statistics |
Soggetto topico |
Geometry, Differential
General relativity (Physics) Geometria diferencial Relativitat general (Física) |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-05379-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Organization -- Preface -- Contents -- Semi-Riemannian Cones with Parallel Null Planes -- 1 Introduction -- 2 The Induced Structure on the Base -- 3 Consequences of the Fundamental Equations -- 4 The Local Form of the Metric on the Base -- References -- Nilpotent Structures of Neutral 4-Manifolds and Light-Like Surfaces -- 1 Introduction -- 2 Complex Structures and Paracomplex Structures of 4-Dimensional Neutral Vector Spaces -- 3 Nilpotent Structures of 4-Dimensional Neutral Vector Spaces -- 4 Almost Complex Structures and Almost Paracomplex Structures of Neutral 4-Manifolds -- 5 Almost Nilpotent Structures of Neutral 4-Manifolds -- 6 Light-Like Surfaces in Neutral 4-Manifolds -- References -- Positive Energy Theorems in Fourth-Order Gravity -- 1 Introduction -- 2 Preliminaries -- 3 Conservation Principles and Fourth Order Energy -- 4 Positive Energy Theorem for Einstein Metrics -- 5 Positive Energy Theorem for Stationary Solutions -- 6 The Q-Curvature Positive Mass Theorem -- References -- Curvature and Killing Vector Fields on Lorentzian 3-Manifolds -- 1 Introduction -- 2 The Newman-Penrose Formalism for Lorentzian 3-Manifolds -- 3 The Newman-Penrose Formalism and Global Obstructions -- 3.1 Evolution Equations for Divergence, Twist, and Shear -- 4 The Newman-Penrose Formalism and Local Classifications -- 4.1 The Riemannian Case -- 4.2 Local Coordinates -- 4.3 The Local Classification -- 4.4 The Lorentzian Setting -- References -- Bochner-Flat Para-Kähler Surfaces -- 1 Introduction -- 2 Walker Structures -- 2.1 Self-Dual Walker Manifolds -- 3 Bochner-Flat Para-Kähler Surfaces -- 3.1 Bochner-Flat Para-Kähler Surfaces of Constant Scalar Curvature -- 3.2 Some Examples of Bochner-Flat Para-Kähler Structures of Non-constant Scalar Curvature -- References -- Remarks on the Existence of CMC Cauchy Surfaces -- 1 Introduction.
2 Some CMC Existence Results -- 2.1 CMC Existence Result from a Spacetime Curvature Condition -- 2.2 CMC Existence Result Related to a Conjecture of Dilts and Holst -- 3 Remarks on the Conformal Structure of Cosmological Spacetimes -- References -- Lorentzian Area and Volume Estimates for Integral Mean Curvature Bounds -- 1 Introduction -- 2 Background -- 2.1 Our Setting -- 2.2 Comparison Spaces -- 2.3 The Cosmological Time Function and Its Properties -- 3 Area and Volume Estimates -- 3.1 Basic Area and Volume Estimates Using Integral Mean Curvature Bounds -- 3.2 Proof of Theorem 2 -- 4 Generalized Area Estimates for MathID486Σt -- 5 Extending Theorem 2 to Subsets and Non-compact MathID519Σ with Finite Area -- 6 Example: For p less than np< -- n, Bounds on the upper L Superscript pLp-Norm of upper H Subscript plusH+ are Insufficient for the Estimates (47), (48) -- References -- Null Hypersurfaces and the Rigged Metric -- 1 Introduction -- 2 Characterization of a Null Cone -- 3 Codimension Two Spacelike Submanifolds Through a Null Hypersurface -- References -- Spacelike Causal Boundary at Finite Distance and Continuous Extension of the Metric: A Preliminary Report -- 1 Introduction -- 2 Spacelike Causal Boundary at Finite Distance -- 3 C0 Extension of the Metric to the Causal Boundary -- References -- Lightlike Hypersurfaces and Time-Minimizing Geodesics in Cone Structures -- 1 Introduction -- 2 Preliminary Notions on Cone Structures -- 3 Lightlike Hypersurfaces -- 4 Smoothness of Achronal Boundaries -- 5 Minimization Properties of Cone Geodesics -- References -- Anisotropic Connections and Parallel Transport in Finsler Spacetimes -- 1 Introduction -- 2 General Background -- 2.1 Pseudo-Finsler Metrics -- 2.2 Finsler Spacetimes and Its Restspace -- 3 Anisotropic Connections -- 3.1 Anisotropic Tensor Fields and Their Vertical Derivatives. 3.2 Basic Notion of Anisotropic Connection -- 3.3 Extension to a Covariant Derivative of Anisotropic Tensors -- 4 Anisotropic Versus Nonlinear Connections -- 4.1 Setting for Nonlinear Connections -- 4.2 Interplay Between Anisotropic Connections and Nonlinear Ones -- 5 Anisotropic Versus Linear Connections -- 5.1 Linear Connections on VArightarrowA -- 5.2 Anisotropic Connections as Vertically Trivial Linear Connections -- 6 Anisotropic Versus Finsler Connections -- 6.1 The Metric Spray -- 6.2 The Finslerian Linear Connections -- 7 Parallel Transport and Anisotropic Connections -- 7.1 Observers and Parallel Transport -- 7.2 Recovering the Anisotropic Connection from the Transport -- 7.3 Levi-Civita-Chern Connection of a Finsler Spacetime -- References -- Stability of Pseudo-Kähler Manifolds and Cohomological Decomposition -- 1 Introduction -- 2 Bott-Chern Cohomology and Pseudo-Kähler Stability -- 3 Cohomological Decomposition and Stability -- 4 Cohomologically Pseudo-Kähler Solvmanifolds -- References -- Singularity Scattering Laws for Bouncing Cosmologies: A Brief Overview -- 1 Introduction -- 2 Global Nonlinear Stability of Einstein Spacetimes -- 2.1 Background -- 2.2 Self-gravitating Massive Matter Field -- 3 Spacetimes with Singularity Hypersurfaces -- 3.1 Our Standpoint -- 3.2 Formulation of the Problem -- 4 Fundamental Notions and Local Existence Theory -- 4.1 A Construction Scheme -- 4.2 Singularity Data and Asymptotic Profiles -- 4.3 Cyclic Spacetimes -- 4.4 Existence and Asymptotic Properties of Cyclic Spacetimes -- 5 Classification of Scattering Maps -- 5.1 Terminology -- 5.2 Main Classification Results -- 5.3 The Three Universal Laws of Quiescent Bouncing Cosmology -- 5.4 Role of the Small-Scale Physics -- References -- ε-Contact Structures and Six-Dimensional Supergravity -- 1 Introduction -- 2 ε-Contact Metric Structures. 3 Null Contact Metric Structures -- 3.1 Sasakian and K-Contact Null Contact Structures -- 4 εη-Einstein Structures and Six-Dimensional Supergravity -- References -- Geometry of Null Hypersurfaces in Lorentzian Space Forms -- 1 Introduction -- 2 The General Framework -- 3 Conformality: Definition, Examples and Related Results -- 4 Null Screen Isoparametric Hypersurfaces -- 5 Null Einstein Hypersurfaces -- References -- Dynamics of Relativistic Particles with Torsion in Certain Non-flat Spacetimes -- 1 Introduction -- 2 Generalities -- 2.1 Calculus of Variations -- 2.2 Equations of Motion -- 3 Set up -- 4 Trajectories in Generalized Robertson-Walker Spacetimes -- 4.1 Frenet Frame -- 4.2 The Curvature Functional -- 4.3 The Torsion Functional -- 5 Trajectories in Standard Static Spacetimes -- 5.1 Frenet Frame -- 5.2 The Curvature Functional -- 5.3 The Torsion Functional -- 6 Discussion -- References -- The Half-Space Model of Pseudo-hyperbolic Space -- 1 Introduction -- 2 First Definitions and Properties -- 2.1 The Half-Space Model -- 2.2 An Isometric Embedding -- 2.3 Symmetries -- 3 Totally Geodesic Submanifolds -- 3.1 The Geodesic Equations -- 3.2 Totally Geodesic Hypersurfaces -- 3.3 The General Classification -- 4 Geodesics -- 4.1 Lightlike Geodesics -- 4.2 A Preliminary Computation -- 4.3 Timelike Geodesics -- 4.4 Spacelike Geodesics -- 5 The Boundary at Infinity -- 5.1 The Extended Embedding -- 5.2 The Full Boundary in the Half-Space Model -- 5.3 Examples -- 5.4 Geodesics Revisited -- 6 Horospheres -- 7 Isometries -- 7.1 The Isometry Group Isom(mathcalHp,q) -- 7.2 Inversions -- 7.3 Action of Isom(mathbbHp,q) -- References -- Author Index. |
Record Nr. | UNINA-9910616204203321 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Developments in Lorentzian geometry : GeLoCor 2021, Cordoba, Spain, February 1-5 / / edited by Alma L. Albujer [and four others] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (323 pages) |
Disciplina | 516 |
Collana | Springer Proceedings in Mathematics and Statistics |
Soggetto topico |
Geometry, Differential
General relativity (Physics) Geometria diferencial Relativitat general (Física) |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-05379-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Organization -- Preface -- Contents -- Semi-Riemannian Cones with Parallel Null Planes -- 1 Introduction -- 2 The Induced Structure on the Base -- 3 Consequences of the Fundamental Equations -- 4 The Local Form of the Metric on the Base -- References -- Nilpotent Structures of Neutral 4-Manifolds and Light-Like Surfaces -- 1 Introduction -- 2 Complex Structures and Paracomplex Structures of 4-Dimensional Neutral Vector Spaces -- 3 Nilpotent Structures of 4-Dimensional Neutral Vector Spaces -- 4 Almost Complex Structures and Almost Paracomplex Structures of Neutral 4-Manifolds -- 5 Almost Nilpotent Structures of Neutral 4-Manifolds -- 6 Light-Like Surfaces in Neutral 4-Manifolds -- References -- Positive Energy Theorems in Fourth-Order Gravity -- 1 Introduction -- 2 Preliminaries -- 3 Conservation Principles and Fourth Order Energy -- 4 Positive Energy Theorem for Einstein Metrics -- 5 Positive Energy Theorem for Stationary Solutions -- 6 The Q-Curvature Positive Mass Theorem -- References -- Curvature and Killing Vector Fields on Lorentzian 3-Manifolds -- 1 Introduction -- 2 The Newman-Penrose Formalism for Lorentzian 3-Manifolds -- 3 The Newman-Penrose Formalism and Global Obstructions -- 3.1 Evolution Equations for Divergence, Twist, and Shear -- 4 The Newman-Penrose Formalism and Local Classifications -- 4.1 The Riemannian Case -- 4.2 Local Coordinates -- 4.3 The Local Classification -- 4.4 The Lorentzian Setting -- References -- Bochner-Flat Para-Kähler Surfaces -- 1 Introduction -- 2 Walker Structures -- 2.1 Self-Dual Walker Manifolds -- 3 Bochner-Flat Para-Kähler Surfaces -- 3.1 Bochner-Flat Para-Kähler Surfaces of Constant Scalar Curvature -- 3.2 Some Examples of Bochner-Flat Para-Kähler Structures of Non-constant Scalar Curvature -- References -- Remarks on the Existence of CMC Cauchy Surfaces -- 1 Introduction.
2 Some CMC Existence Results -- 2.1 CMC Existence Result from a Spacetime Curvature Condition -- 2.2 CMC Existence Result Related to a Conjecture of Dilts and Holst -- 3 Remarks on the Conformal Structure of Cosmological Spacetimes -- References -- Lorentzian Area and Volume Estimates for Integral Mean Curvature Bounds -- 1 Introduction -- 2 Background -- 2.1 Our Setting -- 2.2 Comparison Spaces -- 2.3 The Cosmological Time Function and Its Properties -- 3 Area and Volume Estimates -- 3.1 Basic Area and Volume Estimates Using Integral Mean Curvature Bounds -- 3.2 Proof of Theorem 2 -- 4 Generalized Area Estimates for MathID486Σt -- 5 Extending Theorem 2 to Subsets and Non-compact MathID519Σ with Finite Area -- 6 Example: For p less than np< -- n, Bounds on the upper L Superscript pLp-Norm of upper H Subscript plusH+ are Insufficient for the Estimates (47), (48) -- References -- Null Hypersurfaces and the Rigged Metric -- 1 Introduction -- 2 Characterization of a Null Cone -- 3 Codimension Two Spacelike Submanifolds Through a Null Hypersurface -- References -- Spacelike Causal Boundary at Finite Distance and Continuous Extension of the Metric: A Preliminary Report -- 1 Introduction -- 2 Spacelike Causal Boundary at Finite Distance -- 3 C0 Extension of the Metric to the Causal Boundary -- References -- Lightlike Hypersurfaces and Time-Minimizing Geodesics in Cone Structures -- 1 Introduction -- 2 Preliminary Notions on Cone Structures -- 3 Lightlike Hypersurfaces -- 4 Smoothness of Achronal Boundaries -- 5 Minimization Properties of Cone Geodesics -- References -- Anisotropic Connections and Parallel Transport in Finsler Spacetimes -- 1 Introduction -- 2 General Background -- 2.1 Pseudo-Finsler Metrics -- 2.2 Finsler Spacetimes and Its Restspace -- 3 Anisotropic Connections -- 3.1 Anisotropic Tensor Fields and Their Vertical Derivatives. 3.2 Basic Notion of Anisotropic Connection -- 3.3 Extension to a Covariant Derivative of Anisotropic Tensors -- 4 Anisotropic Versus Nonlinear Connections -- 4.1 Setting for Nonlinear Connections -- 4.2 Interplay Between Anisotropic Connections and Nonlinear Ones -- 5 Anisotropic Versus Linear Connections -- 5.1 Linear Connections on VArightarrowA -- 5.2 Anisotropic Connections as Vertically Trivial Linear Connections -- 6 Anisotropic Versus Finsler Connections -- 6.1 The Metric Spray -- 6.2 The Finslerian Linear Connections -- 7 Parallel Transport and Anisotropic Connections -- 7.1 Observers and Parallel Transport -- 7.2 Recovering the Anisotropic Connection from the Transport -- 7.3 Levi-Civita-Chern Connection of a Finsler Spacetime -- References -- Stability of Pseudo-Kähler Manifolds and Cohomological Decomposition -- 1 Introduction -- 2 Bott-Chern Cohomology and Pseudo-Kähler Stability -- 3 Cohomological Decomposition and Stability -- 4 Cohomologically Pseudo-Kähler Solvmanifolds -- References -- Singularity Scattering Laws for Bouncing Cosmologies: A Brief Overview -- 1 Introduction -- 2 Global Nonlinear Stability of Einstein Spacetimes -- 2.1 Background -- 2.2 Self-gravitating Massive Matter Field -- 3 Spacetimes with Singularity Hypersurfaces -- 3.1 Our Standpoint -- 3.2 Formulation of the Problem -- 4 Fundamental Notions and Local Existence Theory -- 4.1 A Construction Scheme -- 4.2 Singularity Data and Asymptotic Profiles -- 4.3 Cyclic Spacetimes -- 4.4 Existence and Asymptotic Properties of Cyclic Spacetimes -- 5 Classification of Scattering Maps -- 5.1 Terminology -- 5.2 Main Classification Results -- 5.3 The Three Universal Laws of Quiescent Bouncing Cosmology -- 5.4 Role of the Small-Scale Physics -- References -- ε-Contact Structures and Six-Dimensional Supergravity -- 1 Introduction -- 2 ε-Contact Metric Structures. 3 Null Contact Metric Structures -- 3.1 Sasakian and K-Contact Null Contact Structures -- 4 εη-Einstein Structures and Six-Dimensional Supergravity -- References -- Geometry of Null Hypersurfaces in Lorentzian Space Forms -- 1 Introduction -- 2 The General Framework -- 3 Conformality: Definition, Examples and Related Results -- 4 Null Screen Isoparametric Hypersurfaces -- 5 Null Einstein Hypersurfaces -- References -- Dynamics of Relativistic Particles with Torsion in Certain Non-flat Spacetimes -- 1 Introduction -- 2 Generalities -- 2.1 Calculus of Variations -- 2.2 Equations of Motion -- 3 Set up -- 4 Trajectories in Generalized Robertson-Walker Spacetimes -- 4.1 Frenet Frame -- 4.2 The Curvature Functional -- 4.3 The Torsion Functional -- 5 Trajectories in Standard Static Spacetimes -- 5.1 Frenet Frame -- 5.2 The Curvature Functional -- 5.3 The Torsion Functional -- 6 Discussion -- References -- The Half-Space Model of Pseudo-hyperbolic Space -- 1 Introduction -- 2 First Definitions and Properties -- 2.1 The Half-Space Model -- 2.2 An Isometric Embedding -- 2.3 Symmetries -- 3 Totally Geodesic Submanifolds -- 3.1 The Geodesic Equations -- 3.2 Totally Geodesic Hypersurfaces -- 3.3 The General Classification -- 4 Geodesics -- 4.1 Lightlike Geodesics -- 4.2 A Preliminary Computation -- 4.3 Timelike Geodesics -- 4.4 Spacelike Geodesics -- 5 The Boundary at Infinity -- 5.1 The Extended Embedding -- 5.2 The Full Boundary in the Half-Space Model -- 5.3 Examples -- 5.4 Geodesics Revisited -- 6 Horospheres -- 7 Isometries -- 7.1 The Isometry Group Isom(mathcalHp,q) -- 7.2 Inversions -- 7.3 Action of Isom(mathbbHp,q) -- References -- Author Index. |
Record Nr. | UNISA-996495170703316 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Einstein equations : local energy, self-force, and fields in general relativity / / Sergio Luigi Cacciatori and Alexander Kamenshchik, editors |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2022] |
Descrizione fisica | 1 online resource (261 pages) |
Disciplina | 530.11 |
Collana | Tutorials, Schools, and Workshops in the Mathematical Sciences |
Soggetto topico |
General relativity (Physics)
Equacions de camp d'Einstein Relativitat general (Física) |
Soggetto genere / forma |
Congressos
Llibres electrònics |
ISBN | 3-031-21845-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part I. Main Lectures -- Introduction to the Wang-Yau quasi-local energy -- Gravitational self-force in the Schwarzschild spacetime -- Geometry and analysis in black hole spacetimes -- Study of fundamental laws with Antimatter -- Part II. Proceedings -- Quantum Ergosphere and Brick Wall -- Geodesic structure and linear instability of some wormholes -- New trends in the general relativistic Poynting-Robertson effect modeling -- Brief Overview of Numerical Relativity -- Length-contraction in curved spacetime -- Exact solutions of Einstein-Maxwell(-dilation) equations with discrete translational symmetry -- Exact solutions of the Einstein equations for an infinite slab with constant energy density -- Emergence of classicality from an inhomogeneous universe. |
Record Nr. | UNINA-9910682568703321 |
Cham, Switzerland : , : Birkhäuser, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Einstein equations : local energy, self-force, and fields in general relativity / / Sergio Luigi Cacciatori and Alexander Kamenshchik, editors |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2022] |
Descrizione fisica | 1 online resource (261 pages) |
Disciplina | 530.11 |
Collana | Tutorials, Schools, and Workshops in the Mathematical Sciences |
Soggetto topico |
General relativity (Physics)
Equacions de camp d'Einstein Relativitat general (Física) |
Soggetto genere / forma |
Congressos
Llibres electrònics |
ISBN | 3-031-21845-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part I. Main Lectures -- Introduction to the Wang-Yau quasi-local energy -- Gravitational self-force in the Schwarzschild spacetime -- Geometry and analysis in black hole spacetimes -- Study of fundamental laws with Antimatter -- Part II. Proceedings -- Quantum Ergosphere and Brick Wall -- Geodesic structure and linear instability of some wormholes -- New trends in the general relativistic Poynting-Robertson effect modeling -- Brief Overview of Numerical Relativity -- Length-contraction in curved spacetime -- Exact solutions of Einstein-Maxwell(-dilation) equations with discrete translational symmetry -- Exact solutions of the Einstein equations for an infinite slab with constant energy density -- Emergence of classicality from an inhomogeneous universe. |
Record Nr. | UNISA-996518464603316 |
Cham, Switzerland : , : Birkhäuser, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
New frontiers of celestial mechanics, theory and applications : I-CELMECH Training School, Milan, Italy, February 3-7, 2020 / / edited by Giulio Baù |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2023] |
Descrizione fisica | 1 online resource (306 pages) |
Disciplina | 521 |
Collana | Springer Proceedings in Mathematics & Statistics |
Soggetto topico |
Celestial mechanics
Mecànica celeste Relativitat general (Física) Astrometria Física matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-13115-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 U. Locatelli, C. Caracciolo, M. Sansottera, M. Volpi - Invariant KAM tori: from theory to applications to exoplanetary systems -- 2 J. Daquin, S. Di Ruzza, G. Pinzari, A new analysis of the three-body problem -- 3 R. Calleja, A. Celletti, R. de la Llave, KAM theory for some dissipative systems -- 4. G. Boué, Tidal Effects and Rotation of Extended Bodies -- 5 C. Efthymiopoulos, R.I. Paez, Arnold diffusion and Nekhoroshev theory -- 6 G. F. Gronchi, Orbit determination with the Keplerian Integrals -- 7 A. Celletti, C. Gales, Resonant dynamics of space debris -- 8 M. Guzzo, E. Lega, Theory and applications of Fast Lyapunov Indicators for the computation of transit orbits in the three-body problem -- 9 A. Giorgilli, The unaccomplished perfection of Kepler’s world. |
Record Nr. | UNINA-9910659490203321 |
Cham, Switzerland : , : Springer, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
New frontiers of celestial mechanics, theory and applications : I-CELMECH Training School, Milan, Italy, February 3-7, 2020 / / edited by Giulio Baù |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2023] |
Descrizione fisica | 1 online resource (306 pages) |
Disciplina | 521 |
Collana | Springer Proceedings in Mathematics & Statistics |
Soggetto topico |
Celestial mechanics
Mecànica celeste Relativitat general (Física) Astrometria Física matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-13115-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 U. Locatelli, C. Caracciolo, M. Sansottera, M. Volpi - Invariant KAM tori: from theory to applications to exoplanetary systems -- 2 J. Daquin, S. Di Ruzza, G. Pinzari, A new analysis of the three-body problem -- 3 R. Calleja, A. Celletti, R. de la Llave, KAM theory for some dissipative systems -- 4. G. Boué, Tidal Effects and Rotation of Extended Bodies -- 5 C. Efthymiopoulos, R.I. Paez, Arnold diffusion and Nekhoroshev theory -- 6 G. F. Gronchi, Orbit determination with the Keplerian Integrals -- 7 A. Celletti, C. Gales, Resonant dynamics of space debris -- 8 M. Guzzo, E. Lega, Theory and applications of Fast Lyapunov Indicators for the computation of transit orbits in the three-body problem -- 9 A. Giorgilli, The unaccomplished perfection of Kepler’s world. |
Record Nr. | UNISA-996511863303316 |
Cham, Switzerland : , : Springer, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Some Musings on Theta, Eta, and Zeta : From E8 to Cold Plasma to an lnhomogeneous Universe / / by Floyd L. Williams |
Autore | Williams Floyd L |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (233 pages) |
Disciplina | 530.15 |
Collana | Mathematical Physics Studies |
Soggetto topico |
Mathematical physics
Number theory General relativity (Physics) Mathematical Physics Number Theory General Relativity Relativitat general (Física) Teoria de nombres Física matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-9953-36-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | A Theta Function Attached to a Positive Definite Matrix -- Jacobi Type Inversion Formulas -- A Theorem of Minkowski: Enter E8 -- Modular Properties of Theta and Eta -- An Epstein Zeta Function Attached to A -- An Inhomogeneous Epstein Zeta Function -- Dirichlet and Hecke L-functions, Sums of Squares, and Some Other Stuff -- The Modular j-Invariant and Powers of Its Cube Root: Enter E8 Again -- Modular Forms of Non-Positive Weight: Exact Formulas and Asymptotics of Their Fourier Coefficients -- More on Logarithmic Corrections to Black Hole Entropy -- A Dedekind Type Eta Function Attached to the Hecke Group Γ0(N) -- Elementary Particles, the E8 Root Lattice, and a Patterson-Selberg Zeta Function -- The Uncontroversial Mathematics Behind Garrett Lisi’s Controversial “Theory of Every -- The Elliptic Functions sn(x, κ), cn(x, κ), and dn(x, κ) of C.Jacobi -- The Continuous Heisenberg Model, Reaction Diffusion System, Cold Plasma, and the J-T Black Hole -- The Weierstrass P-Function and Some KdV Solutions -- The Weierstrass Sigma and Zeta Functions: Theta Function Connections -- A Finite Temperature Zeta Function -- Lemaitre, Inhomogeneous Cosmology, and a Quick Look at the BTZ Black Hole -- A Cold Plasma-sine-Gordon Connection -- A Theta and Zeta Function Attached to a Non- Compact Symmetric Space: Computation of the One-Loop Effective Potential. |
Record Nr. | UNINA-9910760278403321 |
Williams Floyd L | ||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|